HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of...

24
MATHEMATICS OF COMPUTATION Volume 75, Number 254, Pages 743–766 S 0025-5718(05)01795-3 Article electronically published on November 3, 2005 HERMITE AND HERMITE–FEJ ´ ER INTERPOLATION FOR STIELTJES POLYNOMIALS H. S. JUNG Abstract. Let w λ (x) := (1x 2 ) λ1/2 and P (λ) n be the ultraspherical polyno- mials with respect to w λ (x). Then we denote by E (λ) n+1 the Stieltjes polynomials with respect to w λ (x) satisfying 1 1 w λ (x)P (λ) n (x)E (λ) n+1 (x)x m dx =0, 0 m<n +1, =0, m = n +1. In this paper, we show uniform convergence of the Hermite–Fej´ er interpo- lation polynomials H n+1 [·] and H 2n+1 [·] based on the zeros of the Stieltjes polynomials E (λ) n+1 and the product E (λ) n+1 P (λ) n for 0 λ 1 and 0 λ 1/2, respectively. To prove these results, we prove that the Lebesgue con- stants of Hermite–Fej´ er interpolation operators for the Stieltjes polynomials E (λ) n+1 and the product E (λ) n+1 P (λ) n are optimal, that is, the Lebesgue constants H n+1 (0 λ 1) and H 2n+1 (0 λ 1/2) have optimal order O(1). In the case of the Hermite–Fej´ er interpolation polynomials H 2n+1 [·] for 1/2 1, we prove weighted uniform convergence. Moreover, we give some convergence theorems of Hermite–Fej´ er and Hermite interpolation polynomials for 0 λ 1 in weighted L p norms. 1. Introduction For a function f :(a, b) R, −∞ ≤ a<b ≤∞, and a set χ n := {x 1n ,x 2n , ..., x nn },n 1, of pairwise distinct nodes, let H n [χ n ; f ] and ˆ H n [χ n ; f ] denote the Hermite–Fej´ er and Hermite interpolation polynomials of degree 2n 1 to f with respect to χ n . For the case of Hermite interpolation, we will always assume that f is differentiable so that ˆ H n [χ n ; f ] is well defined. In fact, H n [χ n ; f ] and ˆ H n [χ n ; f ] are the unique polynomials of degree 2n 1 satisfying H n [χ n ; f ](x jn )= f (x jn ), H n [χ n ; f ](x jn )=0, ˆ H n [χ n ; f ](x jn )= f (x jn ), ˆ H n [χ n ; f ](x jn )= f (x jn ) for j =1, 2,...,n. Received by the editor March 9, 2004 and, in revised form, January 12, 2005. 2000 Mathematics Subject Classification. Primary 41A05, 65D05. Key words and phrases. Generalized Stieltjes polynomial, Hermite–Fej´ er and Hermite inter- polations, convergence, Lebesgue constant. This work was supported by Korea Research Foundation Grant (KRF-2002-050-C00003). The research on this project started when the author visited Professor Sven Ehrich in GSF-IBB. The author thanks Professor Sven Ehrich, Professor G. Mastroianni, and the referees for many kind suggestions and comments. c 2005 American Mathematical Society Reverts to public domain 28 years from publication 743 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Transcript of HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of...

Page 1: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

MATHEMATICS OF COMPUTATIONVolume 75, Number 254, Pages 743–766S 0025-5718(05)01795-3Article electronically published on November 3, 2005

HERMITE AND HERMITE–FEJER INTERPOLATIONFOR STIELTJES POLYNOMIALS

H. S. JUNG

Abstract. Let wλ(x) := (1−x2)λ−1/2 and P(λ)n be the ultraspherical polyno-

mials with respect to wλ(x). Then we denote by E(λ)n+1 the Stieltjes polynomials

with respect to wλ(x) satisfying∫ 1

−1wλ(x)P

(λ)n (x)E

(λ)n+1(x)xmdx

{= 0, 0 ≤ m < n + 1,

�= 0, m = n + 1.

In this paper, we show uniform convergence of the Hermite–Fejer interpo-lation polynomials Hn+1[·] and H2n+1[·] based on the zeros of the Stieltjes

polynomials E(λ)n+1 and the product E

(λ)n+1P

(λ)n for 0 ≤ λ ≤ 1 and 0 ≤ λ ≤

1/2, respectively. To prove these results, we prove that the Lebesgue con-stants of Hermite–Fejer interpolation operators for the Stieltjes polynomials

E(λ)n+1 and the product E

(λ)n+1P

(λ)n are optimal, that is, the Lebesgue constants

‖Hn+1‖∞(0 ≤ λ ≤ 1) and ‖H2n+1‖∞(0 ≤ λ ≤ 1/2) have optimal orderO(1). In the case of the Hermite–Fejer interpolation polynomials H2n+1[·] for1/2 < λ ≤ 1, we prove weighted uniform convergence. Moreover, we give someconvergence theorems of Hermite–Fejer and Hermite interpolation polynomialsfor 0 ≤ λ ≤ 1 in weighted Lp norms.

1. Introduction

For a function f : (a, b) → R, −∞ ≤ a < b ≤ ∞, and a set

χn := {x1n, x2n, ..., xnn}, n ≥ 1,

of pairwise distinct nodes, let Hn[χn; f ] and Hn[χn; f ] denote the Hermite–Fejerand Hermite interpolation polynomials of degree ≤ 2n− 1 to f with respect to χn.For the case of Hermite interpolation, we will always assume that f is differentiableso that Hn[χn; f ] is well defined. In fact, Hn[χn; f ] and Hn[χn; f ] are the uniquepolynomials of degree ≤ 2n − 1 satisfying{

Hn[χn; f ](xjn) = f(xjn),H ′

n[χn; f ](xjn) = 0,

{Hn[χn; f ](xjn) = f(xjn),H ′

n[χn; f ](xjn) = f ′(xjn)

for j = 1, 2, . . . , n.

Received by the editor March 9, 2004 and, in revised form, January 12, 2005.2000 Mathematics Subject Classification. Primary 41A05, 65D05.Key words and phrases. Generalized Stieltjes polynomial, Hermite–Fejer and Hermite inter-

polations, convergence, Lebesgue constant.This work was supported by Korea Research Foundation Grant (KRF-2002-050-C00003). The

research on this project started when the author visited Professor Sven Ehrich in GSF-IBB. The

author thanks Professor Sven Ehrich, Professor G. Mastroianni, and the referees for many kindsuggestions and comments.

c©2005 American Mathematical SocietyReverts to public domain 28 years from publication

743

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 2: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

744 H. S. JUNG

Here, we are interested in Hermite–Fejer and Hermite interpolations with respectto χn whose elements are the zeros of a sequence of Stieltjes polynomials. To beprecise, we first consider the generalized Stieltjes polynomials E

(λ)n+1(x). In 1934,

Szego [25] introduced the generalized Stieltjes polynomials E(λ)n+1(x) defined by∫ 1

−1

wλ(x)P (λ)n (x)E(λ)

n+1(x)xkdx = 0, k = 0, 1, . . . , n, n ≥ 1,

where wλ(x) = (1−x2)λ−1/2, λ > −1/2, and P(λ)n (x) is the ultraspherical (or Gegen-

bauer) polynomial. The classical Stieltjes polynomials for the Legendre weight(λ = 1/2) were first considered by Stieltjes in 1894, and he made the conjecturethat the zeros of E

(1/2)n+1 (x) should all be in (−1, 1) and should alternate with those

of the n-th Legendre polynomial. In [25], Szego proved, for 0 < λ ≤ 2, two conjec-tures of Stieltjes, namely, that the zeros of E

(λ)n+1 are real and inside (−1, 1), and

that they interlace with the zeros of P(λ)n .

After Szego’s works, in 1964 Kronrod introduced the so-called Gauss–Kronrodquadrature formulas,∫ 1

−1

wλ(x)f(x)dx =n∑

ν=1

AGKν,n f(x(λ)

ν,n) +n+1∑µ=1

BGKµ,n+1f(ξ(λ)

µ,n+1) + RGK2n+1(f)

for estimating the error of the Gaussian quadrature formula, and in 1970 Barrucand[1] observed that the zeros of Stieltjes polynomials are precisely the additional nodesξ(λ)1,n+1, . . . , ξ

(λ)n+1,n+1 of Gauss–Kronrod quadrature formulas. This induced much

further study of Stieltjes polynomials and Gauss–Kronrod quadrature formulas (see[3, 5, 6, 8, 17, 21, 9, 12, 13, 22]). These days, Gauss–Kronrod formulas are usedextensively in numerical integration software (cf., e.g., [16, 24]). There are theexhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], andPeherstorfer [23] for the precise definition of Gauss–Kronrod quadrature formulasand an overview about their connection to Stieltjes polynomials.

