Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15...

53
CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) d N h dt N + a M +1 d N M 1 h dt N M 1 K 1 δ ( M ) ( t ) + a N1 d h dt + a 1 d N 1 h dt N 1 + K 2 δ ( M 1) ( t ) +⋯ +⋯ + a N h = + a M d N M h dt N M b 0 d M δ dt M +⋯ + b M1 d δ dt + b M δ +⋯ impulse related terms in the left hand side do not have an impulse or its derivatives y h ( t ) u ( t )+ m 0 δ( t ) y h ( t ) u ( t )+ m 0 δ( t ) + m 1 ˙ δ( t ) +⋯+ m M N δ ( M N ) ( t ) y h ( t ) u ( t ) ( N > M ) ( N = M ) ( N < M ) h ( t )= h ( t )= h ( t )= + K M +1 δ( t ) y h ( t ) u ( t ) h ( N M 1 ) ( t )= y h ( t ) u ( t ) M + 1

Transcript of Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15...

Page 1: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 1 Young Won Lim1/20/15

Impulse Matching (N > M)

dN h

d tN + aM +1

dN−M−1 h

d tN−M−1

K1δ(M )(t )

+ aN−1d hd t

+ a1

dN−1 h

d tN−1

+ K 2δ(M−1)

(t)

+⋯

+⋯

+aN h =+ aM

dN−M h

d tN−M

b0

dMδ

d tM

+⋯

+ bM−1d δd t

+ bM δ+⋯

impulse related terms in the left hand side do not have an impulse or its derivatives

yh(t )u( t) + m0δ(t )

yh(t )u( t) + m0δ(t ) + m1˙δ (t ) +⋯+ mM−N δ

(M−N )(t )

yh(t )u( t) (N>M )

(N=M )

(N <M )

h( t ) =

h( t) =

h( t ) =

+ K M+1δ(t ) yh(t )u( t)

h(N−M−1)(t ) = yh(t )u( t)

M+1

Page 2: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

Young Won Lim1/20/15

CLTI Impulse Response (4B)

Page 3: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

Young Won Lim1/20/15

Copyright (c) 2011 - 2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to [email protected].

This document was produced by using OpenOffice and Octave.

Page 4: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 4 Young Won Lim1/20/15

Solutions of Differential Equations

All the derivatives of h(t) up to N must match a corresponding derivatives of the impulse up to M at time t=0

Case 1 m<n

The linear combination of all the derivatives of h(t) must add to zero for any time t≠0

yh(t)u(t) is such a function

yh(t) is the homogeneous solution of the

differential equation

The derivatives of the yh(t)u(t) provide all

the singularity functions necessary to match the impulse and derivatives of the impulse on the right side and no other terms need to be added

Case 1 m=n

Need to add an impulse term K0δ(t).. and

solve for K0 by matching coefficients of

impulses on both sides

Case 1 m>n

The n-th derivative of the function we add to y

h(t)u(t) must have a term that matches the

m-th derivative of the unit impulse. Must add

Km−n um−n(t ) + K m−n−1 um−n−1(t) + ⋯+ K 0 u0 (t)

d N y ( t )

d tN +a1

d N−1 y (t )

d t N−1 +⋯+aN−1

d y ( t)d t

+aN y ( t ) = b0

dM x (t )

d tM +b1

dM−1 x (t )

d t M−1 +⋯+bM−1

d x ( t)d t

+bM x (t )

= K m−nδ(m−n)

(t) + Km−n−1δ(m−n−1)

( t) +⋯+ K 0δ(t)

Page 5: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 5 Young Won Lim1/20/15

Impulse Response Requirements – A

The linear combination of all the derivatives of h(t) must add to zero for any time t≠0

d N h (t )

d tN +a1

dN−1 h( t )

d t N−1 +⋯+aN−1

d h(t )d t

+aN h(t ) = b0

d M δ(t )

d tM +b1

dM−1δ( t )

d tM−1 +⋯+bM− 1

d δ( t)d t

+bM δ( t)

h( t) ⇐ yh(t)u (t ) when t≠0

The requirements of an impulse response h(t)

this is such a function

for t<0, u(t) = 0

for t>0 yh(N )(t) + a1 y h

(N−1)(t )⋯ + aN y h(t ) = 0derivatives of {y h⋅u} producederivatives of δ when t=0

all the derivatives of δ(t) exists only t=0. It is zero for any time t≠0

u(t) = 0 y h(N )(t) + a1 yh

(N−1)(t) ⋯ + aN yh (t) = 0

h(N )(t ) + a1 h(N−1)(t) ⋯ + aN h(t) = 0 (t ≠ 0)

yh(t) homogeneous solution

Page 6: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 6 Young Won Lim1/20/15

Impulse Response Requirements – B

All the derivatives of h(t) up to n must match corresponding derivatives of the impulse δ(t) up to m at time t=0

The requirements of an impulse response h(t)

yh(t )u( t) + m0δ(t )

yh(t )u( t) + m0δ(t ) + m1˙δ (t ) +⋯+ mM−N δ

(M−N )(t)

yh(t )u( t) (N >M )

(N=M )

(N <M )

h( t) =

h( t) =

h( t) =

d N h (t )

d t N +a1

dN−1 h( t )

d tN−1 +⋯+aN−1

d h(t )d t

+aN h(t ) = b0

d M δ(t )

d tM +b1

dM−1δ( t )

d t M−1 +⋯+bM− 1

d δ( t)d t

+bM δ(t)

all the derivatives of yh(t)·u(t) may not

include all the required the derivatives of

δ(t) at the time t=0.

