Exercise4.3.1 ...3.40) intoeq.(4.12)toobtain: Z › ‡ ‚†kk† (v) ii +2G†ij† (v) ij · dV...

3

Click here to load reader

Transcript of Exercise4.3.1 ...3.40) intoeq.(4.12)toobtain: Z › ‡ ‚†kk† (v) ii +2G†ij† (v) ij · dV...

Page 1: Exercise4.3.1 ...3.40) intoeq.(4.12)toobtain: Z › ‡ ‚†kk† (v) ii +2G†ij† (v) ij · dV = Z › Fivi dV + Z @› Tivi dS+ Z › E 1¡2” fiT¢† (v) ii dV: (1) De nethedi

Exercise 4.3.1When the material is isotropic then we can substitute eq. (3.40)into eq. (4.12) to obtain:

Ω

(λεkkε

(v)ii + 2Gεijε

(v)ij

)dV =

Ω

Fivi dV +∫

∂Ω

Tivi dS+∫

Ω

E

1− 2ναT∆ε

(v)ii dV. (1)

Dene the dierential operator matrix [D] and the material stiness matrix [E]as follows:

[D] :=

∂x0 0

0∂

∂y0

0 0∂

∂z∂

∂y

∂x0

0∂

∂z

∂y∂

∂z0

∂x

[E] :=

λ + 2G λ λ 0 0 0λ λ + 2G λ 0 0 0λ λ λ + 2G 0 0 00 0 0 G 0 00 0 0 0 G 00 0 0 0 0 G

Furthermore, denote u ≡ u := ux uy uzT and v ≡ v := vx vy vzT .Show that eq. (1) can be written in the following form:

Ω

([D]v)T [E][D]u dV =∫

Ω

vT F dV +∫

∂Ω

vT T dS

+∫

Ω

∂vx

∂x

∂vy

∂y

∂vz

∂z

111

EαT∆

1− 2νdV (2)

where F := Fx Fy FzT is the body force vector and T := Tx Ty TzT isthe traction vector.Working with the left hand side rst, we have:

[D]u =

∂x0 0

0∂

∂y0

0 0∂

∂z∂

∂y

∂x0

0∂

∂z

∂y∂

∂z0

∂x

ux

uy

uz

=

ε11

ε22

ε33

2ε12

2ε23

2ε31

1

Page 2: Exercise4.3.1 ...3.40) intoeq.(4.12)toobtain: Z › ‡ ‚†kk† (v) ii +2G†ij† (v) ij · dV = Z › Fivi dV + Z @› Tivi dS+ Z › E 1¡2” fiT¢† (v) ii dV: (1) De nethedi

Similarly

[D]v =

ε(v)11

ε(v)22

ε(v)33

2ε(v)12

2ε(v)23

2ε(v)31

[E][D]u =

λ + 2G λ λ 0 0 0λ λ + 2G λ 0 0 0λ λ λ + 2G 0 0 00 0 0 G 0 00 0 0 0 G 00 0 0 0 0 G

ε11

ε22

ε33

2ε12

2ε23

2ε31

Then:

[E][D]u =

(λ + 2G)ε11 + λε22 + λε33

λε11 + (λ + 2G)ε22 + λε33

λε11 + λε22 + (λ + 2G)ε33

2Gε12

2Gε23

2Gε31

and nally

([D]v)T [E][D]u =

ε(v)11 ε

(v)22 ε

(v)33 2ε

(v)12 2ε

(v)23 2ε

(v)31

(λ + 2G)ε11 + λε22 + λε33

λε11 + (λ + 2G)ε22 + λε33

λε11 + λε22 + (λ + 2G)ε33

2Gε12

2Gε23

2Gε31

([D]v)T [E][D]u = (λ + 2G)ε11ε(v)11 + λε22ε

(v)11 + λε33ε

(v)11 +

λε11ε(v)22 + (λ + 2G)ε22ε

(v)22 + λε33ε

(v)22 +

λε11ε(v)33 + λε22ε

(v)33 + (λ + 2G)ε33ε

(v)33 +

4Gε12ε(v)12 + 4Gε31ε

(v)12 + 4Gε31ε

(v)31

= λεkkε(v)ii + 2Gεijε

(v)ij

The rst two terms on the right hand side are shown by simply recalling thedenition of the inner vector product in index notation, aT b = aibi = biai.Therefore

vT F = Fivi,

2

Page 3: Exercise4.3.1 ...3.40) intoeq.(4.12)toobtain: Z › ‡ ‚†kk† (v) ii +2G†ij† (v) ij · dV = Z › Fivi dV + Z @› Tivi dS+ Z › E 1¡2” fiT¢† (v) ii dV: (1) De nethedi

andvT T = Tivi.

For the third term on the right hand side we just need to show that

ε(v)ii = ε

(v)11 + ε

(v)22 + ε

(v)33 =

∂ux

∂x+

∂uy

∂y+

∂uz

∂z=

∂vx

∂x

∂vy

∂y

∂vz

∂z

111

3