Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 •...

11
Electronic Materials and Extreme Conditions J. Paul Attfield School of Chemistry and Centre for Science at Extreme Conditions (CSEC), University of Edinburgh

Transcript of Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 •...

Page 1: Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 • Cc. structure determined using 91,433 unique Bragg intensities • model uniqueness

Electronic Materials and Extreme Conditions

J. Paul Attfield School of Chemistry and

Centre for Science at Extreme Conditions (CSEC), University of Edinburgh

Page 2: Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 • Cc. structure determined using 91,433 unique Bragg intensities • model uniqueness

Compound Tc (K)

Nb3Ge 23

PbMo6S8 16

LiTi2O4 13

Ba0.6K0.4BiO3 30

HgBa2Ca2Cu3O8+δ 136

(ET)2Cu(NCS)2* 13

Cs3C60 34

Li0.2HfNCl 25MgB2 39

S

S

S

S

S S* ET =

High temperature superconductors (1986-)

Superconductivity – correlated motion of electron pairs below a critical temperature (Tc), characterised by zero electrical resistance and perfect diamagnetism; Low-Tc era 1911-1986 - metals and alloys High-Tc era 1986- - copper oxides (etc)

Page 3: Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 • Cc. structure determined using 91,433 unique Bragg intensities • model uniqueness

La0.7Ca0.3MnO3 - ferromagnetic and conducting Colossal Magnetoresistances (CMR) for sensors, spintronic devices etc. La0.5Ca0.5MnO3 - nonmagnetic (antiferromagnetic) and insulating localisation and long range order of; • charges (Mn3+/Mn4+ states), • d-orbitals (Mn3+Jahn-Teller distortion) • spins (Mn3+/Mn4+ magnetic moments)

CMR Manganese oxides (1995-)

Page 4: Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 • Cc. structure determined using 91,433 unique Bragg intensities • model uniqueness

High Pressure Perovskites SrCrO3

Orbitally driven phase separation Ortega San Martin et al, PRL 2007

PbRuO3 Symmetry-reversing orbital transition Kimber et al, PRL 2009

BiNiO3 (Kyoto) Colossal NTE Azuma et al, Nature Comm. 2011

MnVO3 Helimagnetic A site spin order Markkula et al, PRB 2011

Bi0.95La0.05NiO3

SrCrO3 ‘Hard-soft’ synthesis SrCrO2.80

SrCrO2.75 Arevalo et al ACIE 2012

Page 5: Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 • Cc. structure determined using 91,433 unique Bragg intensities • model uniqueness

The Verwey Structure of Magnetite (Fe3O4)

Mark Senn, Jon Wright & JPA, Nature (2012)

Page 6: Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 • Cc. structure determined using 91,433 unique Bragg intensities • model uniqueness

Magnetite and magnetism

biomagnetism lodestones

spintronics

compass

ferrites geomagnetism

Page 7: Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 • Cc. structure determined using 91,433 unique Bragg intensities • model uniqueness

• Evidenced by a first order transition in resistivity, heat capacity and magnetisation at 125 K

• Complex superstructure

Fe3+[Fe2.5+]2O4 →Fe3+[Fe2+Fe3+]O4

Verwey, E. J. W. (1939). "Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures." Nature 144: 327-328.

Fe2+ Fe3+

Fe3+

Low temperature properties – the Verwey transition

Theoretical approaches: • Verwey (1939) Fe2+/Fe3+ charge order (Verwey model, 1946) • Order-disorder of 2 electron-B4 tetrahedra (Anderson, 1956) • CO from U/W band instability (Cullen & Callen, 1970) • Polaron (bi-, molecular-) CO (Mott, Chakraverty, Yamada 1970-1980) • Bond-dimerisation (no CO) - Fe2

5+ dimers (Seo, Khomskii 2002-)

Page 8: Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 • Cc. structure determined using 91,433 unique Bragg intensities • model uniqueness

Use microcrystals from previous powder (Fe3-3dO4, d < 0.0001 - Prof. J. Honig): • Twinning, multiple scattering, extinction problems reduced by using microcrystallites. • Microcrystal beamline ID11@ESRF - 100 μm focused monochromatic beam. • Hard X-rays (74 keV, λ = 0.16653(1) Å) reduces absorption, accesses high Q. • Magnetic alignment (~1 T field from permanent magnet while cooling through TV) • Refinement software for twinned crystals (SHELXL) • Try many microcrystals – be lucky

Full structure solution (Senn, Wright, JPA) 2006-2012

h = 50 (hkl) sections

Best microcrystal: • approx. spherical, ~40 μm • two twins at 90 K, 89:11 • Cc structure determined using

91,433 unique Bragg intensities • model uniqueness checked

against 2,000 randomised starting models

Second best microcrystal: • irregular, ~100 μm • four twins • refined structure same as above

Page 9: Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 • Cc. structure determined using 91,433 unique Bragg intensities • model uniqueness

Fe2+/Fe3+ charge order to first approximation

Electronic order in the Verwey state of magnetite

….and orbital order of Fe2+ states….

….but Fe2+ ions also weakly bonded to two neighbours – trimeron units.

Trimeron order. Significance? •Ground state unexpected, not simple charge order.

•Prevalence of orbital molecules (trimerons)?

•Dynamics above 125K?

Page 10: Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 • Cc. structure determined using 91,433 unique Bragg intensities • model uniqueness
Page 11: Electronic Materials and Extreme Conditions/media/people/new... · • two twins at 90 K, 89:11 • Cc. structure determined using 91,433 unique Bragg intensities • model uniqueness

Thanks Wei-Tin Chen Lucy Clark Shigeto Hirai Andrea Marcinkova Mikael Markkula George Penny Marek Senn Alex Sinclair Congling Yin Minghui Yang Angel Arevalo-Lopez Anna Kusmartseva Martin Misak Jenny Rodgers