For the properties of interpolation operators based at the zeros of E(λ)n+1 and

P(λ)n E

(λ)n+1, Ehrich and Mastroianni [5, 6] proved that Lagrange interpolation op-

erators Ln+1 based on the zeros of E(λ)n+1 and that extended Lagrange interpo-

lation operators L2n+1 based on the zeros of E(λ)n+1P

(λ)n have Lebesgue constants

‖Ln+1‖∞ = sup‖f‖∞ ‖Ln+1f‖∞ (0 ≤ λ ≤ 1) and ‖L2n+1‖∞ (0 ≤ λ ≤ 1/2) ofoptimal order, i.e., O(log n). So, they showed that the zeros of Stieltjes polynomi-als improve the Lagrange interpolation process based on the zeros of ultrasphericalpolynomials, for which Lebesgue constants are well known to be of precise orderO(nλ) and O(log n), according as 0 < λ or λ ≤ 0. See [26, 14.4]. In this paper,we consider the Hermite–Fejer interpolation operator Hn+1 based on the zeros ofE

(λ)n+1 and the extended Hermite–Fejer interpolation operator H2n+1 based on the

zeros of E(λ)n+1P

(λ)n , and we show that these interpolation operators have Lebesgue

constants ‖Hn+1‖∞ (0 ≤ λ ≤ 1) and ‖H2n+1‖∞ (0 ≤ λ ≤ 1/2) of optimal order,i.e., O(1). See (3.21) and (3.29) in Section 3. From these results, we show uniformconvergence of the Hermite–Fejer interpolation polynomials Hn+1[·] and H2n+1[·]for 0 ≤ λ ≤ 1 and 0 ≤ λ ≤ 1/2, respectively. In the case of the Hermite–Fejerinterpolation polynomials H2n+1[·] for 1/2 < λ ≤ 1, we prove weighted uniform

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 3: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

INTERPOLATION FOR STIELTJES POLYNOMIALS 745

convergence. Moreover, we prove some convergence theorems of Hermite–Fejer andHermite interpolation polynomials in weighted Lp norms. Let us mention that theLebesgue constants of the Hermite–Fejer interpolation processes based on the zerosof ultraspherical polynomials are known to be of precise order O(nmax{0,2λ−1}) andthat Hermite–Fejer interpolation polynomials are in general divergent at x = +1 iff(x) is merely continuous on [−1, 1] and λ ≥ 1/2. See [26, 14.6] and [27].

2. Main results

For the ultraspherical polynomials P(λ)n , λ �= 0, we use the normalization

P(λ)n (1) =

(n+2λ−1

n

)= O

(n2λ−1

). We denote the zeros of P

(λ)n and E

(λ)n+1 by

x(λ)ν,n = cos φ(λ)

ν,n, ν = 1, . . . , n and ξ(λ)µ,n+1 = cos θ

(λ)µ,n+1, µ = 1, . . . , n + 1,

respectively. We denote the zeros of F(λ)2n+1 := P

(λ)n E

(λ)n+1 by y

(λ)ν,2n+1 = cos ψ

(λ)ν,2n+1,

ν = 1, . . . , 2n + 1. All nodes are ordered by increasing magnitude. We also set

ϕ(x) :=√

1 − x2,

and for any two sequences {bn}n and {cn}n of nonzero real numbers (or functions),we write bn � cn if there exists a constant C > 0, independent of n (and x) suchthat bn ≤ Ccn for n large enough and write bn ∼ cn if bn � cn and cn � bn. Wedenote by Pn the space of polynomials of degree at most n.

Let Hn+1[; ] and Hn+1[; ] be the Hermite–Fejer and Hermite interpolation polyno-mials with respect to the zeros of E

(λ)n+1(x). Then, the Hermite–Fejer interpolation

polynomial Hn+1[f ] of f admits the representation ([26, pp. 330, 331])

(2.1) Hn+1[f ](x) =n+1∑k=1

f(ξ(λ)k,n+1)

⎡⎣1 −

E(λ)n+1

′′(ξ(λ)

k,n+1)

E(λ)n+1

′(ξ(λ)

k,n+1)(x − ξ

(λ)k,n+1)

⎤⎦ l2k,n+1(x).

The Hermite interpolation polynomial Hn+1[f ] of f on the other hand admits therepresentation

(2.2) Hn+1[f ](x) = Hn+1[f ](x) +n+1∑k=1

(x − ξ(λ)k,n+1)l

2k,n+1(x)f ′(ξ(λ)

k,n+1).

Also let H2n+1[; ] and H2n+1[; ] be the Hermite–Fejer and Hermite interpolationpolynomials with respect to the zeros of F

(λ)2n+1(x). Then, similarly, we have

(2.3)

H2n+1[f ](x) =2n+1∑ν=1

f(y(λ)ν,2n+1)

⎡⎣1 −

F(λ)2n+1

′′(y(λ)

ν,2n+1)

F(λ)2n+1

′(y(λ)

ν,2n+1)(x − y

(λ)ν,2n+1)

⎤⎦ l2ν,2n+1(x)

and

(2.4) H2n+1[f ](x) = H2n+1[f ](x) +n+1∑ν=1

(x − y(λ)ν,2n+1)l

2ν,2n+1(x)f ′(y(λ)

ν,2n+1).

Here, the fundamental Lagrange interpolation polynomials lk,n+1(x) and lν,2n+1(x)are given by

lk,n+1(x) =E

(λ)n+1(x)

E(λ)n+1

′(ξ(λ)

k,n+1)(x − ξ(λ)k,n+1)

, k = 1, 2, . . . , n + 1,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 4: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

746 H. S. JUNG

and

lν,2n+1(x) =F

(λ)2n+1(x)

F(λ)2n+1

′(y(λ)

ν,2n+1)(x − y(λ)ν,2n+1)

, ν = 1, 2, . . . , 2n + 1.

In addition, we introduce some basic notations used here and in the followingsections. Following usual notation, we write f ∈ Lp(E), E ⊂ [−1, 1], 0 < p < ∞, if

‖f‖Lp(E) =(∫

E

|f(x)|p dx

)1/p

< ∞,

and we set Lp = Lp([−1, 1]), ‖f‖p = ‖f‖Lp([−1,1]). For p = ∞, i.e., uniformapproximation, we set ‖f‖L∞(E) = supx∈E |f(x)|, E ⊂ [−1, 1]. In this paper, weneed the following notations: For 1 ≤ p ≤ ∞,

ωϕ,p(f, t) := sup0<h≤t

‖∆hϕf(x)‖Lp[−1,1]

and

En,p(f) := infPn∈Pn

‖f − Pn‖Lp[−1,1] ,

where

∆hϕf(x) := f(x + hϕ(x)/2) − f(x − hϕ(x)/2).

In the following subsections, we state our main results: First note that for λ = 0and λ = 1,

E(0)n+1(x) =

2n

π(Tn+1(x) − Tn−1(x)) ,(2.5)

E(1)n+1(x) =

Tn+1(x).(2.6)

In this paper, we let

(2.7) P (0)n (x) := Tn(x)/n.

2.1. Uniform convergence of the Hermite–Fejer interpolation polynomi-als.

Theorem 2.1. Let λ ∈ [0, 1] and let f be a continuous function on [−1, 1]. Then,uniformly for x ∈ [−1, 1],

limn→∞

|Hn+1[f ](x) − f(x)| = 0.(2.8)

Moreover, we have

(2.9) |Hn+1[f ](x) − f(x)| � min{

ωϕ,∞

(f,

log n

n

), ωϕ,∞

(f,

1n

)log n

}.

Theorem 2.2. Let f be a continuous function on [−1, 1]. If λ ∈ [0, 1/2], thenuniformly for x ∈ [−1, 1],

limn→∞

|H2n+1[f ](x) − f(x)| = 0.(2.10)

Moreover, we have

(2.11) |H2n+1[f ](x) − f(x)| � min{

ωϕ,∞

(f,

log n

n

), ωϕ,∞

(f,

1n

)log n

}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 5: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

INTERPOLATION FOR STIELTJES POLYNOMIALS 747

If λ ∈ (1/2, 1], then uniformly for x ∈ [−1, 1],

limn→∞

∣∣∣[H2n+1[f ](x) − f(x)]ϕ2(2λ−1)(x)∣∣∣ = 0.(2.12)

Moreover, we have∣∣∣(H2n+1[f ](x) − f(x))ϕ2(2λ−1)(x)∣∣∣(2.13)

� min{

ωϕ,∞

(f,

log n

n

), ωϕ,∞

(f,

1n

)log n

}.

2.2. Weighted Lp-convergence of the Hermite–Fejer interpolation poly-nomials. Let u be a Generalized Jacobi (GJ) weight, defined by

u(x) =r∏

k=0

|tk − x|γk , γk > −1, −1 = t0 < t1 < · · · < tr−1 < tr = 1, |x| ≤ 1.

Theorem 2.3. Let λ ∈ [0, 1], 1 < p < ∞, u ∈ Lp, and let f be a continuousfunction on [−1, 1]. Then

‖(Hn+1[f ](x) − f(x))u‖p � ωϕ,∞

(f,

1n

).

Theorem 2.4. Let λ ∈ [0, 1], 1 < p < ∞, u(x)(ϕ2(1−2λ)(x)+ 1) ∈ Lp, and let f bea continuous function on [−1, 1]. Then

‖(H2n+1[f ](x) − f(x))u‖p � ωϕ,∞

(f,

1n

).

2.3. Uniform and Lp-convergence of the Hermite interpolation polyno-mials.

Theorem 2.5. Let λ ∈ [0, 1] and let N be an integer with N ≥ 1. If we assumethat f ∈ CN [−1, 1] and 0 ≤ j ≤ N , then we have∥∥∥(

H(j)n+1[f ] − f (j)

)ϕj

∥∥∥∞

�E2n+1−N,∞

(f (N)

)log n

nN−j.

Theorem 2.6. Let λ ∈ [0, 1] and let N be an integer with N ≥ 1. Assume thatf ∈ CN [−1, 1] and 0 ≤ j ≤ N . Then for λ ∈ [0, 1/2],∥∥∥(

H(j)2n+1[f ] − f (j)

)ϕj

∥∥∥∞

�E4n+1−N,∞

(f (N)

)log n

nN−j,

and for λ ∈ (1/2, 1],∥∥∥(H(j)

2n+1[f ] − f (j))

ϕ2(2λ−1)+j∥∥∥∞

�E4n+1−N,∞

(f (N)

)log n

nN−j.

Theorem 2.7. Let λ ∈ [0, 1], 1 < p < ∞, and let N be an integer with N ≥ 1. Ifwe assume that f ∈ CN [−1, 1] and 0 ≤ j ≤ N , then we have∥∥∥(

H(j)n+1[f ] − f (j)

)ϕj

∥∥∥p

�E2n+1−N,∞

(f (N)

)nN−j

.