Page 7: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 7 Young Won Lim1/20/15

Derivatives of yh(t)·u(t)

h(t ) = yh( t)u( t)

h = yh u

h(1) = yh(1)u + yh u(1)

h(2) = yh(2)u + 2 yh

(1)u(1) + yh u(2)

yh(0)δ (t )

2 yh(1)(0)δ(t) + yh(0)δ

(1)(t )

h(3) = yh(3 )u + 3 yh

(2)u(1) + 3 yh(1)u(2) + yh u(3) 3 yh

(2)(0)δ (t ) + 3 yh(1)(0)δ(1)(t) + yh(0) δ

(2)(t )

K1δ(N−1)

( t) + K 2δ(N−2)

(t)

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

+ K Nδ(t )+ K N−1δ(1)(t)+⋯

u(i )(t) = δ(i−1)(t )

f (t )δ(t) = f (0)δ(t )

h(N )(t ) =dN

dt N {y h(t)u(t)}

h(t ) = yh( t)u( t)All the derivatives of h(t) up to N incurs the derivatives of an impulse δ(t) up to N-1

Page 8: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 8 Young Won Lim1/20/15

Three different h(t)'s

h(t ) = yh( t)u( t)

h(1)(t ) = yh(t )u( t)

h(2)(t ) = yh(t )u( t )

All the derivatives of h(t) up to N incurs the derivatives of an impulse δ(t) up to N-1

All the derivatives of h(t) up to N incurs the derivatives of an impulse δ(t) up to N-2

All the derivatives of h(t) up to N incurs the derivatives of an impulse δ(t) up to N-3

Page 9: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 9 Young Won Lim1/20/15

Derivatives of three different h(t)'s

+ K Nδ(t )+ K N−1δ(1)(t)+⋯

+ K N−1δ( t)+⋯

K1δ(N−1)

( t)

K1δ(N−2)

( t)

+ K 2δ(N−2)

(t)

+ K 2δ(N−3)

(t )

+ K N−2δ( t)+⋯K1δ(N−3)

(t)

h(t ) =∫−∞

t

yh(t )u(t ) dt

h( t ) =∬−∞

t

yh(t )u( t) dt dt

h(t ) = yh( t)u( t) h(N )(t )

h(N )(t )

h(N )(t )

Page 10: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 10 Young Won Lim1/20/15

Derivatives & Integrals of yh(t)·u(t)

h(N )( t) +a1h(N−1)(t ) +aN h(0)( t)+aN−1 h(1)(t )+aN−2 h(2)( t)+ ⋯

yh uddt{yh u}

d N

dt N {yh u} d2

dt 2 {yh u}dN−1

dt N−1 {yh u}

∫−∞

t

yh u dtyh udN−1

dt N−1 {yh u}ddt{yh u}d N−2

dt N−2 {yh u}

∫−∞

t

∫−∞

t

yh u dt dt∫−∞

t

yh u dtd N−2

dt N−2 {yh u} yh udN−3

dt N−3 { yhu}

(a)

(b)

(c)

(N = M+1)

(N = M+2)

(N = M+3)

(M−N−1= 0)

(M−N−1=−1)

(M−N−1=−2)

Page 11: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 11 Young Won Lim1/20/15

Negative powers denote integration

(a)

(b)

(c)

h( t) = yh( t)u( t)

h(1)(t ) = yh(t )u( t )

h(2)( t) = yh(t )u( t)

h( t) =∫−∞

t

yh(t )u( t) dt

h( t) =∬−∞

t

yh(t )u( t) dt dt

h( t) = yh(t )u( t)

g(−1)( t) ≡∫

−∞

t

g (t) dt

g(−2)( t ) ≡∫

−∞

t

∫−∞

t

g(t ) dt dt

g( t )

Page 12: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 12 Young Won Lim1/20/15

Derivatives & Integrals of g(t) = yh(t)·u(t)

h(N )( t) +a1h(N−1)(t ) +aN h(0)( t)+aN−1 h(1)(t )+aN−2 h(2)( t)+ ⋯

g(t )g(1)(t )g(N )( t) g(2)(t)g(N−1)( t)

g(−1)(t)g( t)g(N−1)( t) g(1)(t )g(N−2)(t )

g(−2)(t)g(−1)( t)g(N−2)(t ) g(t )g(N−3)(t )

(a)

(b)

(c)

(N = M+1)

(N = M+2)

(N = M+3)

(M−N−1= 0)

(M−N−1=−1)

(M−N−1=−2)

h(t ) = g(M−N−1)(t ) = g (t)

h( t) = g(M−N−1)(t ) = g(−1)( t)

h(t ) = g(M−N−1)(t ) = g(−2)(t )

Page 13: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 13 Young Won Lim1/20/15

Derivatives of h(t) – three cases (2)

h(N )( t) +a1h(N−1)(t ) +aN h(0)( t)+aN−1 h(1)(t )+aN−2 h(2)( t)+ ⋯

yh uddt{yh u}

d N

dt N {yh u} d2

dt 2 {yh u}dN−1

dt N−1 {yh u}

∫−∞

t

yh u dtyh udN−1

dt N−1 {yh u}ddt{yh u}d N−2

dt N−2 {yh u}

∫−∞

t

∫−∞

t

yh u dt dt∫−∞

t

yh u dtd N−2

dt N−2 {yh u} yh udN−3

dt N−3 { yhu}

g(t )g(1)(t )g(N )( t) g(2)(t)g(N−1)( t)

∫−∞

t

g (t ) dtg( t)g(N−1)( t) g(1)(t )g(N−2)(t )

∫−∞

t

∫−∞

t

g ( t) dt dt∫−∞

t

g (t ) dtg(N−2)(t ) g(t )g(N−3)(t )

(a)

(b)

(c)

(a)

(b)

(c)

Page 14: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 14 Young Won Lim1/20/15

