Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and...

26
Limits of Interlacing Eigenvalues in the Tridiagonal β -Hermite Matrix Model Gopal K. Goel and Mentor Andrew Ahn PRIMES Conference 2017 Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 1 / 18

Transcript of Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and...

Page 1: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Limits of Interlacing Eigenvalues in the Tridiagonalβ-Hermite Matrix Model

Gopal K. Goel and Mentor Andrew Ahn

PRIMES Conference 2017

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 1 / 18

Page 2: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Matrices

Recall that an m × n matrix with entries in R (or C) is an array ofnumbers with m rows and n columns.

Examples

Here are examples of 3× 2 and 4× 4 matrices:

3 −2e 1

−π√

2

0 0 0 01 1 1 12 2 2 23 3 3 3

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 2 / 18

Page 3: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Matrices

Recall that an m × n matrix with entries in R (or C) is an array ofnumbers with m rows and n columns.

Examples

Here are examples of 3× 2 and 4× 4 matrices:

3 −2e 1

−π√

2

0 0 0 01 1 1 12 2 2 23 3 3 3

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 2 / 18

Page 4: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Eigenvalues

This is how we multiply a vector by a matrixa11 a12 a13a21 a22 a23a31 a32 a33

v1v2v3

=

a11v1 + a12v2 + a13v3a21v1 + a22v2 + a23v3a31v1 + a32v2 + a33v3

Examples (2 −13 4

)(27

)=

(−334

)

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 3 / 18

Page 5: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Eigenvalues

This is how we multiply a vector by a matrixa11 a12 a13a21 a22 a23a31 a32 a33

v1v2v3

=

a11v1 + a12v2 + a13v3a21v1 + a22v2 + a23v3a31v1 + a32v2 + a33v3

Examples (2 −13 4

)(27

)=

(−334

)

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 3 / 18

Page 6: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Eigenvalues

We say that λ ∈ C is an eigenvalue of a square matrix A if

Av = λv

for some vector v. It turns out that there are n eigenvalues (up tomultiplicity) of an n × n matrix A.

Examples −2 −4 2−2 1 24 2 5

2−3−1

= 3

2−3−1

so 3 is an eigenvalue of the original matrix.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 4 / 18

Page 7: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Eigenvalues

We say that λ ∈ C is an eigenvalue of a square matrix A if

Av = λv

for some vector v. It turns out that there are n eigenvalues (up tomultiplicity) of an n × n matrix A.

Examples −2 −4 2−2 1 24 2 5

2−3−1

= 3

2−3−1

so 3 is an eigenvalue of the original matrix.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 4 / 18

Page 8: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Spectral Theorem

Examples

Here is a symmetric matrix: 1 2 32 7 43 4 9

If a matrix is symmetric, then all of its eigenvalues are real. Generally, weorder the eigenvalues as follows:

λ1 ≤ λ2 ≤ · · · ≤ λn.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 5 / 18

Page 9: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Spectral Theorem

Examples

Here is a symmetric matrix: 1 2 32 7 43 4 9

If a matrix is symmetric, then all of its eigenvalues are real. Generally, weorder the eigenvalues as follows:

λ1 ≤ λ2 ≤ · · · ≤ λn.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 5 / 18

Page 10: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Random Variables

Define a probability density p(x) to be a function

p : R→ R≥0

such that∫R p(x)dx = 1.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18

Page 11: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Random Variables

A random variable X with values in R and density p(x) is a “randomnumber in R which can be sampled such that its frequency (histogram) asthe number of samples increase converge to p(x).”

More precisely,

Pr(a ≤ X ≤ b) =

∫ b

ap(x)dx .

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 7 / 18

Page 12: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Example: Gaussian Random Variable

A Gaussian Random Variable is one that has

p(x) =1√

2πσ2exp

(−(x − µ)2

2σ2

).

Here is a sample of 10000 Gaussian random variables with µ = 0 andσ = 1.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 8 / 18

Page 13: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Random Vectors

Define a joint probability density p(x) to be a function

p : Rn → R≥0

such that∫Rn p(x)dxn = 1.

A random vector is a vector in Rn that takes random values with jointdistribution p(x).

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 9 / 18

Page 14: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Random Matrices

A random matrix is a matrix whose entries are random variables. Notethat the entries do not have to be independent.

We can now consider the eigenvalues of these matrices, etc.

Examples

PRIMES problem set problem M2!

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 10 / 18

Page 15: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Random Matrices

A random matrix is a matrix whose entries are random variables. Notethat the entries do not have to be independent.

We can now consider the eigenvalues of these matrices, etc.