Theorem 2.8. Let λ ∈ [0, 1], 1 < p < ∞, and let N be an integer with N ≥ 1.Assume that f ∈ CN [−1, 1] and 0 ≤ j ≤ N . Then for λ ∈ [0, 1/2],∥∥∥(

H(j)2n+1[f ] − f (j)

)ϕj

∥∥∥p

�E4n+1−N,∞

(f (N)

)nN−j

,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 6: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

748 H. S. JUNG

and for λ ∈ (1/2, 1],∥∥∥(H(j)

2n+1[f ] − f (j))

ϕ2(2λ−1)+j∥∥∥

p�

E4n+1−N,∞(f (N)

)nN−j

.

3. The proofs

We first state some known results for the Stieltjes polynomials. For 0 < λ ≤ 1Ehrich and Mastroianni [5] proved that for µ = 0, 1, . . . , n+2 and ν = 0, 1, . . . , 2n+2, ∣∣∣θ(λ)

µ,n+1 − θ(λ)µ+1,n+1

∣∣∣ ∼ ∣∣∣ψ(λ)ν,2n+1 − ψ

(λ)ν+1,2n+1

∣∣∣ ∼ n−1,

where ψ(λ)0,2n+1 := θ

(λ)0,n+1 := π and ψ

(λ)2n+2,2n+1 := θ

(λ)n+2,n+1 := 0. It implies that for

µ = 0, 1, . . . , n + 2 and ν = 0, 1, . . . , 2n + 2,(3.1){

ξ(λ)µ+1,n+1 − ξ

(λ)µ,n+1 ∼ 1

nϕ(ξ(λ)µ,n+1),

y(λ)ν+1,2n+1 − y

(λ)ν,2n+1 ∼ 1

nϕ(y(λ)ν,2n+1)

and

{ϕ(ξ(λ)

µ+1,n+1) ∼ ϕ(ξ(λ)µ,n+1),

ϕ(y(λ)ν+1,2n+1) ∼ ϕ(y(λ)

ν,2n+1),

where y(λ)0,2n+1 := ξ

(λ)0,n+1 := −1 and y

(λ)2n+2,2n+1 := ξ

(λ)n+2,n+1 := 1.

In the following, we list some propositions about estimates of E(λ)n+1(x) and

F(λ)2n+1(x) from [5, 9].

Proposition 3.1 ([5]). Let 0 < λ ≤ 1. Then∣∣∣E(λ)n+1(x)

∣∣∣ � n1−λϕ1−λ(x) + 1, −1 ≤ x ≤ 1,(3.2)

and E(λ)n+1(1) � 1. Moreover, we have∣∣∣F (λ)

2n+1(x)∣∣∣ � ϕ1−2λ(x), ξ

(λ)1,n+1 ≤ x ≤ ξ

(λ)n+1,n+1,(3.3)

and∣∣∣F (λ)

2n+1(1)∣∣∣ ∼ n2λ−1. For λ = 0, we know that∣∣∣E(0)

n+1(x)∣∣∣ � nϕ(x), −1 ≤ x ≤ 1,(3.4)

and ∣∣∣F (0)2n+1(x)

∣∣∣ � ϕ(x), −1 ≤ x ≤ 1.(3.5)

Proof. For 0 < λ < 1, see [5]. For λ = 0, 1, the assertion can be proved easily by(2.5), (2.6) and (2.7). �

Proposition 3.2 ([9]). Let 0 < λ ≤ 1. Then for x ∈ [ξ(λ)1,n+1, ξ

(λ)n+1,n+1],

|E(λ)n+1

′(x)| � n2−λϕ−λ(x).(3.6)

Moreover, we have for x ∈ [−1, ξ(λ)1,n+1] ∪ [ξ(λ)

n+1,n+1, 1],

|E(λ)n+1

′(x)| ∼ n2.

In the case of λ = 0, we know that for |x| ≤ 1,

|E(0)n+1

′(x)| � n2,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 7: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

INTERPOLATION FOR STIELTJES POLYNOMIALS 749

and for cos−1 π2n ≤ |x| ≤ 1,

|E(0)n+1

′(x)| ∼ n2.

Proof. For 0 < λ < 1, see [9]. For λ = 0, 1, the estimates follow by (2.5). �

Proposition 3.3 ([9]). Let 0 < λ ≤ 1. Then for x ∈ [ξ(λ)1,n+1, ξ

(λ)n+1,n+1],

|F (λ)2n+1

′(x)| � nϕ−2λ(x).(3.7)

Moreover, we have for x ∈ [−1, ξ(λ)1,n+1] ∪ [ξ(λ)

n+1,n+1, 1],

|F (λ)2n+1

′(x)| ∼ n1+2λ.

In the case of λ = 0, we know that for |x| ≤ 1,

|F (0)2n+1

′(x)| � n,

and for cos−1 π4n ≤ |x| ≤ 1,

|F (0)2n+1

′(x)| ∼ n.

Proof. For 0 < λ < 1, see [9]. For λ = 0, 1, the assertion can be proved easily by(2.5), (2.6) and (2.7). �

Proposition 3.4 ([5]). Let 0 ≤ λ ≤ 1. Then for µ = 1, 2, . . . , n + 1,∣∣∣E(λ)n+1

′(ξ(λ)

µ,n+1)∣∣∣ ∼ n2−λϕ−λ(ξ(λ)

µ,n+1),(3.8)

and for ν = 1, 2, . . . , 2n + 1,∣∣∣F (λ)2n+1

′(y(λ)

ν,2n+1)∣∣∣ ∼ nϕ−2λ(y(λ)

ν,2n+1).(3.9)

Proof. For 0 < λ < 1, see [5]. For λ = 0, 1, the assertion can be proved easily by(2.5), (2.6), and (2.7). �

Proposition 3.5 ([9]). Let 0 < λ ≤ 1. Then for µ = 1, 2, . . . , n + 1,

|E(λ)n+1

′′(ξ(λ)

µ,n+1)| � n2ϕ−2(ξ(λ)µ,n+1),(3.10)

and for ν = 1, 2, . . . , 2n + 1,

|F (λ)2n+1

′′(y(λ)

ν,2n+1)| � n1+λϕ−2−λ(y(λ)ν,2n+1).(3.11)

In the case of λ = 0, we know that for µ = 2, . . . , n and ν = 2, . . . , 2n, (3.10) and(3.11) are satisfied, and for µ = 1, n + 1 and ν = 1, 2n + 1,

|E(0)n+1

′′(ξ(0)

µ,n+1)| ∼ n4 and |F (0)2n+1

′′(y(0)

ν,2n+1)| ∼ n3.(3.12)

Proof. For 0 < λ < 1, see [9]. For λ = 0, 1, the assertion can be proved easily by(2.5), (2.6), and (2.7). �

For convenience, we let

H1,n+1[f ] :=n+1∑k=1

f(ξ(λ)k,n+1)l

2k,n+1(x)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 8: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

750 H. S. JUNG

and

H2,n+1[f ] :=n+1∑k=1

f(ξ(λ)k,n+1)

E(λ)n+1

′′(ξ(λ)

k,n+1)

E(λ)n+1

′(ξ(λ)

k,n+1)(x − ξ

(λ)k,n+1)l

2k,n+1(x).

Then by (2.1)

Hn+1[f ] = H1,n+1[f ] − H2,n+1[f ].(3.13)

Similarly, we split H2n+1[f ] into two terms. Then by (2.3)

H2n+1[f ] := H1,2n+1[f ] −H2,2n+1[f ].(3.14)

3.1. Convergence of the Hermite–Fejer interpolation polynomials forE

(λ)n+1(x). In this subsection we prove Theorems 2.1 and 2.3.

Lemma 3.6. Let λ ∈ [0, 1]. Then we have for large n > 0,

|H2,n+1[f ](x)| � ‖f‖∞.(3.15)

Proof. First let 0 < λ ≤ 1. By [19, (26)] it is sufficient to prove (3.15) for 0 ≤x ≤ 1 − a

n2 , where a > 0 is a fixed, sufficiently small constant. In the following let‖f‖∞ = 1 and let x ∈ [ξ(λ)

k−1,n+1, ξ(λ)k+1,n+1]∩ [0, 1− a

n2 ] (ξ(λ)0,n+1 := −1, ξ

(λ)n+2,n+1 := 1)

for some 1 ≤ k ≤ n + 1. Then,

|H2,n+1[f ](x)| �n+1∑j=1

∣∣∣∣∣∣E

(λ)n+1

′′(ξ(λ)

j,n+1)

E(λ)n+1

′(ξ(λ)

j,n+1)

∣∣∣∣∣∣∣∣∣x − ξ

(λ)j,n+1

∣∣∣ l2j,n+1(x)

=∑

j∈[k−2,k+2]

+∑

j �∈[k−2,k+2]

=: J1 + J2.

For j ∈ [k− 2, k +2]∩ [1, n+1], there exists some r(λ)j,n+1 between x and ξ

(λ)j,n+1 such

that we have by the mean value property, (3.1), (3.6), and (3.8),

|lj,n+1(x)| =

∣∣∣∣∣∣E

(λ)n+1(x)

(x − ξ(λ)j,n+1)E

(λ)n+1

′(ξ(λ)

j,n+1)

∣∣∣∣∣∣(3.16)

=

∣∣∣∣∣∣E

(λ)n+1

′(r(λ)

j,n+1)

E(λ)n+1

′(ξ(λ)

j,n+1)

∣∣∣∣∣∣ �n2−λϕ−λ(r(λ)

j,n+1)

n2−λϕ−λ(ξ(λ)j,n+1)

� 1.