Derivatives of yh(t)·u(t)

d N h (t )

d t N +a1

dN−1 h( t)

d tN−1 +⋯+aN−1

d h(t )d t

+aN h(t ) = b0

d M δ(t )

d tM +b1

dM−1δ(t )

d tM−1 +⋯+bM−1

d δ( t)d t

+bM δ( t)

g(t ) + m0δ(t )

g(t ) + m0δ(t ) + m1˙δ( t) +⋯+ mM−N δ

(M−N )(t )

g(M−N−1)( t) (N >M )

(N=M )

(N <M )

h( t) =

h( t) =

h( t) =

(N = M+1)

(N = M+2)

(N = M+3)

(M−N−1= 0)

(M−N−1=−1)

(M−N−1=−2)

h(t ) = g(M−N−1)(t ) = g (t)

h( t) = g(M−N−1)(t ) = g(−1)( t)

h(t ) = g(M−N−1)(t ) = g(−2)(t )

g( t) = yh( t)u (t )

Page 15: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 15 Young Won Lim1/20/15

Impulse Matching (N > M)

dN h

d tN + aN−M−1

dM+1 h

d t M+1

K1δ(N−1)

( t)

+ aN−1d hd t

+ a1

dN−1 h

d tN−1

+ K 2δ(N−2)

(t)

+⋯

+ K Nδ(t )+ K N−Mδ(M )( t)+⋯

+aN h =+ aN−M

dM h

d t M

b0

dMδ

d tM

+⋯

+ bM−1d δd t

+ bM δ+⋯

+ K N−M+1δ(M−1)

( t) +⋯

impulse related terms in the left hand side must have zero coefficients

yh(t )u( t)

M+1

Page 16: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 16 Young Won Lim1/20/15

Impulse Matching (N > M)

dN h

d tN + aM +1

dN−M−1 h

d tN−M−1

K1δ(M )(t )

+ aN−1d hd t

+ a1

dN−1 h

d tN−1

+ K 2δ(M−1)

(t)

+⋯

+⋯

+aN h =+ aM

dN−M h

d tN−M

b0

dMδ

d tM

+⋯

+ bM−1d δd t

+ bM δ+⋯

impulse related terms in the left hand side do not have an impulse or its derivatives

yh(t )u( t) + m0δ(t )

yh(t )u( t) + m0δ(t ) + m1˙δ (t ) +⋯+ mM−N δ

(M−N )(t )

yh(t )u( t) (N>M )

(N=M )

(N <M )

h( t ) =

h( t) =

h( t ) =

+ K M+1δ(t ) yh(t )u( t)

h(N−M−1)(t ) = yh(t )u( t)

M+1

Page 17: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 17 Young Won Lim1/20/15

Impulse Matching (N > M)

dN h

d tN + aM +1

dN−M−1 h

d tN−M−1

K1δ(M )(t )

+ aN−1d hd t

+ a1

dN−1 h

d tN−1

+ K 2δ(M−1)

(t)

+⋯

+⋯

+aN h =+ aM

dN−M h

d tN−M

b0

dMδ

d tM

+⋯

+ bM−1d δd t

+ bM δ+⋯

impulse related terms in the left hand side do not have an impulse or its derivatives

yh(t )u( t) + m0δ(t )

yh(t )u( t) + m0δ(t ) + m1˙δ (t ) +⋯+ mM−N δ

(M−N )(t )

yh(t )u( t) (N>M )

(N=M )

(N <M )

h( t ) =

h( t) =

h( t ) =

+ K M+1δ(t ) yh(t )u( t)

h(N−M−1)(t ) = yh(t )u( t)

M+1

h(t ) = ∫−∞

t

∫−∞

t

⋯∫−∞

t

yh(t )u (t )dt⋯dt dt

Page 18: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 18 Young Won Lim1/20/15

Impulse Matching (N = M)

b0

dMδ

d tM

dN h

d t N + aN−1d hd t

+⋯ +aN h =+ a1

dN−1 h

d tN−1

+ b1

dM−1δ

d tM−1 + bM−1d δd t

+ bM δ+⋯

+ K Nδ(t )+ K M−2δ(M−2)

(t) +⋯+ K M−1δ(M−1)

(t)K M δ(M )(t)

if h(t) = yh(t)u(t)

if h(t) = yh(t)u(t) + δ(t)

yh(t )u( t) + m0δ(t )

yh(t )u( t) + m0δ(t ) + m1˙δ (t ) +⋯+ mM−N δ

(M−N )(t )

yh(t )u( t) (N>M )

(N=M )

(N <M )

h( t ) =

h( t) =

h( t ) =

yh(t )u( t )

M+1

Page 19: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 19 Young Won Lim1/20/15

Impulse Matching (N < M)

b0

dMδ

d tM

dN h

d t N + aN−1d hd t

+⋯ +aN h =+ a1

dN−1 h

d tN−1

+ b1

dM−1δ

d tM−1 + bM−1d δd t

+ bM δ+⋯

+ K Nδ(t )+ ⋯+ K M−1δ(M−1)

( t)K M δ(M )(t)

if h(t) = yh(t)u(t)

if h(t) = yh(t)u(t) + δ(t)+δ'(t)

yh(t )u( t) + m0δ(t )

yh(t )u( t) + m0δ(t ) + m1˙δ (t ) +⋯+ mM−N δ

(M−N )(t )

yh(t )u( t) (N>M )

(N=M )

(N <M )

h( t ) =

h( t) =

h( t ) =

+ b2

dM−2δ

d t M−2

+ K M−2δ(M−2)

(t) yh(t )u( t)

Page 20: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 20 Young Won Lim1/20/15

Impulse Response Requirements

All the derivatives of h(t) up to n must match a corresponding derivatives of the impulse δ(t) up to m at time t=0

