A 2-GHz Direct Sampling ΔΣ Tunable Receiver with 40-GHz Sampling Clock and on-chip PLL
-
Author
waggoner-buckingham -
Category
Documents
-
view
27 -
download
0
Embed Size (px)
description
Transcript of A 2-GHz Direct Sampling ΔΣ Tunable Receiver with 40-GHz Sampling Clock and on-chip PLL

A 2-GHz Direct Sampling ΔΣ Tunable Receiver with 40-GHz
Sampling Clock and on-chip PLL
T. Chalvatzis1, T. O. Dickson1,2 and S. P. Voinigescu1
1 University of Toronto, Toronto, CA2 now with IBM T.J. Watson Research Center, NY, USA

Outline of Presentation
• Motivation
• Circuit design– Loop filter– PLL
• Measurement results
• Summary

Motivation
• Direct sampling receiver for 2-GHz radio with 60 MHz BW– CT BP ΔΣ ADC with SNDR of 55dB/60MHz
[Chalvatzis et al., JSSC, May 2007]– Investigation of clock jitter impact with on-chip
clock source
LNA
Duplexer/BPF
TO DSP
Digital Receiver
ADC
CLOCK

System Architecture
• 2-GHz Gm-LC BPF• Fourth order loop• 1-bit quantizer as DFF
with FCLK=40GHz
• RZ pulse DACs• 40-GHz VCO/PLL
QDGm2
RZDAC1
RZDAC2
40-GHzEXTERNAL
CLOCK
2GHz BPF 2GHz BPF DFFDIGITAL
OUTPUT
DRIVERRF
INPUTGm1
CLOCKTREE
40-GHz VCO
G fb1 G fb2
LNA
PFD CP
DIV/16
SEL
CLOCKSELECT
2.5-GHzREF

System Level Design
• Design methodology in continuous-time
• System level simulation for accurate analysis of loop delay
• Loop coefficients:– Gm1=22mS, Gm2=15mS– Gfb1=50mS, Gfb2=150mS
SNDR=61dB over 60 MHz in Matlab Simulink

SNR vs clock jitter
• Clock jitter effect simulated for FS=40GHz, OSR=333
• PLL jitter < 1.4 ps (rms) for 10 bits resolution
Δ: quantizer step
[Ortmanns et al.,
ISCAS 2003]
2IN
2 2DAC t
V 2OSRSNR=
2 F σ

SNR vs resonator Q
• Quantization noise integrated over BW for FS=40GHz
• Q >18 for 10 bits resolution
2IN
2 / 2
/ 2
VSNR=
( )6
O
O
F BW
F BWS
NTF jf dfF

VB VB
INP INN
VTUNE
LCCC
CVAR
LE LE
LEE,1
VB VB
VCC (2.5V)
VTUNE OUTNOUTP
LCCC
CVAR
M 1 M 2
Q1 Q2
M 3 M 4
Q3 Q4
LNA/Gm1 Gm2
BPF BPF
VGTAIL
Q5
M 7M 6M 5
Loop Filter
• MOS-HBT cascode for high linearity and low noise• EF limit voltage headroom, current source adds noise
Loop filter with EF

Modified Loop Filter
• MOS-HBT cascode for high linearity and low noise• EF limit voltage headroom, current source adds noise
VB VB
INP INN
VTUNE
LCCC
CVAR
LE LE
LEE,1
VB VB
VCC (2.5V)
VTUNE OUTNOUTP
LCCC
CVAR
VG
M 1 M 2
Q1 Q2
M 3 M 4
Q3 Q4
CB
RGLEE,2 RG
LNA/Gm1 Gm2
BPF BPF
CB
Modified Loop Filter

D/A Converter – Quantizer
• DAC and quantizer with MOS-HBT cascodes [Chalvatzis et al., JSSC, May 2007]
• MOS on clock path to improve speed with low supply• HBT on data path for high gain
DAC Latch
DFFP
CLKP CLKN
DFFN
VGTAIL
VCC
(2.5V)
VB
DACP DACN
Q1 Q2
M1 M2
M3
ITAIL
Q3 Q4INP
CLKP
INN
VCC
(2.5V)
CLKN
VG
OUTP
OUTN

Digital Receiver – PLL Blocks
• 40-GHz PLL design from 2.5V challenging• Combination of MOS-HBT transistors in PLL blocks
P h a se F req u en cy D etecto r
D Q
D Q
R E F
D IV
'1 '
'1 '
R E S E T
U P
D O W N
C h a rg eP u m p
T o L o o pF ilter
C L K
V B IA S
D
R L
Q 2Q 1 Q 4Q 3
M 2M 1
V C C (2 .5 V )
R E S E T
Q
Q 6Q 5 Q 7
M 4M 3
R L R L R L
Resettable Latch

Digital Receiver – PLL Blocks
• 40-GHz PLL design from 2.5V challenging• Combination of MOS-HBT transistors in PLL blocks
P h a se F req u en cy D etecto r
D Q
D Q
R E F
D IV
'1 '
'1 '
R E S E T
U P
D O W N
C h a rg eP u m p
T o L o o pF ilter
U P
V C C (2 .5V )
D O W N
IR E FV T U N E
C M F B
Charge Pump

VCO
• Colpitts VCO topology with HBT [Dickson et al., CSICS 2006]
• VCO biased for minimum phase noise
• Differential tuning with accumulation mode MOS varactors
VTUNEP
C1
C1
LB
LB
CVARN
CVARN
CVARP
VTUNEN
CVARP
LEE
LEER
CMC
CM
VBIAS
Q2Q1
CN
CN
LPL
P
VCC
(2.5V)

Fabrication and characterization of digital receiver

Fabrication
• ADC with on chip VCO/PLL in STM 0.13μm SiGe BiCMOS
• Power dissipation 2.19W from 2.5V
• Chip size 1.59x2.39mm2
ADC
PLL SEL
RFIN
DIGITALOUT
PLLREF

• Phase noise/jitter measured on PLL test structure• RMS jitter: σt=849fs• Jitter limited SNR for Fo=2GHz and OSR=333 ->
SNR=66.7dB
PLL measurements

• Phase noise < -103dBc/Hz at 1 MHz offset from 40-GHz carrier
VCO measurements

Spectrum measurement with PLL
• ADC tested with external and on-chip clock
• No significant degradation from on-chip clock
• Feedthrough from 2.5GHz PLL reference does not degrade performance

SFDR measurement
SFDR=59dB

SNDR measurement
SNDR measured for FIN=2GHz, FS=40GHzSNDR = 59.8dB over 60 MHz

Dynamic Range
ADC noise floor the same (-65dBm/60MHz) when external and on-chip clock employed

Digital Receiver Performance
Fo 2GHz
Fs 40GHz
BW 60MHz
SNDR 59.8dB
ENOB 9.65bits
SFDR 59dB
P1dB -2.8dBm
DR 58.5dB
Power 2.19W
FoM65.5GHz/W
15.3pJ/bit
ENOB
DC
2 ×2BWFoM=
P

Conclusion
• First mm-wave sampling ΔΣ digital receiver in any semiconductor technology
• Digital receiver achieves 9.65-bit resolution over 60 MHz
• Removing EF pair in filter helps to increase linearity of ADC loop filter
• For 10-bits resolution, jitter from on-chip VCO/PLL not limiting performance
• Noise floor set by resonator Q

Acknowledgements
• Nortel Networks for funding support• John Ilowski and Eric Gagnon for
discussions• STMicroelectronics for chip fabrication• Prof Miles Copeland for advice on the
manuscript• Ricardo Aroca for help with testing• CMC for CAD tools• Jaro Pristrupa for CAD support