Then, we obtain by (3.1), (3.8), (3.10), and (3.16),

J1 =∑

j∈[k−2,k+2]

∣∣∣∣∣∣E

(λ)n+1

′′(ξ(λ)

j,n+1)

E(λ)n+1

′(ξ(λ)

j,n+1)

∣∣∣∣∣∣∣∣∣x − ξ

(λ)j,n+1

∣∣∣ l2j,n+1(x)

�∑

j∈[k−2,k+2]

∣∣∣∣∣∣E

(λ)n+1

′′(ξ(λ)

j,n+1)

E(λ)n+1

′(ξ(λ)

j,n+1)

∣∣∣∣∣∣∣∣∣x − ξ

(λ)j,n+1

∣∣∣� n2ϕ−2(x)

n2−λϕ−λ(x)1n

ϕ(x) ∼ nλ−1ϕλ−1(x) � 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 9: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

INTERPOLATION FOR STIELTJES POLYNOMIALS 751

Next, we estimate J2. Assume 0 ≤ x ≤ ξ(λ)n−1,n+1. Then for some C > 0 with

1 − Cn2 >

ξ(λ)n+1,n+1+1

2 , we have by (3.1), (3.2), (3.8), and (3.10),

J2 =∣∣∣E(λ)

n+1(x)∣∣∣2 ∑

j �∈[k−2,k+2]

∣∣∣E(λ)n+1

′′(ξ(λ)

j,n+1)∣∣∣∣∣∣E(λ)

n+1

′(ξ(λ)

j,n+1)∣∣∣3 ∣∣∣x − ξ

(λ)j,n+1

∣∣∣� n2(1−λ)ϕ2(1−λ)(x)

∑j �∈[k−2,k+2]

ϕ3λ−2(ξ(λ)j,n+1)

n4−3λ

1∣∣∣x − ξ(λ)j,n+1

∣∣∣� ϕ2(1−λ)(x)

n1−λ

∑j �∈[k−2,k+2]

ϕ3λ−2(ξ(λ)j,n+1)

n

1∣∣∣x − ξ(λ)j,n+1

∣∣∣� ϕ2(1−λ)(x)

n1−λ

∫[−1+ C

n2 ,1− Cn2 ]\[ξ(λ)

k−2,n+1,ξ(λ)k+2,n+1]

ϕ3(λ−1)(t)|x − t| dt.

Then for the integral

∫ϕ3(λ−1)(t)|x − t| dt �

∫ x∗

0

+∫ 1+x∗

2

x∗+

∫ 1− Cn2

1+x∗2

ϕ3(λ−1)(t)|x − t| dt,

where x∗ := ξ(λ)k−2,n+1 and x∗ := ξ

(λ)k+2,n+1. Here, since ϕλ−1(x) is increasing on

(0, 1), ϕ(x∗) ∼ ϕ(x) by (3.1), and 1 − x∗x � 1

n2 , we have

∣∣∣∣∫ x∗

0

ϕ3(λ−1)(t)x − t

dt

∣∣∣∣ � ϕ2(λ−1)(x∗)∣∣∣∣∫ x∗

0

ϕλ−1(t)x − t

dt

∣∣∣∣� ϕ2(λ−1)(x)

∣∣∣∣∣∫ x∗

x

0

ϕλ−1(xs)1 − s

ds

∣∣∣∣∣� ϕ2(λ−1)(x)

∫ | x∗x |

0

(1 − s)λ−1

2 −1ds

� ϕ2(λ−1)(x)n1−λ.

Since

ϕ

(1 + x∗

2

)∼

√1 − 1 + x∗

2∼ ϕ(x∗) ∼ ϕ(x),

we have

∫ 1+x∗2

x∗

ϕ3(λ−1)(t)|x − t| dt � ϕ2(λ−1)

(1 + x∗

2

) ∫ 1+x∗2

x∗

ϕλ−1(t)t − x

dt

� ϕ2(λ−1)(x)∫ 1+x∗

2

x∗(t − x)

1−λ2 −1 + (1 − t)

1−λ2 −1dt

� ϕ2(λ−1)(x)n1−λ,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 10: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

752 H. S. JUNG

and since |x − t| � |1 − t| for 1+x∗

2 < t < 1 − Cn2 ,∫ 1− C

n2

1+x∗2

ϕ3(λ−1)(t)|x − t| dt � 1∣∣1+x∗

2 − x∣∣1−λ

∫ 1− Cn2

1+x∗2

ϕ3(λ−1)(t)|t − x|λ dt

� ϕ2(λ−1)(x)∫ 1− C

n2

1+x∗2

1

|t − x|λ(1 − t)32−

3λ2

dt

� ϕ2(λ−1)(x)∫ 1− C

n2

1+x∗2

1

(1 − t)32−

λ2

dt

� ϕ2(λ−1)(x)n1−λ.

Thus, we have J2 � 1 for 0 ≤ x ≤ ξ(λ)n−1,n+1. For ξ

(λ)n−1,n+1 < x ≤ 1 we obtain in the

same way as in the case 0 ≤ x ≤ ξ(λ)n−1,n+1,

J2 � ϕ2(1−λ)(x)n1−λ

∫ x∗

0

ϕ3(λ−1)(t)|x − t| dt � 1.

So, we have J2 � 1. Therefore, (3.15) is proved for 0 < λ ≤ 1. Now, we considerthe case of λ = 0. Then

|H2,n+1[f ](x)| �n∑

j=2

+∑

j=1,n+1

∣∣∣∣∣∣E

(0)n+1

′′(ξ(0)

j,n+1)

E(0)n+1

′(ξ(0)

j,n+1)

∣∣∣∣∣∣∣∣∣x − ξ

(0)j,n+1

∣∣∣ l2j,n+1(x)

=: K1 + K2.

Since by (3.4), (3.8), and (3.12)∣∣∣∣∣∣E

(0)n+1

′′(ξ(0)

j,n+1)

E(0)n+1

′(ξ(0)

j,n+1)

∣∣∣∣∣∣∣∣∣x − ξ

(0)j,n+1

∣∣∣ l2j,n+1(x) � 1 (when j = 1, n + 1 ),

we have K2 � 1, and in the same way as in the case 0 < λ ≤ 1, we have K1 � 1.Therefore, (3.15) is proved for 0 ≤ λ ≤ 1. �

Lemma 3.7. Let λ ∈ (0, 1]. Then we have

(3.17)n+1∑j=1

|lj,n+1(x)|ϕ1−λ(x)ϕλ−1(ξ(λ)j,n+1) � log n.

In the case of λ = 0, we have

(3.18)n∑

j=2

|lj,n+1(x)|ϕ(x)ϕ−1(ξ(0)j,n+1) � log n.

Proof. First, consider the case of 0 < λ ≤ 1. Assume that 0 ≤ x ≤ 1− an2 , where a >

0 is a fixed, sufficiently small constant, and let x ∈ [ξ(λ)k−1,n+1, ξ

(λ)k+1,n+1]∩ [0, 1− a

n2 ]

(ξ(λ)0,n+1 := −1, ξ

(λ)n+2,n+1 := 1) for some 1 ≤ k ≤ n + 1. We first split the left

equation of (3.17) into J1 and J2:∑j∈[k−2,k+2]

+∑

j �∈[k−2,k+2]

|lj,n+1(x)|ϕ1−λ(x)ϕλ−1(ξ(λ)j,n+1) =: J1 + J2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 11: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

INTERPOLATION FOR STIELTJES POLYNOMIALS 753

Then by (3.1) and (3.16),

J1 �∑

j∈[k−2,k+2]∩[1,n+1]

ϕ1−λ(x)ϕλ−1(ξ(λ)j,n+1) � 1.

If we assume that 0 ≤ x ≤ ξ(λ)n−1,n+1, then by (3.2) and (3.8),

J2 �∑

j �∈[k−2,k+2]

|E(λ)n+1(x)|ϕ1−λ(x)ϕλ−1(ξ(λ)

j,n+1)

|E(λ)n+1

′(ξ(λ)

j,n+1)|

∣∣∣∣∣ 1

x − ξ(λ)j,n+1

∣∣∣∣∣� ϕ2(1−λ)(x)

∑ ϕ2λ−1(ξ(λ)j,n+1)

n|x − ξ(λ)j,n+1|

� ϕ2(1−λ)(x)∫

[−1,1]\[ξ(λ)k−2,n+1,ξ

(λ)k+2,n+1]

(1 − t2)λ−1

|x − t| dt.

To estimate the last integral we also split it into three terms:

(3.19)∫

(1 − t2)λ−1

|x − t| dt �∫ x∗

0

+∫ 1+x∗

2

x∗+

∫ 1− Cn2

1+x∗2

ϕ2(λ−1)(t)|x − t| dt =: I1 + I2 + I3,

where x∗ := ξ(λ)k−2,n+1 and x∗ := ξ

(λ)k+2,n+1. Then, since ϕ2(λ−1)(x) is increasing on

(0, 1), we have

I1 � ϕ2(λ−1)(x∗)∫ x∗

0

1|x − t|dt � ϕ2(λ−1)(x) log n,

I2 � ϕ2(λ−1)

(1 + x∗

2

) ∫ 1+x∗2

x∗

1|x − t|dt � ϕ2(λ−1)(x) log n,

and

I3 � 1|1+x∗

2 − x|

∫ 1− Cn2

1+x∗2

ϕ2(λ−1)(t)dt

� ϕ−2(x)(

ϕ2λ

(1 − C

n2

)+ ϕ2λ

(1 + x∗

2

))� ϕ2(λ−1)(x).