The linear combination of all the derivatives of h(t) must add to zero for any time t≠0

d N h (t )

d tN +a1

dN−1 h( t )

d t N−1 +⋯+aN−1

d h(t )d t

+aN h(t ) = b0

d M δ(t )

d tM +b1

dM−1δ( t )

d tM−1 +⋯+bM− 1

d δ( t)d t

+bM δ( t)

h( t ) ⇐ yh(t)u (t ) when t≠0

The requirements of an impulse response h(t)

yh(t )u( t ) + m0δ(t )

yh(t )u( t) + m0δ(t ) + m1˙δ (t ) +⋯+ mM−N δ

(M−N )(t)

yh(t )u( t )(N>M )

(N=M )

(N <M )

h( t) =

h(t ) =

h( t) =

this is such a function

u(t) = 0 when t<0y h(t )= 0 when t>0

Page 21: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 21 Young Won Lim1/20/15

Case Examples

d N h (t )

d tN +a1

dN−1 h( t )

d t N−1 +⋯+aN−1

d h(t )d t

+aN h(t ) = b0

d M δ(t )

d tM +b1

dM−1δ( t )

d tM−1 +⋯+bM− 1

d δ( t)d t

+bM δ( t)

yh(t )u(t ) + m0δ(t )

yh(t )u( t) + m0δ(t ) + m1˙δ (t ) +⋯+ mM−N δ

(M−N )(t)

yh(t )u( t )(N>M )

(N=M )

(N <M )

h( t) =

h(t ) =

h( t) =

dN h(t)

d tN+a1

dN−1 h(t)

d tN−1+⋯+aN−1

d h(t )d t

+aN h(t) = b0

dN−1δ(t )

d tN−1+b1

dN−2δ(t)

d t N−2+⋯+bN−2

d δ(t)d t

+bN−1δ(t)

m0δ( t)

m0δ( t) + m1 δ (t )

dN h(t)

d tN+a1

dN−1 h(t)

d tN−1+⋯+aN−1

d h(t )d t

+aN h(t) = b0

dN δ(t )

d tN+b1

dN−1δ( t)

d tN−1+⋯+bN−1

d δ( t)d t

+bN δ(t)

dN h(t)

d tN+a1

dN−1 h(t)

d tN−1+⋯+aN−1

d h(t )d t

+aN h(t) = b0

dN +1δ( t)

d tN +1+b1

dN δ(t)

d tN+⋯+bN

dδ(t )d t

+bN+1δ(t)

yh( t)u(t )

These must be added to

M = N−1

M = N

M = N+1

Page 22: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 22 Young Won Lim1/20/15

Impulse Response and Other System Responses

t=0−

x( t) = δ(t )

t=0+t=0 t=0− t=0+t=0

h(t )

t=0−

x( t) ≠ δ(t ) y (t )

t=0+t=0 t=0− t=0+t=0

h(t )

y (t) = h(t)

impulse or its derivative functions may exist at t=0

may not be continuous but not contain an impulse function at t=0

Page 23: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 23 Young Won Lim1/20/15

Interval of Validity

y (t)

t > 0

x (t )

t ≥ 0

h(t ) y (t)x (t )

d N y ( t)

d tN +a1

d N−1 y (t )

d tN−1 +⋯+aN−1

d y ( t)d t

+aN y ( t) = b0

dM x (t )

d t M +b1

dM−1 x (t )

d t M−1 +⋯+bM−1

d x ( t)d t

+bM x (t )

Page 24: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 24 Young Won Lim1/20/15

Initial Conditions & Total Response

zero input response

t=0−

x( t) y( t)

t=0+t=0 t=0− t=0+t=0

zero state response+

y (t ) = y zi(t)

because the input has not started yet

t≤0−

y (0−) = y zi (0−)

y (0−) = y zi (0−)

in general,the total responsey(0−) ≠ y (0+

)

y (0−) ≠ y (0+)

possible discontinuity at t = 0

h(t )

Page 25: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 25 Young Won Lim1/20/15

Impulse input creates initial conditions

t=0−

δ( t) h(t )

t=0+t=0 t=0− t=0+t=0

δ(0−) = 0 δ(0+) = 0

● generates energy storage● creates nonzero i. c. at t=0+

h(t )

h(N−1)(0−)

h(1)(0−)

h(0−)

= 0

= 0

= 0

h(N−1)(0)

h(1)(0)

h(0)

h(N−1)(0+)

h(1)(0+)

h(0+)

h(N−2)(0−) = 0 h(N−2)

(0) h(N−2)(0+)

initially at rest

∃ i , ki ≠ 0

= kN−1

= k1

= k 0

= kN−2

non-zero initial conditions

= f N−1(ki ,δ(i))

= f 1(ki ,δ( i))

= f 0(k i ,δ(i))

= f N−2(ki ,δ( i))

assumed finite jumps

Impulse matching

Page 26: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 26 Young Won Lim1/20/15

Impulse Response h(t)

t=0−

δ( t) h(t )

t=0+t=0 t=0− t=0+t=0

δ(0−) = 0 δ(0+) = 0

char. mode termst≥0+

(t≠0)

at most an impulse b0δ(t )t=0

h(t) = b0δ(t) + char mode terms t≥0

h(t )

y(N−1)(0+)

y(1)(0+)

y (0+)

y(N−2)(0+)

∃ i , ki ≠ 0

= kN−1

= k1

= k 0

= k N−2

non-zero initial conditions

h(t) : ZSR to an impulse input

ZIR with the created i.c.

