The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The...

33
The Inconsistent Universe Problems with KiDS, or with ΛCDM? Benjamin Joachimi (UCL) [email protected] with Fabian Koehlinger & the KiDS Weak Lensing team

Transcript of The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The...

Page 1: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent UniverseProblems with KiDS, or with ΛCDM?

Benjamin Joachimi (UCL)[email protected]

with Fabian Koehlinger & the KiDS Weak Lensing team

Page 2: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

KiDS

Kilo Degree Survey• on the 2.6m VLT Survey Telescope• aim: ~1400 deg2 (spring 2019)• ugri + zYJHK (VIKING)• prioritised overlap with GAMA Survey• ESO Public Survey: DR4 now public• current papers based on 450 deg2

credit: Wright

Page 3: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Weak lensing in a nutshellNASA/ESA

If the signal is weak,need averaging over many source images.

Page 4: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Shear measurement

Kuijken+ (2019)

(Miller et al. 2013)

• likelihood fitting of galaxy model with

lensfit

• fit ellipticity, centroid, flux, size,

bulge-to-disc ratio

GREAT08

Page 5: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

KiDS DR3

The typical weak lensing galaxy

Page 6: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

KiDS DR3

The typical weak lensing galaxy

Page 7: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

KiDS DR3

The typical weak lensing galaxy

Page 8: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

KiDS DR3

The typical weak lensing galaxy

Page 9: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Shear calibration

Kannawadi+ (2019)

multiplicativeshear bias

real VST vs. COSMOS emulation

Page 10: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Measurements

• best-fit cosmological model incl. intrinsic alignments and baryon feedback

• errors from fully analytic covariance

Hildebrandt+ (2019)

ξ+ ξ-

Page 11: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

S8=σ8√Ωm /0.3

The state of the art for cosmic shear

measures constraints across the banana

Hildebrandt+ (2019)

2.3σ0.9σ

Page 12: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Redshift calibration techniques

Hildebrandt+ (2019) reweighting spec-zreweighting, smoothed over LSSCOSMOS-30 photo-zclustering cross-correlations (small-scale)clustering cross-correlations (large-scale)

Page 13: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

The importance of redshift calibration

Hildebrandt+ (2019)

0.6σ

using COSMOS-30 photo-z[DES and HSC rely on this]

Page 14: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Could it be systematics?

Hildebrandt+ (2019)

cosmic variance in photo-z

photo-z calibration technique

no photo-z uncertaintyintrinsic alignment modelling

baryon feedback modellingno systematics

neutrino modellingexcluding redshift bins

covariance modelling

Page 15: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Johnston+ (2019)

Intrinsic alignments of GAMA galaxies

Page 16: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Johnston+ (2019)

Intrinsic alignments: colour dichotomy

dependence on colour/type dependence on luminosity/mass

dependence on redshift

Page 17: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

The case for joint probes analysis

Joint clustering/weak lensing analysis enables self-calibration ofintrinsic alignments, galaxy bias, n(z) uncertainties, etc.Bernstein (2009); BJ & Bridle (2010)

Page 18: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Joint probes analysis setup

van Uitert, BJ, et al. (2018)

cosmic shear

clustering

galaxy-galaxylensing

• derive band power spectra as integrals over correlation functions• joint analytic covariance, verified on N-body simulations• same model as KiDS-450 + linear effective galaxy bias

Page 19: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Current joint probes results

and differ by 1.4σ butare quasi-independent

KiDS-450 (real space)Cosmic shear only (power spectrum)

Clustering & galaxy-galaxy lensingJoint large-scale structure

Planck

uses spectroscopic sample forclustering (from GAMA survey)

uses photometric LRG sample forclustering (internal red sequence finder)

DES Y1 (2018)

van Uitert, BJ+ (2018)

Page 20: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Fidelity of redshift distributionssh

ifts

in th

e to

mog

raph

ic r

edsh

ift d

istr

ibut

ion

• joint analysis prefers shift of bin 3• IA amplitude surprisingly high• … and correlated with n(z)

van Uitert, BJ+ (2018)

Page 21: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Extended model – Horndeski gravity

Spurio Mancini, Koehlinger, BJ+ (2019)

: Planck mass run rate: braiding ↔ fifth force

scaling with

αMαB

ΩΛ(a)

Page 22: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Joudaki+ (2018)

KiDS x spectroscopic clustering

quadrupole power spectrum:includes redshift-space distortions

Page 23: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Is there a problem?

Page 24: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Efstathiou & Lemos (2018)

data points

1+2σ contours aroundbest fit to remaining data

?

Are these measurements inconsistent?

Page 25: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

3 tiers of consistency checks

1. Global summary statistic

→ Bayes factor

2. Posterior-level check

→ pdfs of difference in duplicated parameters

3. Data domain check

→ proxy for posterior predictive distributions

• use a Bayesian formalism

• designed for correlated datasets

• analytic solutions for Gaussian data

• intuitive tension definitions

Page 26: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Tier 1: Bayes factor

• split the dataset

• assign one parameter set to each split

→ prior dependence

evidenceHandley & Lemos (2019)

Page 27: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

3 tiers of consistency checks

1. Global summary statistic

→ Bayes factor

2. Posterior-level check

→ pdfs of difference in duplicated parameters

3. Data domain check

→ proxy for posterior predictive distributions

• use a Bayesian formalism

• designed for correlated datasets

• analytic solutions for Gaussian data

• intuitive tension definitions

Page 28: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

• split the dataset

• assign one parameter set to each split

• do likelihood analysis

• derive posterior of parameter differences

Tier 2: posterior-level check

Koehliner, BJ+ (2019)

simulated

Page 29: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

3 tiers of consistency checks

1. Global summary statistic

→ Bayes factor

2. Posterior-level check

→ pdfs of difference in duplicated parameters

3. Data domain check

→ proxy for posterior predictive distributions

• use a Bayesian formalism

• designed for correlated datasets

• analytic solutions for Gaussian data

• intuitive tension definitions

Page 30: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Tier 3: data domain check

Posterior

Predictive

Distribution

Translated

Posterior

Distribution

realdata

syntheticdata

Page 31: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

• obtain model prediction from each posterior sample

• plot mode and scatter of resulting distribution (TPD)

Tier 3: data domain check

original dataTPD from joint modelTPD from split model (Bin 3)TPD from split model (\Bin 3)

black vs blue:→ goodness of fit

blue vs red:→ consistency

Koehliner, BJ+ (2019)

simulated

Page 32: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Problems with KiDS?

No.

real data

real data

Page 33: The Inconsistent Universeresearch.ipmu.jp/seminar/sysimg/seminar/2215.pdf · 2019-03-20 · The Inconsistent Universe B. Joachimi Conclusions • Current weak lensing surveys yield

The Inconsistent Universe B. Joachimi

Conclusions

• Current weak lensing surveys yield a consistent picture of low-z large-scale structure.

• At face value there is still a 1% chance the KiDS-Planck discrepancy is a random fluctuation.

• No known weak lensing systematics can drive the discrepancy, with the possible exception of the photometric redshift calibration.

• Despite claims to the contrary, KiDS data are internally consistent.• Despite claims to the contrary, DES might not be consistent with Planck.

→ The next rounds of analyses by KiDS, DES, and HSC will ramp up precision and accuracy – then we will know if this is fluke or feature.

KiDS measurements: http://kids.strw.leidenuniv.nl/sciencedata.php