If ξ(λ)n−1,n+1 < x ≤ 1, then we obtain in the same way as in the case 0 ≤ x ≤ ξ

(λ)n−1,n+1,

J2 � ϕ2(1−λ)(x)∫ x∗

0

ϕ2(λ−1)(t)|x − t| dt � log n.

Thus, we have J2 � log n so that (3.17) is proved for 0 < λ ≤ 1. For λ = 0, theproof is similar to the case of 0 < λ ≤ 1 by (3.4) and (3.8). Therefore, (3.18) is alsoproved. �

Lemma 3.8. Let λ ∈ [0, 1]. For any polynomial R ∈ P2n+1,

|R(x) − Hn+1[R](x)| � ‖R′ϕ‖∞log n

n.(3.20)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 12: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

754 H. S. JUNG

Proof. Let 0 < λ ≤ 1. For any polynomial R ∈ P2n+1, we have by (2.2), (3.2),(3.8) and (3.17),

|R(x) − Hn+1[R](x)|

=∣∣∣Hn+1[R](x) − Hn+1[R](x)

∣∣∣=

∣∣∣∣∣∣n+1∑j=1

(x − ξ(λ)j,n+1)l

2j,n+1(x)R′(ξ(λ)

j,n+1)

∣∣∣∣∣∣=

∣∣∣∣∣∣n+1∑j=1

E(λ)n+1(x)

E(λ)n+1

′(ξ(λ)

j,n+1)lj,n+1(x)R′(ξ(λ)

j,n+1)

∣∣∣∣∣∣�

n+1∑j=1

ϕ1−λ(x)ϕλ(ξ(λ)j,n+1)

n|lj,n+1(x)|

∣∣∣R′(ξ(λ)j,n+1)

∣∣∣� ‖R′ϕ‖∞

n

n+1∑j=1

ϕ1−λ(x)ϕλ−1(ξ(λ)j,n+1)

n|lj,n+1(x)|

� ‖R′ϕ‖∞n

log n.

Now, we consider the case of λ = 0. Then

|R(x) − Hn+1[R](x)| ≤n+1∑j=1

∣∣∣∣∣∣E

(0)n+1(x)

E(0)n+1

′(ξ(0)

j,n+1)

∣∣∣∣∣∣ |lj,n+1(x)||R′(ξ(0)j,n+1)|

=n∑

j=2

+∑

j=1,n+1

∣∣∣∣∣∣E

(0)n+1(x)

E(0)n+1

′(ξ(0)

j,n+1)

∣∣∣∣∣∣ |lj,n+1(x)||R′(ξ(0)j,n+1)|

=: K1 + K2.

Since by (3.4) and (3.8)

K2 � |R′(1)| + |R′(−1)|n2

,

and by [19, (26)]

|R′(1)| + |R′(−1)|n

� ‖R′‖∞n

� ‖R′ϕ‖∞ ,

we have

K2 � ‖R′ϕ‖∞n

.

For K1 we obtain in the same way as in the case 0 < λ ≤ 1,

K1 � ‖R′ϕ‖∞n

log n.

Therefore, we have (3.20) for 0 ≤ λ ≤ 1. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 13: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

INTERPOLATION FOR STIELTJES POLYNOMIALS 755

Proof of Theorem 2.1. Since Hn+1[1](x) = 1, we have by (3.13) and (3.15)

|H1,n+1[f ](x)| � ‖f‖∞n+1∑k=1

l2k,n+1(x) = ‖f‖∞ H1,n+1[1](x)

= ‖f‖∞ (Hn+1[1](x) + H2,n+1[1](x))� ‖f‖∞ .

Therefore, we have

|Hn+1[f ](x)| � ‖f‖∞ (i.e., ‖Hn+1‖∞ = O(1)).(3.21)

Since f is continuous on [−1, 1], for given ε > 0, there exists a polynomial R suchthat for x ∈ [−1, 1],

|f(x) − R(x)| < ε.

Then we have from (3.20) and (3.21)

limn→∞

|Hn+1[f ](x) − f(x)|

≤ |f(x) − R(x)| + limn→∞

|Hn+1[f − R](x)| + limn→∞

|Hn+1[R](x) − R(x)|

� ‖f − R‖∞ + limn→∞

‖R′ϕ‖∞log n

n� ε.

Thus, (2.8) is proved, since ε > 0 is arbitrary. Moreover, since for any polynomialR ∈ P[ n

log n ] by the above estimation,

|Hn+1[f ](x) − f(x)| � ‖f − R‖∞ + ‖R′ϕ‖∞ /

[n

log n

],

we have from [2, Theorem 7.3.1],

|Hn+1[f ](x) − f(x)| � ωϕ,∞

(f,

log n

n

).

Also, since for any polynomial R ∈ P2n+1

|Hn+1[f ](x) − f(x)| � ‖f − R‖∞ + ‖R′ϕ‖∞log n

n,

we have

|Hn+1[f ](x) − f(x)| � ωϕ,∞

(f,

1n

)log n.

Therefore, (2.9) is proved. �

In the following, we use some properties of the Hilbert transform H(f), definedby

H[f, t] := limε→0

∫|x−t|≥ε

f(x)x − t

dx, f ∈ L1.

We recall that if G ∈ L∞ and F log+ F ∈ L1, where F and G have compact supportK, then we have (cf. [6, 20])∫

K

GH[F ] = −∫

K

FH[G].(3.22)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 14: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

756 H. S. JUNG

Lemma 3.9. Let λ ∈ [0, 1], 1 < p < ∞, and let u ∈ Lp. Then for any polynomialR ∈ P2n+1,

‖(R − Hn+1[R]) u‖Lp[−1,1] �‖R′ϕ‖L∞

n.(3.23)

Proof. We follow the proof of Theorem 3.2 in [6]. Let 0 < λ ≤ 1. Since for anypolynomial R ∈ P2n+1,

|R(x) − Hn+1[R](x)| =

∣∣∣∣∣∣n+1∑j=1

R′(ξ(λ)j,n+1)

E(λ)n+1(x)

E(λ)n+1

′(ξ(λ)

j,n+1)lj,n+1(x)

∣∣∣∣∣∣ ,we have using [19, (25)],

‖(R − Hn+1[R])u‖pLp[−1,1] ∼

∫An

|(R(x) − Hn+1[R](x))u(x)|p dx

�∫

An

n+1∑j=1

R′(ξ(λ)j,n+1)E

(λ)n+1(x)

E(λ)n+1

′(ξ(λ)

j,n+1)lj,n+1(x)Γ1(x)up(x)dx

�n+1∑j=1

∣∣∣∣∣∣R′(ξ(λ)

j,n+1)

E(λ)n+1

′(ξ(λ)

j,n+1)

∣∣∣∣∣∣∣∣∣∣∫

An

E(λ)n+1(x)lj,n+1(x)Γ1(x)up(x)dx

∣∣∣∣ ,

where Γ1(x) := σ1(x) |R(x) − Hn+1[R](x)|p−1, σ1(x) := sgn(R−Hn+1[R])(x), andAn := [−1 + Cn−2, 1 − Cn−2] \

⋃r−1k=1

(tk − a

n , tk + an

), a > 0 fixed. Here, if we let

Π(t) :=∫

An

E(λ)n+1(x)(E(λ)

n+1(x) − E(λ)n+1(t))

x − tΓ1(x)up(x)dx,

then using [11, Theorem 2.2], we have by (3.8),

‖(R − Hn+1[R])u‖pLp[−1,1]

�n+1∑j=1

∣∣∣R′(ξ(λ)j,n+1)

∣∣∣∣∣∣E(λ)n+1

′(ξ(λ)

j,n+1)∣∣∣2 |Π(ξ(λ)

j,n+1)|

� ‖R′ϕ‖∞n

n+1∑j=1

ϕ2λ−1(ξ(λ)j,n+1)

n3−2λ|Π(ξ(λ)

j,n+1)|

� ‖R′ϕ‖∞n

1n2(1−λ)

∫An

|Π(t)|ϕ2(λ−1)(t)dt

≤ ‖R′ϕ‖∞n

1n2(1−λ)

∫An

ϕ2(λ−1)(t)( ∣∣∣H [

E(λ)n+1

2Γ1u

p]∣∣∣

+ |En+1(t)|∣∣∣H [

E(λ)n+1Γ1u

p]∣∣∣ )

dt

=:‖R′ϕ‖∞

n(I1 + I2),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 15: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

INTERPOLATION FOR STIELTJES POLYNOMIALS 757

where H is the Hilbert transform. By (3.2), (3.22), and Holder inequality, we obtain

|I1| � 1n2(1−λ)

∫An

(E(λ)n+1(t))

2|Γ1(t)up||H[g1ϕ2(λ−1)](t)|dt

(g1 := sgnH[(E(λ)n+1)

2Γ1])

�∫

An

upϕ2(1−λ)|Γ1|∣∣∣H [

g1ϕ2(λ−1)

]∣∣∣ dt

� ||uϕ2(1−λ)H[g1ϕ2(λ−1)]||Lp(An)||Γ1u

p−1||Lq(An)

� ||(R(x) − Hn+1[R](x))u||p−1Lp(An),

because ||uϕ2(1−λ)H[g1ϕ2(λ−1)]||Lp(An) < ∞ by [19, p. 676]. Similarly, we have

|I2| ≤ 1n2(1−λ)

∫An

ϕ2(λ−1)|E(λ)n+1(t)||H[En+1Γ1u

p]|dt

�∫

An

ϕλ−1(t)n(1−λ)

|H[E(λ)n+1Γ1u

p]|dt

�∫

An

|E(λ)n+1Γ1(t)|up

n(1−λ)H[g2ϕ

λ−1]dt (g2(t) := sgnH[E(λ)n+1Γ1])

�∫

An

uϕ1−λ(t)H[g2ϕλ−1]Γ1(t)up−1dt

� ||uϕ1−λ(t)H[g2ϕλ−1]||Lp(An)||Γ1u

p−1||Lq(An)

� ||(R(x) − Hn+1[R](x))u(x)||p−1Lp(An).