Page 27: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 27 Young Won Lim1/20/15

h(t) can have at most a δ(t)

N = M

(DN+a1 DN−1+⋯+aN−1 D+aN )h(t ) = (b0 DN+b1 DN−1+⋯+bN−1 D+bN )δ( t)

δ ' (t ) is included in h(t ) If

then the highest order term

δ(N+ 1)

(t) δ(N )(t) contradiction

h(t) cannot contain δ(i)(t) at all h(t) can contain at most δ(t)

M = N

Q (D) y(t) = P (D) x(t )

dN h

d tN → δ(N+1)(t)

the highest order term

N M (M ≤ N )

only when

Page 28: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 28 Young Won Lim1/20/15

Finding h(i)(0)

h(N−1)(0−)

h(1)(0−)

h(0−)

= 0

= 0

= 0

h(N−1)(0+)

h(1)(0+)

h(0+)

h(N−2)(0−) = 0 h(N−2)

(0+)

= kN−1

= k1

= k0

= k N−2

h(N )(0)

h(2)(0)

h(1)(0)

h(N−1)(0)

= kN−1δ(t)

= k1δ(t)

= k 0δ( t )

= kN−2δ(t)

+k 0δ(1)(t )

+ ⋯

+kN−2δ(1)(t)

+k 0δ(N−2)

(t )+kN−3δ(1)(t)

+ ⋯ +k 1δ(N−2)

(t) +k 0δ(N−1)

(t)

h(N )(0)

h(2)(0)

h(1)(0)

h(N−1)(0)

= kN−1δ(t)

=

=

+k 0δ(1)(t )

+ ⋯

+kN−2δ(1)(t)

+k 0δ(N−2)

(t )kN−2δ( t)

+ ⋯ +k 1δ(N−2)

(t) +k 0δ(N−1)

(t)

= k 0δ(t )

k 1δ( t )

+k 1δ(N−1)

( t)

h(N )(0) + a1 h(N−1)(0) +⋯+ aN−1 h(1)(0) + aN h(0) = b0δ(N )(t ) + b1δ

(N−1)( t) +⋯+ bN−1δ(1)(t ) + bN δ(t )

initially at rest assumed finite jumps

Impulse matching

d N y ( t)

d tN +a1

d N−1 y (t )

d tN−1 +⋯+aN−1

d y ( t)d t

+aN y ( t) = b0

dM x (t )

d t M +b1

dM−1 x (t )

d t M−1 +⋯+bM−1

d x ( t)d t

+bM x (t )

Page 29: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 29 Young Won Lim1/20/15

h(N−1)(0)

h(1)(0)

h(0)

h(N−2)(0)

= f N−1(ki ,δ(i))

= f 1(ki ,δ( i))

= f 0(k i ,δ(i))

= f N−2(ki ,δ( i))

Impulse Matching Method

h(N−1)(0−)

h(1)(0−)

h(0−)

= 0

= 0

= 0

h(N−1)(0+)

h(1)(0+)

h(0+)

h(N−2)(0−) = 0 h(N−2)

(0+)

= kN−1

= k1

= k0

= k N−2

h(N )(0) + a1 h(N−1)(0) +⋯+ aN−1 h(1)(0) + aN h(0) = b0δ(N )(t ) + b1δ

(N−1)( t) +⋯+ bN−1δ(1)(t ) + bN δ(t )

initially at rest assumed finite jumps

Impulse matching

d N y ( t)

d tN +a1

d N−1 y (t )

d tN−1 +⋯+aN−1

d y ( t)d t

+aN y ( t) = b0

dM x (t )

d t M +b1

dM−1 x (t )

d t M−1 +⋯+bM−1

d x ( t )d t

+bM x (t )

Page 30: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 30 Young Won Lim1/20/15

Simplified Impulse Matching

(DN+a1 DN−1+⋯+aN−1 D+aN) ⋅ h(t ) = (bN−M DM+bN− M+1 DM−1+⋯+bN−1 D+bN) ⋅ δ(t )

Q(D)⋅h (t ) = P(D)⋅δ(t )

(DN+a1 DN−1+⋯+aN−1 D+aN) ⋅ h0(t ) = δ(t)

Q(D)⋅h0(t) = δ(t )

h(t) = characteristic mode termst≥0+

A0δ(t)t≥0 h(t) = + characteristic mode terms

Simplified Impulse Matching Method

linear combination of characteristic modeswith the following initial conditions

h0( t)

h(t) = P(D)⋅h0(t)

h(t) = b0δ(t) + [P(D) h0(t)]⋅u( t)

h0(0+ ) = h0

(1)(0+) = h0(2)(0+) ⋯ = h0

(M−2)(0+ ) = 0 h0(M−1)(0+) = 1

Page 31: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 31 Young Won Lim1/20/15

Superposition of inputs

h(N )( t) + a1h(N−1)(t ) +⋯+ aN−1 h(1)(t ) + a N h (t ) = b0δ(N )(t ) + b1δ

(N−1)(t ) +⋯+ bN−1δ(1)(t ) + bNδ(t )

h(N )( t) + a1h(N−1)(t ) +⋯+ aN−1 h(1)(t ) + a N h (t ) = δ(N )(t )

h(N )( t) + a1h(N−1)(t ) +⋯+ aN−1 h(1)(t ) + a N h (t ) = δ(N−1)(t )

h(N )( t) + a1h(N−1)(t ) +⋯+ aN−1 h(1)(t ) + a N h (t ) = δ(1)( t)

h(N )( t) + a1h(N−1)(t ) +⋯+ aN−1 h(1)(t ) + a N h (t ) = δ( t)

hN ( t)

hN−1( t)

h0(t)

h1(t )

= h0(N )(t )

= h0(N−1)(t)

= h0(1)(t )

= h0(0 )(t )

⋮⋮⋮⋮⋮⋮⋮

h( t) = b0 hN ( t) + b1 hN−1( t ) + ⋯ + bN−1 h1(t ) + bN h0(t )

= b0 h0(N )( t) + b1 h0

(N−1)(t ) +⋯+ bN−1 h0(1)(t ) + bN h0

(0 )( t )

Page 32: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 32 Young Won Lim1/20/15

New Initial Condition created by δ(t)

h0(N )( t) + a1h0

(N−1)(t ) + a2 h0(N−2)( t) + ⋯ + aN−1 h0

(1)(t ) + aN h0( t) = δ(t )