Examples

PRIMES problem set problem M2!

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 10 / 18

Page 16: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

The Model

Xn =1√2

N (0, 2) χ(n−1)βχ(n−1)β N (0, 2) χ(n−2)β

. . .. . .

. . .

χ2β N (0, 2) χβχβ N (0, 2)

.

It turns out that the eigenvalues have joint distribution

1

Zn

∏1≤i<j≤n

(λi − λj)βn∏

i=1

e−λ2i2 .

Motivation. This joint distribution turns out to have an electrostaticinterpretation.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 11 / 18

Page 17: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

The Model

Xn =1√2

N (0, 2) χ(n−1)βχ(n−1)β N (0, 2) χ(n−2)β

. . .. . .

. . .

χ2β N (0, 2) χβχβ N (0, 2)

.

It turns out that the eigenvalues have joint distribution

1

Zn

∏1≤i<j≤n

(λi − λj)βn∏

i=1

e−λ2i2 .

Motivation. This joint distribution turns out to have an electrostaticinterpretation.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 11 / 18

Page 18: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Interlacing

We say that two sequences xini=1, yjn−1j=1 interlace if

x1 ≥ y1 ≥ x2 ≥ · · · ≥ xn−1 ≥ yn−1 ≥ xn.

Let A be a symmetric n by n square matrix, and let A′ be its n − 1 byn − 1 lower right submatrix.

Examples

A =

1 4 34 5 63 6 9

A′ =

(5 66 9

)

The eigenvalues of A and A′ interlace.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 12 / 18

Page 19: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Interlacing

We say that two sequences xini=1, yjn−1j=1 interlace if

x1 ≥ y1 ≥ x2 ≥ · · · ≥ xn−1 ≥ yn−1 ≥ xn.

Let A be a symmetric n by n square matrix, and let A′ be its n − 1 byn − 1 lower right submatrix.

Examples

A =

1 4 34 5 63 6 9

A′ =

(5 66 9

)

The eigenvalues of A and A′ interlace.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 12 / 18

Page 20: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Interlacing

We say that two sequences xini=1, yjn−1j=1 interlace if

x1 ≥ y1 ≥ x2 ≥ · · · ≥ xn−1 ≥ yn−1 ≥ xn.

Let A be a symmetric n by n square matrix, and let A′ be its n − 1 byn − 1 lower right submatrix.

Examples

A =

1 4 34 5 63 6 9

A′ =

(5 66 9

)

The eigenvalues of A and A′ interlace.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 12 / 18

Page 21: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

What We Are Doing With the Model

Let Xn−1 be the lower n − 1 by n − 1 submatrix of Xn. We saw that theeigenvalues of Xn and Xn−1 interlace:

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 13 / 18

Page 22: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

What We are Doing With the Model (continued)

As n→∞, these diagrams converge to some curve:

We are interested in what this “limiting shape” is.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 14 / 18

Page 23: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Method of Traces

It turns out that the study of these diagrams is equivalent to consideringwhat happens to

trX kn − trX k

n−1

as n→∞. We can work with the trace combinatorially:

trX kn − trX k

n−1 =∑~i∈Bk

k∏j=1

Xn(ij , ij+1)

where

Bk = (i1, . . . , ik) ∈ [n]k : |ij − ij+1| ≤ 1 and ∃ij = 1.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 15 / 18

Page 24: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Current Results

Main Theorem

In the β-Hermite case, the diagrams converge to the Logan-Shepp curve:

Ω(x) =

2π (x arcsin( x2 ) +

√4− x2), |x | ≤ 2

|x |, |x | ≥ 2

We have also shown that the fluctuations of the diagrams from the curveare gaussian in some sense.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 16 / 18

Page 25: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Future Work

We also want to look at other random matrix models, such as β-Laguerreand β-Jacobi. For β-Laguerre, we can describe the limiting shape, but weconjecture that the fluctuations of the diagrams from the curve are notgaussian.

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 17 / 18

Page 26: Limits of Interlacing Eigenvalues in the Tridiagonal -Hermite ...R p(x)dx = 1. Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 6 / 18 Random Variables A random variable

Acknowledgements

My mentor, Andrew Ahn

Prof. Vadim Gorin for suggesting the problem

Prof. Alan Edelman for useful discussions

The MIT Math Department

The MIT-PRIMES Program

Prof. Pavel Etingof

Dr. Slava Gerovitch

Dr. Tanya Khovanova

My Parents for supporting me throughout

Gopal K. Goel and Mentor Andrew Ahn About Beamer May 20, 2017 18 / 18