Thus, we have for 0 < λ ≤ 1,

‖(R − Hn+1[R])u‖Lp[−1,1] � ‖R′ϕ‖∞n

.

Now, let λ = 0. Then for any polynomial R ∈ P2n+1,

|R(x) − Hn+1[R](x)| =

∣∣∣∣∣∣n+1∑j=1

R′(ξ(λ)j,n+1)

E(λ)n+1(x)

E(λ)n+1

′(ξ(λ)

j,n+1)lj,n+1(x)

∣∣∣∣∣∣≤

∣∣∣∣∣∣n∑

j=2

R′(ξ(λ)j,n+1)

E(λ)n+1(x)

E(λ)n+1

′(ξ(λ)

j,n+1)lj,n+1(x)

∣∣∣∣∣∣+

∑j=1,n+1

|R′(ξ(λ)j,n+1)|

|E(λ)n+1(x)|

|E(λ)n+1

′(ξ(λ)

j,n+1)||lj,n+1(x)|

=: K1(x) + K2(x)

and

‖(R − Hn+1[R])u‖Lp[−1,1] � ‖K1u‖Lp[−1,1] + ‖K2u‖Lp[−1,1] .

We have by the same reason as in the proof of Lemma 3.8

‖K2u‖Lp[−1,1] � ‖K2‖∞ ‖u‖Lp[−1,1] � ‖R′ϕ‖∞n

,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 16: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

758 H. S. JUNG

and we obtain in the same way as in the case 0 < λ ≤ 1

‖K1u‖Lp[−1,1] � ‖R′ϕ‖∞n

.

Therefore, we proved (3.23) for 0 ≤ λ ≤ 1. �

Proof of Theorem 2.3. Since u ∈ Lp and for any polynomial R ∈ P2n+1 by (3.23)

‖(Hn+1[f ] − f)u‖p

≤ ‖(f − R)u‖p + ‖(Hn+1[f − R])u‖p + ‖(Hn+1[R] − R)u‖p

� ‖f − R‖∞ ‖u‖p +‖R′ϕ‖∞

n,

we have from [2, Theorem 7.3.1],

‖(Hn+1[f ] − f)u‖p � ωϕ,∞

(f,

1n

). �

3.2. Convergence of the Hermite–Fejer interpolation polynomials forF

(λ)2n+1(x). In this subsection, we prove Theorems 2.2 and 2.4, and we will omit

the details because the most methods are similar to Subsection 3.1.

Lemma 3.10. Let λ ∈ [0, 1]. Then we have for large n > 0,

|H2,2n+1[f ](x)| � ‖f‖∞(ϕ2(1−2λ)(x) + 1

).(3.24)

Proof. Let 0 < λ ≤ 1. It is sufficient to prove (3.15) for 0 ≤ x ≤ 1 − an2 , where

a > 0 is a fixed, sufficiently small constant. In the following let ‖f‖∞ = 1 and letx ∈ [y(λ)

k−1,2n+1, y(λ)k+1,2n+1] ∩ [0, 1 − a

n2 ] (y(λ)0,2n+1 = −1, y

(λ)2n+2,2n+1 := 1) for some

1 ≤ k ≤ 2n + 1. Then,

|H2,2n+1[f ](x)| �2n+1∑j=1

∣∣∣∣∣∣F

(λ)2n+1

′′(y(λ)

j,2n+1)

F(λ)2n+1

′(y(λ)

j,2n+1)

∣∣∣∣∣∣∣∣∣x − y

(λ)j,2n+1

∣∣∣ l2j,2n+1(x)

=∑

j∈[k−2,k+2]

+∑

j �∈[k−2,k+2]

:= J1 + J2.

Since we have by (3.1), (3.3), (3.7), and (3.9), similar to (3.16),

|lj,2n+1(x)| ∼ 1, j ∈ [k − 2, k + 2] ∩ [1, 2n + 1],(3.25)

we have by (3.1), (3.7), (3.9), and (3.25),

J1 � n1+λϕ−2−λ(x)nϕ−2(x)

ϕ(x)n

� n−1+λϕ−1+λ(x) � 1.

For J2, we first assume 0 ≤ x ≤ y(λ)2n−1,2n+1. Then we have by (3.1), (3.3), (3.9),

and (3.11),

J2 � ϕ2(1−2λ)(x)n1−λ

∑j �∈[k−2,k+2]

ϕ5λ−2(y(λ)j,2n+1)

n

1∣∣∣x − y(λ)j,2n+1

∣∣∣� ϕ2(1−2λ)(x)

n1−λ

∫[−1+ C

n2 ,1− Cn2 ]\[y(λ)

k−2,2n+1,y(λ)k+2,2n+1]

ϕ5λ−3(t)|x − t| dt.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 17: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

INTERPOLATION FOR STIELTJES POLYNOMIALS 759

We assume 0 < x ≤ 1 − an2 . Let λ ∈ (0, 1/2]. Then∫

ϕ5λ−3(t)|x − t| dt �

∫ x∗

0

+∫ 1+x∗

2

x∗+

∫ 1− Cn2

1+x∗2

ϕ5λ−3(t)|x − t| dt.

Since ϕ2(2λ−1)(x) and ϕλ−1(x) are increasing on (0, 1),∣∣∣∣∫ x∗

0

ϕ5λ−3(t)x − t

dt

∣∣∣∣ � ϕ2(2λ−1)(x∗)∣∣∣∣∫ x∗

0

ϕλ−1(t)x − t

dt

∣∣∣∣ � ϕ4λ−2(x)n1−λ,

∫ 1+x∗2

x∗

ϕ5λ−3(t)t − x

dt � ϕ2(2λ−1)

(1 + x∗

2

) ∫ 1+x∗2

x∗

ϕλ−1(t)t − x

dt � ϕ4λ−2(x)n1−λ,

and since |x − t| � |1 − t| for 1+x∗

2 < t < 1 − Cn2 ,∫ 1− C

n2

1+x∗2

ϕ5λ−3(t)|x − t| dt � 1∣∣1+x∗

2 − x∣∣1−2λ

∫ 1− Cn2

1+x∗2

1

|x − t|2λ(1 − t)32−

5λ2

dt

� ϕ−2(1−2λ)(x)∫ 1− C

n2

1+x∗2

1

(1 − t)32−

λ2

dt � ϕ4λ−2(x)n1−λ.

Thus, we have J2 � 1 for λ ∈ (0, 1/2]. Next, let λ ∈ (1/2, 1]. Then since ϕ4λ−2(x)is bounded on (0, 1), we have by the above estimation,∫

ϕ5λ−3(t)|x − t| dt �

∫ x∗

0

+∫ 1+x∗

2

x∗+

∫ 1− Cn2

1+x∗2

ϕλ−1(t)|x − t| dt � n1−λ.

So, for λ ∈ (1/2, 1], we also have J2 � ϕ2(1−2λ)(x). For y(λ)2n−1,2n+1 < x ≤ 1 we have

by the same reason as the above case

J2 � ϕ2(1−2λ)(x)n1−λ

∫ x∗

0

ϕ5λ−3(t)|x − t| dt �

{1, λ ∈ (0, 1/2],ϕ2(1−2λ)(x), λ ∈ (1/2, 1].

Therefore, we have for λ ∈ (0, 1],

|H2,2n+1[f ](x)| � ‖f‖∞(ϕ2(1−2λ)(x) + 1

).

Now, we consider the case of λ = 0. Then

|H2,2n+1[f ](x)| �2n∑

j=2

+∑

j=1,2n+1

∣∣∣∣∣∣F

(λ)2n+1

′′(y(λ)

j,2n+1)

F(λ)2n+1

′(y(λ)

j,2n+1)

∣∣∣∣∣∣∣∣∣x − y

(λ)j,2n+1

∣∣∣ l2j,2n+1(x)

=: K1 + K2,

and we have K2 � 1 and K1 � 1 by (3.5), (3.9), (3.12) and by the same way as inthe case 0 < λ ≤ 1. Therefore, (3.24) is proved for 0 ≤ λ ≤ 1. �Lemma 3.11. Let λ ∈ (0, 1]. Then we have for large n > 0,

(3.26)2n+1∑ν=1

ϕ2λ−1(y(λ)ν,2n+1)ϕ

1−2λ(x) |lν,2n+1(x)| �(ϕ2(1−2λ)(x) + 1

)log n.

In the case of λ = 0, we have

(3.27)2n∑

ν=2

ϕ−1(y(0)ν,2n+1)ϕ(x) |lν,2n+1(x)| �

(ϕ2(x) + 1

)log n.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 18: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

760 H. S. JUNG

Proof. Let 0 < λ ≤ 1. Let x ∈ [y(λ)k−1,2n+1, y

(λ)k+1,2n+1] and split the left side of (3.26)

into J1 and J2:∑ν∈[k−2,k+2]

+∑

ν �∈[k−2,k+2]

|lν,2n+1(x)|ϕ1−2λ(x)ϕ2λ−1(y(λ)ν,2n+1) =: J1 + J2.