δ(t) u( t)

no jump discontinuity is allowed at t = 0

unit jump discontinuity at t = 0

h0(N )(t) = δ(t )

t u (t) 1(N−2) ! t(N −2) u (t) 1

(N−1)! t(N−1) u(t)

∫⋅d t ∫⋅d t ∫⋅d t ∫⋅d t

yn(N−2)(0+) = ⋯ yn

(2)(0+ ) = yn(1)(0+) = yn(0

+ ) = 0h0(N−1)(0+) = 1

Page 33: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 33 Young Won Lim1/20/15

Simplified Impulse Matching Method (1)

(DN+ a1 DN−1

+⋯+ aN−1 D+ aN ) ⋅ y (t) = (bN−M DM+ bN−M+ 1 DM−1

+⋯+ bN−1 D+ bN ) ⋅ x( t)

d N y ( t)

d tN +a1

d N−1 y (t )

d tN−1 +⋯+aN−1

d y ( t)d t

+aN y (t ) = b0

dM x (t )

d tM +b1

dM−1 x (t )

d tM−1 +⋯+bN−1

d x( t)d t

+bN x (t )

(DN+a1 DN−1

+⋯+aN−1 D+aN ) ⋅ y (t ) = x (t )

d N y (t )

d tN +a1

d N−1 y (t )

d t N−1 +⋯+aN−1

d y ( t)d t

+aN y (t ) = x (t )

Derived System S

Base System S0

linear combination of characteristic modeswith the following initial conditions

yn(t )

shares the same characteristic modes

yn(N−2)(0+) = ⋯ = yn ' (0+) = yn(0

+) = 0yn(N−1)(0+) = 1

h( t ) = b0δ( t) + [P(D) yn(t )]u(t)

Page 34: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 34 Young Won Lim1/20/15

Simplified Impulse Matching Method (2)

linear combination of characteristic modeswith the following initial conditions

h( t) = b0δ( t) + [P(D) yn(t )]u( t)

yn(t )

Q(D) y (t) = P(D)x (t)

Q(D)w( t) = x ( t)

Q(D) yn(t ) = δ(t)(DN

+a1 DN−1+⋯+aN−1 D+aN )w (t ) = x (t )

w(N )(t ) + a1 w(N−1)(t) +⋯+ aN−1 w(1)(t) + w (t ) = x (t )

Q(D)w( t) = x (t)

Q(D)P(D)w ( t) = P(D)x (t )

Q(D) y (t) = P(D) x (t)y (t ) = P(D )w (t )

h(t) = P(D) yn( t)

(DN+ a1 DN−1

+⋯+ aN−1 D+ a N ) yn(t) = δ(t)

yn(N )(t) + a1 yn

(N−1)(t) + ⋯+ a N−1 yn

(1)(t) + yn( t) = δ(t)

Base System S0

yn(N−2)(0+) = ⋯ = yn ' (0+) = yn(0

+) = 0yn(N−1)(0+) = 1

Derived System S

Page 35: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 35 Young Won Lim1/20/15

Simplified Impulse Matching Method (3)

Q (D) yn(t ) = δ(t)

y( t) = P (D)w(t)

h(t ) = P(D) yn(t )

h(t ) = P(D)[ yn(t )u (t )]

h(t ) = boδ(t) + P(D) yn(t) , t≥0

h(t ) = boδ(t) + [P(D) yn(t )]u ( t)

Q (D)w( t) = x (t)

Q (D)P(D)w (t) = P (D)x (t)

Q (D)P(D) yn(t ) = P(D)δ(t )

causal yn( t)u (t )

(DN+a1 DN−1+⋯+aN−1 D+aN)w( t) = x (t)

(DN+a1 DN−1

+⋯+aN−1 D+aN ) y (t) = (b0 DM+⋯+bN−1 D+bN)x ( t)

(DN+a1 DN−1+⋯+aN−1 D+aN) yn(t) = δ(t )

(DN+a1 DN−1

+⋯+aN−1 D+aN )h(t ) = (b0 DM+⋯+bN−1 D+bN) δ(t )

y (t ) = (b0 DM+⋯+bN−1 D+bN)w( t)

h( t) = (b0 DM+⋯+bN−1 D+bN ) yn(t )

No interval restriction

Causality is considered

[P(D) yn( t)]u(t)

Page 36: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 36 Young Won Lim1/20/15

New Initial Condition created by δ(t)

dN y (t)

d tN + a1

dN−1 y (t)

d tN−1 + a2

dN−2 y (t )

d tN−2 + ⋯ + aN−1

d y (t)d t

+ aN y(t ) = δ(t)

δ(t) u( t)

no jumpdiscontinuity at t = 0

integrate

yn(N−2)(0+) = yn

(N−1)(0+) = ⋯ yn(1)(0+) = yn(0

+) = 0

unit jump discontinuityat t = 0

yn(N−1)(0+) = 1

t u(t ) 1(N−2 )! t(N−2) u (t ) 1

(N−1) ! t(N−1) u( t )

integrate integrate integrate

(DN+a1 DN−1

+⋯+aN−1 D+aN ) ⋅ y (t ) = x (t )

d N y ( t)

d tN +a1

d N−1 y (t )

d tN−1 +⋯+aN−1

d y ( t)d t

+aN y (t ) = x (t )

Page 37: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 37 Young Won Lim1/20/15

Page 38: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 38 Young Won Lim1/20/15

Impulse Input

δ( t)

δ(0−) = 0 δ(0+ ) = 0

All initial conditions are zero at t=0−

generates energy storage creates nonzero initial condition at t=0+

y (0−) = 0

d2 y (t )

d t 2 + a1

d y (t )d t

+ a2 y (t ) = b0

d2 x (t )

d t 2 + b1

d x ( t)d t

+ b2 x ( t)

y ' (0−) = 0

h(t )