Then, we have by (3.25) and (3.1),

J1 �∑

ν∈[k−2,k+2]∩[1,2n+1]

ϕ1−2λ(x)ϕ2λ−1(y(λ)ν,2n+1) � 1,

and we have by (3.3) and (3.9)

J2 �∑

ν �∈[k−2,k+2]

|F (λ)2n+1(x)|ϕ1−2λ(x)ϕ2λ−1(y(λ)

ν,2n+1)

|F (λ)2n+1

′(y(λ)

ν,2n+1)|

∣∣∣∣∣ 1

x − y(λ)ν,2n+1

∣∣∣∣∣� ϕ2(1−2λ)(x)

∑ ϕ4λ−1(y(λ)ν,2n+1)

n|x − y(λ)ν,2n+1|

� ϕ2(1−2λ)(x)∫

[−1,1]\[y(λ)k−2,2n+1,y

(λ)k+2,2n+1]

ϕ4λ−2(t)|x − t| dt

� ϕ2(1−2λ)(x)(ϕ2(2λ−1)(x) + 1

)log n �

(1 + ϕ2(1−2λ)(x)

)log n.

This is because for 0 < λ ≤ 1/2, since ϕ4λ−2(t) is increasing on (0, 1), similar to(3.19), ∫

[−1,1]\[y(λ)k−2,2n+1,y

(λ)k+2,2n+1]

ϕ4λ−2(t)|x − t| dt � ϕ4λ−2(x) log n,

and for 1/2 < λ ≤ 1, since ϕ4λ−2(t) is bounded on (0, 1),∫[−1,1]\[y(λ)

k−2,2n+1,y(λ)k+2,2n+1]

ϕ4λ−2(t)|x − t| dt �

∫[−1,1]\[y(λ)

k−2,2n+1,y(λ)k+2,2n+1]

1|x − t|dt � log n.

For λ = 0, the proof is similar to the case of 0 < λ ≤ 1 by (3.5) and (3.9). Therefore,(3.27) is also proved. �

Lemma 3.12. Let λ ∈ [0, 1]. For any polynomial R ∈ P4n+1,

|R(x) −H2n+1[R](x)| � ‖R′ϕ‖∞(ϕ2(1−2λ)(x) + 1

) log n

n.(3.28)

Proof. Let 0 < λ ≤ 1. For any polynomial R ∈ P4n+1 by (2.4), (3.3), (3.9), and(3.26),

|R(x) −H2n+1[R](x)|

� ‖R′ϕ‖∞n

2n+1∑ν=1

ϕ1−2λ(x)ϕ2λ−1(y(λ)ν,2n+1)

n|lν,2n+1(x)|

� ‖R′ϕ‖∞n

log n(ϕ2(1−2λ)(x) + 1

).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 19: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

INTERPOLATION FOR STIELTJES POLYNOMIALS 761

Now, we consider the case of λ = 0. Then

|R(x) − Hn+1[R](x)| ≤2n+1∑j=1

∣∣∣∣∣∣F

(0)2n+1(x)

F(0)2n+1(x)

′(y(0)

j,2n+1)

∣∣∣∣∣∣ |lj,2n+1(x)||R′(y(0)j,2n+1)|

=2n∑

j=2

+∑

j=1,2n+1

∣∣∣∣∣∣F

(0)2n+1(x)

F(0)2n+1(x)

′(y(0)

j,2n+1)

∣∣∣∣∣∣ |lj,2n+1(x)||R′(y(0)j,2n+1)|

=: K1 + K2.

By (3.5), (3.9), and [19, (26)] we have

K2 � ‖R′ϕ‖∞n

,

and in the same way as in the case 0 < λ ≤ 1, we obtain

K1 � ‖R′ϕ‖∞n

log n(ϕ2(1−2λ)(x) + 1

).

Therefore, we have (3.28) for 0 ≤ λ ≤ 1. �Proof of Theorem 2.2. Since we have by (3.14) and (3.24)

|H2n+1[f ](x)| � ‖f‖∞(ϕ2(1−2λ)(x) + 1

)(3.29)

(i.e., ‖H2n+1‖∞ = O(1), 0 < λ ≤ 1/2 ) and for given ε > 0, there exists a polyno-mial R such that for x ∈ [−1, 1]

|f(x) − R(x)| < ε,

if 0 < λ ≤ 1/2, we have by (3.28)

limn→∞

|H2n+1[f ](x) − f(x)| � ‖f − P‖∞ + limn→∞

‖R′ϕ‖∞log n

n� ε,

and if 1/2 < λ < 1, we have by (3.28)

limn→∞

∣∣∣(H2n+1[f ](x) − f(x))ϕ2(2λ−1)(x)∣∣∣

� ‖f(x) − R(x)‖∞ + limn→∞

‖R′ϕ‖∞log n

n� ε.

Therefore, (2.10) and (2.12) are proved since ε > 0 is arbitrary. Moreover, since forany polynomial R ∈ P[ n

log n ]

|H2n+1[f ](x) − f(x)| �(‖f − R‖∞ + ‖R′ϕ‖∞ /

[n

log n

]) (ϕ2(1−2λ)(x) + 1

),

we have from [2, Theorem 7.3.1]

|H2n+1[f ](x) − f(x)| � ωϕ,∞

(f,

log n

n

) (ϕ2(1−2λ)(x) + 1

).

Also, since for any polynomial R ∈ P4n+1

|H2n+1[f ](x) − f(x)| �(‖f − R‖∞ + ‖R′ϕ‖∞

log n

n

) (ϕ2(1−2λ)(x) + 1

),

we have

|H2n+1[f ](x) − f(x)| � ωϕ,∞

(f,

1n

)log n

(ϕ2(1−2λ)(x) + 1

).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 20: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

762 H. S. JUNG

Therefore, (2.11) and (2.13) are proved. �

Lemma 3.13. Let λ ∈ [0, 1], 1 < p < ∞, and let u(ϕ2(1−2λ)(x) + 1) ∈ Lp. Thenfor any polynomial R ∈ P4n+1,

‖(R −H2n+1[R]) u‖Lp[−1,1] �‖R′ϕ‖L∞

n.

Proof. Let 0 < λ ≤ 1. For any polynomial R ∈ P4n+1,

‖(R −H2n+1[R]) u‖pLp[−1,1]

�2n+1∑ν=1

∣∣∣∣∣∣R′(y(λ)

ν,2n+1)

F(λ)2n+1

′(y(λ)

ν,2n+1)

∣∣∣∣∣∣∣∣∣∣∫

An

F(λ)2n+1(x)lν,2n+1(x)Γ2(x)up(x)dx

∣∣∣∣ ,where Γ2(x) := σ2(x) |R(x) −H2n+1[R](x)|p−1 and σ2(x) := sgn(R−H2n+1[R])(x).Here, if we let

Π(t) :=∫

An

F(λ)2n+1(x)(F (λ)

2n+1(x) − F(λ)2n+1(t))

x − tΓ2(x)up(x)dx,

then we have

‖(R −H2n+1[R]) u‖pLp[−1,1]

� ‖R′ϕ‖∞n

∫An

|Π(t)|ϕ2(2λ−1)(t)dt

� ‖R′ϕ‖∞n

∫An

ϕ2(2λ−1)(t)(|H[(F (λ)

2n+1)2Γ2u

p]| + |F2n+1(t)||H[F (λ)2n+1Γ2u

p]|)

dt

=:‖R′ϕ‖∞

n(I1 + I2).

Since ||uϕ2(1−2λ)H[g3ϕ2(2λ−1)]||Lp(An) < ∞ by [19, p. 676], we have

|I1| �∫

An

uϕ2(1−2λ)|Γ2up−1||H[g3ϕ

2(2λ−1)]|dt

� ||uϕ2(1−2λ)H[g3ϕ2(2λ−1)]||Lp(An)||Γ2u

p−1||Lq(An)

� || (R −H2n+1[R]) u||p−1Lp(An),

where g3 := sgnH[(F (λ)2n+1)

2Γ2up]. Similarly,

|I2| � ||uϕ1−2λ(t)H[g4ϕ2λ−1]||Lp(An)||Γ2u

p−1||Lq(An)

� || (R −H2n+1[R]) u||p−1Lp(An),

where g4(t) := sgnH[F2n+1Γ2up]. Then we have for 0 < λ ≤ 1

‖(R −H2n+1[R]) u‖Lp[−1,1] � ‖R′ϕ‖∞n

.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 21: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

INTERPOLATION FOR STIELTJES POLYNOMIALS 763

Now, let λ = 0. Then for any polynomial R ∈ P4n+1,

|R(x) −H2n+1[R](x)| =

∣∣∣∣∣∣2n+1∑j=1

R′(y(0)j,2n+1)

F(0)2n+1(x)

F(0)2n+1

′(y(0)

j,2n+1)lj,2n+1(x)

∣∣∣∣∣∣≤

∣∣∣∣∣∣2n∑

j=2

R′(y(0)j,2n+1)

F(0)2n+1(x)

F(0)2n+1

′(y(0)

j,2n+1)lj,2n+1(x)

∣∣∣∣∣∣+

∑j=1,2n+1

|R′(y(0)j,2n+1)|

|F (0)2n+1(x)|

|F (0)2n+1

′(y(0)

j,2n+1)||lj,2n+1(x)|

=: K1(x) + K2(x)

and

‖(R − Hn+1[R])u‖Lp[−1,1] � ‖K1u‖Lp[−1,1] + ‖K2u‖Lp[−1,1] .

We have by the same reason as in the proof of Lemma 3.12

‖K2u‖Lp[−1,1] � ‖K2‖∞ ‖u‖Lp[−1,1] � ‖R′ϕ‖∞n

,

and we obtain in the same way as in the case 0 < λ ≤ 1

‖K1u‖Lp[−1,1] � ‖R′ϕ‖∞n

.

Therefore, we proved (3.23) for 0 ≤ λ ≤ 1. �

Proof of Theorem 2.4. Since u(ϕ2(1−2λ)(x) + 1) ∈ Lp, we have

‖(H2n+1[f ] − f)u‖p

≤ ‖(f − R)u‖p + ‖(H2n+1[f − R]) u‖p + ‖(H2n+1[R] − R) u‖p

� ‖f − R‖∞ ‖u‖p +‖R′ϕ‖∞

n

� ωϕ

(f,

1n

). �

3.3. Convergence of the Hermite interpolation polynomials for E(λ)n+1(x)

and F(λ)2n+1(x).

Proof of Theorems 2.5 and 2.7. Since

Hn+1[f ] = Hn+1[f ] + Hn+1[f ] − Hn+1[f ],

we have by (3.21) and by the same reason as (3.20),∥∥∥Hn+1[f ]∥∥∥∞

≤ ‖Hn+1[f ]‖∞ +∥∥∥Hn+1[f ] − Hn+1[f ]

∥∥∥∞

(3.30)

� ‖f‖∞ +‖f ′ϕ‖∞ log n

n.

From [10, Theorem 2, p. 172], there exists a polynomial Rn ∈ Pn such that∥∥∥(f (j) − R(j)

n

)ϕj

∥∥∥∞

� En−N,∞(f (N))nN−j

∀f ∈ CN [−1, 1], 0 ≤ j ≤ N.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 22: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

764 H. S. JUNG

Then for this polynomial R ∈ P2n+1, we have by Markov inequality and (3.30),∥∥∥(H

(j)n+1[f ] − f (j)

)ϕj

∥∥∥∞

�∥∥∥(

H(j)n+1[f − R] − (f − R)(j)

)ϕj

∥∥∥∞

�∥∥∥H

(j)n+1[f − R]ϕj

∥∥∥∞

+∥∥∥(f − R)(j)ϕj

∥∥∥∞

� nj∥∥∥Hn+1[f − R]

∥∥∥∞

+∥∥∥(f − R)(j)ϕj

∥∥∥∞

� nj ‖f − R‖∞ +‖(f ′ − R′) ϕ‖∞ log n

n1−j+

∥∥∥(f − R)(j)ϕj∥∥∥∞

� nj E2n+1−N,∞(f (N))nN

+E2n+1−N,∞(f (N)) log n

nN−j+

E2n+1−N,∞(f (N))nN−j

� E2n+1−N,∞(f (N)) log n

nN−j.

Since by (3.21) and by the same reason as (3.23),∥∥∥Hn+1[f ]∥∥∥

p≤ ‖Hn+1[f ]‖p +

∥∥∥Hn+1[f ] − Hn+1[f ]∥∥∥

p

� ‖f‖∞ +‖f ′ϕ‖∞

n,

we similarly have ∥∥∥(H

(j)n+1[f ] − f (j)

)ϕ(j)

∥∥∥p

� E2n+1−N,∞(f (N))nN−j

. �

Proof of Theorems 2.6 and 2.8. Let

v(x) =

{1, 0 ≤ λ ≤ 1/2,

ϕ2(2λ−1)(x), 1/2 < λ ≤ 1.

Since ∥∥∥H2n+1[f ]v∥∥∥∞

≤ ‖H2n+1[f ]v‖∞ +∥∥∥(

H2n+1[f ] −H2n+1[f ])

v∥∥∥∞

� ‖f‖∞ +‖f ′ϕ‖∞ log n

n

and ∥∥∥H2n+1[f ]v∥∥∥

p≤ ‖H2n+1[f ]v‖p +

∥∥∥(H2n+1[f ] −H2n+1[f ]

)v∥∥∥

p

� ‖f‖∞ +‖f ′ϕ‖∞

n,

by the same reason as in the proofs of Theorems 2.5 and 2.7, we have∥∥∥(H(j)

2n+1[f ] − f (j))

vϕj∥∥∥∞

� E4n+1−N,∞(f (N)) log n

nN−j

and ∥∥∥(H(j)

2n+1[f ] − f (j))

vϕj∥∥∥∞

� E4n+1−N,∞(f (N))nN−j

. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 23: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

INTERPOLATION FOR STIELTJES POLYNOMIALS 765

References

[1] P. Barrucand, Integration Numerique, Abscisses de Kronrod-Patterson et Polynomes deSzego, C. R. Acad. Sci. Paris, Ser. A, 270 (1970), 147–158. MR0267755 (42:2657)

[2] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Series in Computational Mathmat-ics, Springer-Verlag, Berlin, 9 (1987). MR0914149 (89h:41002)

[3] S. Ehrich, Asymptotic properties of Stieltjes polynomials and Gauss–Kronrod quadratureformulae, J. Approx. Theory, 82 (1995), 287–303. MR1343838 (96i:41028)

[4] S. Ehrich, Stieltjes polynomials and the error of Gauss–Kronrod quadrature formulas, in W.Gautschi, G. Golub, G. Opfer (Eds.), Applications and Computation of Orthogonal Polynomi-als, Proc. Conf. Oberwolfach, International Series Numerical Mathematics, 131, Birkhauser,Basel, (1999), 57–77. MR1722715 (2000k:65047)

[5] S. Ehrich and G. Mastroianni, On the generalized Stieltjes polynomials and Lagrange inter-polation, Approximation Theory and Function Series, Bolyai Soc. Math. Stud., 5 (1996),187–203. MR1432668 (97k:41004)

[6] S. Ehrich and G. Mastroianni, Stieltjes polynomials and Lagrange interpolation, Math.Comp., 66 (1997), 311-331. MR1388888 (97j:65013)

[7] W. Gautschi, Gauss–Kronrod Quadrature - A survey, in Numerial Methods and Approxima-tion Theory III, G.V. Milovanovic, ed., Nis (1988), 39–66. MR0960329 (89k:41035)

[8] W. Gautschi and S. E. Notaris, An Algebraic and Numerical Study of Gauss–KronrodQuadrature Formulae for Jacobi Weight Functions, Math. Comp., 51 (1988), 231–248.MR0942152 (89f:65031)

[9] H. S. Jung, Estimates for the first and second derivatives of the Stieltjes polynomials, J.Approx. Theory, 127 (2004), 155–177. MR2058155 (2005e:42073)

[10] D. Leviatan, The behavior of the derivatives of the algebraic polynomials of best approxima-tion, J. Approx. Theory, 35 (1982), 169–176. MR0662164 (83i:41022)

[11] D. S. Lubinsky, A. Mate and P. Nevai, Quadrature sums involving pth powers of polynomials,SIAM J. Math. Anal., 18 (1987), 531–544. MR0876290 (89h:41058)

[12] G. Monegato, A Note on Extended Gaussian Quadrature Rules, Math. Comp., 30 (1976),812–817. MR0440878 (55:13746)

[13] G. Monegato, Positivity of Weights of Extended Gauss–Legendre Quadrature Rules, Math.Comp., 32 (1978), 243–245. MR0458809 (56:17009)

[14] G. Monegato, An Overview of Results and Questions Related to Kronrod Schemes, in Nu-merishe Integration, Proc. Conf. Oberwolfach, G. Hammerlin (Ed.), ISNM 57 Birkhauser,1979. MR0561296 (81m:65033)

[15] G. Monegato, Stieltjes Polynomials and Related Quadrature Rules, SIAM Review, 24 (1982),137–158. MR0652464 (83d:65067)

[16] NAG Fortran Library, Mark 15, NAG Ltd., Oxford, 1991.[17] S. E. Notaris, Gauss–Kronrod quadrature formulae for weight functions of Bernstein-Szego

type. II, J. Comput. Appl. Math., 29 (1990), 161–169. MR1041189 (91b:65030)[18] S. E. Notaris, An overview of results on the existence or nonexistence and the error term of

Gauss–Kronrod quadrature formulae, in R. V. M. Zahar (Ed.), Approximation and computa-tion, a Festschrift in Honer of Walter Gautschi, Internat. Ser. Numer. Math., 119, BirkhauserBasel, (1994), 485–496. MR1333638 (96a:65034)

[19] P. Nevai, Mean Convergence of Lagrange Interpolation, III, Trans. Ams. Math. Soc., 282(1984), 669–698. MR0732113 (85c:41009)

[20] P. Nevai, Hilbert Transform and Lagrange interpolation, J. Approx. Theory, 60 (1990),360–363. MR1042655 (91a:42008)

[21] F. Peherstorfer, Weight functions admitting repeated positive Kronrod quadrature, BIT, 30(1990), 145–151. MR1032847 (91e:65043)

[22] F. Peherstorfer, On the Asymptotic Behaviour of Functions of the Second Kind and Stielt-jes Polynomials and on the Gauss–Kronrod Quadrature Formulae, J. Approx. Theory, 70(1992), 156–190. MR1172017 (93h:42020)

[23] F. Peherstorfer, Stieltjes polynomials and functions of the second kind, J. Comput. Appl.Math., 65 (1995), 318–338. MR1379141 (97c:33013)

[24] R. Piessens, E. de Doncker, C. Uberhuber and D. K. Kahaner, QUADPACK-A subroutinePackage for Automatic Integration, Springer Series in Computational Mathematics 1, Berlin1983. MR0712135 (85b:65022)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Page 24: HERMITE AND HERMITE–FEJER INTERPOLATION´ FOR … · 2018. 11. 16. · exhaustive surveys of Gautschi [7], Monegato [14, 15], Ehrich [4], Notaris [18], and Peherstorfer [23] for

766 H. S. JUNG

[25] G. Szego, Uber gewisse orthogonale polynome, die zu einer oszillierenden Belegungsfunktiongehoren, Math. Ann., 110 (1934), 501–513.

[26] G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., 23, American Mathe-matical Society, Providence, RI (1975). MR0372517 (51:8724)

[27] P. Vertesi, Hermite–Fejer interpolations of higher order. I, Acta Math. Hungar., 54(1-2)(1989), 135–152. MR1015784 (90k:41008)

Division of Applied Mathmatics, KAIST, 373-1 Gusongdong, Yusongku, Taejon 305-

701, Korea

E-mail address: [email protected]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use