(1, a1 , a2)

(b0 , b1 , b2)Case N>M (b

0=0)

No delta function

δ( t)

y (0+)= K1

y ' (0+) = K2

Case N=M (b0≠0)

No delta functionh(t )Any two functions that have

finite values everywhere and differ in value only at a finite number of points are equivalent in the system response or transform

y (0+)

m = y '(0+)

m = y '(0+)y (0+)

IVP (Initial Value Problem)

Page 39: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 39 Young Won Lim1/20/15

Derivatives of a delta function at the output

if contains

d2 h(t)

d t2+ a1

d h( t)d t

+ a2 h (t ) = b0

d2δ( t )

d t 2 + b1

d δ(t )d t

+ b2δ(t )

δ(1)(t )

δ(3)( t) + ⋯ b0δ(2)(t ) + b1δ

(1)( t) + b2δ(t )≠

h( t)

h( t) can contain at most δ( t)

h(t )δ( t)

h( t) cannot contain any derivatives of δ( t )

(b0 ≠ 0)

δ(t) , δ( t) , δ(t) , ⋯

b0δ(t ) + char modes

(b0 ≠ 0)the impulse response

the impulse response

Page 40: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 40 Young Won Lim1/20/15

Impulse Response h(t)

h(t) = characteristic mode terms only

t≥0+

(t≠0)

h(t) can have at most an impulse or finite jumpb0δ(t )

t=0

h(t) = b0δ(t ) + char mode terms t≥0

d2 h(t)

d t2+ a1

d h( t)d t

+ a2 h (t ) = b0

d2δ( t )

d t 2 + b1

d δ(t )d t

+ b2δ(t )

h(t ) = b0δ(t) + (∑i

ci e−λ i t

)u(t )

c0, c1

y (0+) , y ' (0+)

Impulse Matching

-then determine

-determine h(t )

(1, a1 , a2)

(b0 , b1 , b2)

c0, c1

y (0+)= 0, y ' (0+) = 1

Simplified Impulse Matching

-then determine

-use h0(t)

(1, a1 , a2)

(0 , 0 , 1)

h(t ) = b0δ(t) + [(b0 D2+ b1 D + b2)(∑i

ci e−λ i t )]u(t )

Case N>M (b0=0)

No delta function

δ( t )Case N=M (b

0≠0)

No delta functionh(t )

y (0+)

m = y '(0+)

m = y '(0+)

y (0+)

Page 41: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 41

Base System Impulse Matching

yn(N )(t ) + a1 yn

(N−1)(t ) +⋯+ aN−1 yn(1)(t) + aN yn(t ) = δ( t)

x (t) w (t )δ(t ) yn(t)(1, a1 , ⋯, aN)

must continuousyn(t )

If yn(t) is discontinuous, then

there should exist derivatives of delta : δ(i)(t)

If yn

(1)(t) is discontinuous,

then there should exist derivatives of delta : δ(i)(t)

must continuousyn(1)( t)

must be discontinuousyn(N−1)(t )

yn(0+) = yn(0

−) = 0

yn(1)(0+) = yn

(1)(0−) = 0

yn(0)(N−2)= ⋯ = yn(0) = 0yn

(N−1)(0) = 1

yn(t ) contains no impulse, butcharacteristic modes only

yn(N−1)(0+) = 1, yn

(N−1)(0−) = 0N > M (=0)

h0(t)

(0 , ⋯, 0 , 1)

Page 42: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 42

General System Impulse Matching

y (N )+ a1y

(N−1)+ ⋯ + aN−1 y

(1)+ aN y = b0x

(N )+ b1x

(N−1)+ ⋯ + bN−1x

(1)+ bNx

h(N)+ a1h

(N−1)+ ⋯ + aN−1h

(1)+ aNh = b0δ

(N)+ b1δ

(N−1)+ ⋯ + bN−1δ

(1)+ bN δ

h=C δ + ⋯

Cδ(N )

h=C δ(1 ) + ⋯

Cδ(N+1)

h=C δ(N ) + ⋯

C δ(2N)

h(t) can have at most an impulse no derivatives at all

b0δ(t )t=0

if

if

if

b0δ(N )

+ b1δ(N−1)

+ ⋯ + bN−1δ(1)

+ bN δ

b0δ(N )

+ b1δ(N−1)

+ ⋯ + bN−1δ(1)

+ bN δ

b0δ(N)

+ b1δ(N−1)

+ ⋯ + bN−1δ(1)

+ bN δ

Page 43: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 43

General System's Zero Input Response

x (t) y (t)h(t )

x (t) w (t )δ(t ) h0(t)

δ(t ) h(t )(1, a1 , ⋯, aN)

(b0 , b1 , ⋯, bN)

(1, a1 , ⋯, aN)

General System S

Base System S0

h(t ) : the impulse response of S

h0(t) : the impulse response of S0

M < N : include no impulse h0(t ) δ(t)

h0(t ) include characteristic modes only

System S and S0 have the same characteristic modes

yn(t) : viewed as the zero input response of S0

natural response homogeneous response

M : the highest order of input derivatives (rhs)N: the highest order of output derivatives (lhs)

h0(t)

(0 , ⋯, 0 , 1)

all the lumped char modescf)

generates energy storage creates nonzero initial condition at t=0+

h0(t) = yn(t )u( t) yn(t )

Page 44: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 44

Causal Systems

h(t ) = b0 y n(N )(t) + b1 yn

(N−1)(t ) + ⋯ + bN yn (t)x (t) y (t)h(t )

δ(t ) h(t )(1, a1 , ⋯, aN)

(b0 , b1 , ⋯, bN)

x (t) w (t )yn(t)δ(t ) yn(t)(1, a1 , ⋯, aN)

(0 , ⋯, 0 , 1)

yn =1

aN

(δ − y n(N)− a1 yn

(N−1)−⋯− aN−1 yn

(1))

yn(t )u(t )causal

causal

h(t ) = b0δ(t) + [P(D) yn(t)]u(t)

h(t ) = b0 [ yn (t)u(t )](N ) + b1[ y n(t)u(t)]

(N−1) + ⋯ + bN [ yn(t )u(t )]

causal(M ≤ N)

yn(0)(N−2)= ⋯ = yn(0) = 0yn

(N−1)(0) = 1

Page 45: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 45

Zero State Response

x (t) y (t)h(t )

δ(t ) h(t )

(1, a1 , ⋯, aN)

(b0 , b1 , ⋯, bN)

x ( t) = limΔ τ→0

∑τ

x (nΔ τ) p (t−nΔ τ) = limΔ τ→0

∑τ

x (nΔ τ)p (t−nΔ τ)

Δ τΔ τ = lim

Δ τ→0∑τ

x (nΔ τ)δ(t−nΔ τ)Δ τ

δ(t−nΔ τ) h(t−nΔ τ)

x (nΔ τ)δ(t−nΔ τ)Δ τ x (nΔ τ)h(t−nΔ τ)Δ τ

limΔ τ→0

x (nΔ τ)δ(t−nΔ τ)Δ τ limΔ τ→0

x (nΔ τ)h(t−nΔ τ)Δ τ

x (t) y (t)

y (t) = limΔ τ→0

x (nΔ τ)h(t−nΔ τ)Δ τ = ∫−∞

+∞

x (τ)h(t−τ) d τ

Δ τ

1Δτ

1Δτ

Page 46: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 46

Causality

x (t) y (t)h(t )

δ(t ) h(t )

(1, a1 , ⋯, aN)

(b0 , b1 , ⋯, bN)

Causal system: the response cannot begin before the input

Causal signals: the input signals starts at time t=0

Causal system: h(t) cannot begin before t=0

h(t) : causal signal

x (t) Causal signal:x(t)=0 (t<0)

h(t)=0 (t<0)

y (t) = ∫−∞

+∞

x( τ)h(t−τ) d τx( τ)=0 ( τ<0)

h(t−τ)=0 (t−τ<0)

y (t) = x(t) ∗ h(t) = ∫0−

tx( τ)h(t−τ) d τ

Page 47: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 47 Young Won Lim1/20/15

Page 48: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 48 Young Won Lim1/20/15

x(t) = 1

1

y (0) = 2

h(t )

y ' ( t) =−e−ty (t ) = 1 + e−t

y ' ( t ) + y (t ) = 1

y (0) = 1 y (t ) = 0.5 (1 + e−t) y ' (t) =−0.5 e−t

y (0) = 0 y (t ) = 1− e−t y ' ( t) = +e−t

Page 49: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 49 Young Won Lim1/20/15

x(t) = u(t)

1

y (0) = 0h(t )

y ' ( t) = [e−t u( t) + (1− e−t)δ(t )]

y (t ) = (1 − e−t)u (t)y ' ( t) + y ( t ) = 1

y ' ( t) = e−t u( t)

Step Response

u(t ) s(t)h(t )

δ(t ) h(t )h(t )

dd t

dd t

Page 50: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 50 Young Won Lim1/20/15

x(t) = δ(t)

t=0−

δ( t)

t=0+t=0 t=0− t=0+t=0

All initial conditions are zero at t=0−

Generates energy storage creates nonzero initial condition at t=0+

y (0−) = 0 y (0) = 1

h(t )

h' (t ) =−a e−at u( t) + e−atδ( t)

h ' (t ) =−a e−at u(t) + δ( t)

h( t) = e−at u (t )y ' ( t) + a y (t ) = x (t )

Any two functions that have finite values everywhere and differ in value only at a finite number of points are equivalent in the system response or transform

Page 51: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 51 Young Won Lim1/20/15

x(t) & x'(t) forcing functions

δ(t ) h(t )h(t )

δ ' (t) h ' (t)h(t )

dd t

dd t

y (0) = 1

h' (t ) =−a e−at u( t) + e−atδ( t)

h ' (t ) =−a e−at u(t) + δ( t)

h( t) = e−at u (t )y ' ( t) + a y (t ) = x (t )

y ' ( t) + a y (t ) = x ' (t )

Page 52: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

CLTI Impulse Response (4B) 52 Young Won Lim1/20/15

Unit Step Function

g1(t ) =∫0−

0+

g i(t )dt = 0

The area under a single point is zero, regardless of the point's value , if it is finite

y1

y2

(t < 0)

(t > 0)

(t = 0)undefined

g2(t ) =

y1

y2

g3(t) =

y1

y2

g4 (t ) =

y1

y2

( y1+ y2)/2

y1

y2

(t < 0)

(t > 0)

(t = 0)

(t < 0)

(t > 0)

(t = 0)

(t < 0)

(t > 0)

(t = 0)

The system response is the same

The transform is the same also

(i = 1,2,3,4)

Any two functions that have finite values everywhere and differ in value only at a finite number of points are equivalent in the system response or transform

∫α

β

g i(t )dt = ∫α

β

g j (t )dt (i ≠ j)

Page 53: Impulse Matching (N > M) · 20/01/2015  · CLTI Impulse Response (4B) 1 Young Won Lim 1/20/15 Impulse Matching (N > M) dNh dtN + aM+1 dN−M−1h dtN−M−1 K1δ (M)(t)+aN−1 dh

Young Won Lim1/20/15

References

[1] http://en.wikipedia.org/[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003[3] B.P. Lathi, Linear Systems and Signals (2nd Ed)[4] M.J. Roberts, Fundamentals of Signals and Systems