Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we...

20
Data‐Compatible T‐Matrix Completion (DCTMC) A new numerical method for solving nonlinear inverse problems Howard W. Levinson Department of Mathematics, University of Pennsylvania and University of Michigan (Sept 2016‐) Vadim A. Markel Institut Fresnel, University of Aix‐Marseille Dept. of Radiology, University of Pennsylvania (on leave)

Transcript of Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we...

Page 1: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

Data‐Compatible T‐Matrix Completion (DCTMC)

A new numerical method for solving nonlinear inverse problems

Howard W. Levinson Department of Mathematics, University of Pennsylvania and University of

Michigan (Sept 2016‐)

Vadim A. MarkelInstitut Fresnel, University of Aix‐Marseille

Dept. of Radiology, University of Pennsylvania (on leave)

Page 2: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

Motivation 1: Local Minima

[ ] 2guess[ ]D F V Dχ λ ⎡ ⎤= −Φ + Φ −Φ⎣ ⎦

[ ]F V = Φ

( )V rWave in

Wave out

DataTheoretical model

Object

χ

V

Page 3: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

Motivation 2: Large Data Sets[ ] 2

guess[ ]D F V Dχ λ ⎡ ⎤= −Φ + Φ −Φ⎣ ⎦

ΩΣd

Σs

rd

rs

Surface of detectors Surface of sources

L

L

L

L2

2

4

s

d

s d

N L

N L

N N N L

=

=

= =

Page 4: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

Algebraic Structure of the Inverse Problem1( )A I V VB−− Γ = Φ

0, , -- different restrictions of the same unperturbed Green's function A B GΓ

Every variable is a matrix!

Page 5: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

1( )A I V VB−− Γ = Φ

1

1

[ ] ( )[ ] ( )T V I V VV T I TV T

= − Γ

= +

ATB = Φ

Let us view T‐matrix as the fundamental unknown and use the one‐to‐one Correspondence between T and V

Page 6: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

Main Idea

Page 7: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

The Experimental T‐Matrix

1

1

d

s

NA A A

NB B B

A f g

B f g

μ μ μμ

μ μ μμ

σ

σ

=

=

=

=

∑ATB = Φ ,

11

A B

d

s

TNN

μ ν μν μνσ σ

μν

= Φ

≤ ≤≤ ≤

* 1

= , 1 ,

1

= , 1 ,

[ ] , [ ]

A Bd

s

A Bv

A B

f g N

N

T g f N

T R TR T T T

μν μ ν

μν μ ν

μ

ν

μ ν−

Φ Φ ≤ ≤

≤ ≤

Φ ≤ ≤

= = =R R

21 , if > =

Unknown , otherwise

A BA BT μν μ νμ νμν

σ σ εσ σ⎧ Φ⎪⎨⎪⎩

Tàexp =

ûAö û

Φà ö÷

0 0Tà = UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

ûAö û

Φà ö÷ MA

MB

MA

MB 0expT A B+ += Φ

Page 8: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt
Page 9: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

Data-compatible T-matrixRepresentation: SV

kT

Data-compatible T-matrixRepresentation: RS

kT

Diagonal interaction-compati-ble T-matrixRepresentation: RS kT ′

Diagonal interaction-compati-ble T-matrixRepresentation: SV kT ′

Data-compatibleinteraction matrix(off-diagonal)Representation: RS

kVDiagonal interaction matrix(not data-compatible)Representation: RS

kD

Shortcut 1: Fast Rotations

Shortcut 2: Fast T→D

expTΦData

First iterationSubsequentiterations

SVD of A and B

1.Rà1

2.T à13.D

4.T

The Bo

ttlene

ck

5.R 6.Ok→ k+ 1

Exit if conditionis met

Page 10: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

Computational Shortcut: Fast Rotations

1

11 1

5: [ ]

6: [ ]

1: [ ]

k k

k k

k k

T T

T T

T T+

−+ +

′ ′=

′=

=

R

O

R

exp exp[ ] [ ] [ ]

[ ] [ ]

T T T T T T

T T T

= + = − +

+ =

O M N

M N

1 11 exp[ [ [ ]]] - [ [ [ ]]]k k k kT T T T T− −+ ′ ′ ′= = +R O R R N R

1 * *[ [ [ ]]] ( )A A B BT P P TP P− =R N R

Page 11: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

Operation of “Diagonalization” and Linear Reconstructions

[ ]( )ij ij ij ij

j

D VD w r Vδ=

= ∑D

If ( ) , we can analyse the algorithm in the linear regime:ij ijw r δ=

1 exp ( )k kv v I W v+ = + − * *( ) ( )ij A A ij B B jiW P P P P=

Vector containingthe diagonal part of V

1expFixed point: v W v−

∞ =

2Tikhonov regularization: W W Iλ→ +

Practical tip: Richardson iteration is a very slow way to arrive at the linearized solution.Use direct solver of CG to compute linearized solution and then use this result as an initial guessFor the nonlinear iterations.

Page 12: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt
Page 13: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

( )0

Diffraction tomography: Contrast:

exp ( ) 1( , ) ( )4

ikG εχ

π

′− −′ = =′−

r r rr r rr r

Page 14: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

No improvements: 900 iterations

Page 15: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

With improvements: 70 iterations

• Start from linearized reconstruction (can be computed fast using our method)• Use weighted summation to the diagonal for “force‐diagonalization”• Use reciprocity of source‐detector pairs to improve symmetry of the experimental T‐matrix•Method starts to break down due to incorrect assignment of non‐interacting voxels (this can be avoid altogether – not a problem of convergence)

Page 16: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

( ) 00

0

Diffusion tomography: Contrast: Optical depth: Noise:

exp ( )( , ) ( ) 2 2%k

G kLα αδαα

′− − −′ = = ≈′−

r r rr r rr r

Target far Target near

Page 17: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

FR

NL

Target far

Page 18: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

FR

NL

Target near

Page 19: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

DCTMC works when Newton‐Gauss fails (Convergence of Levenberg‐Marquardt Iterations for the inverse diffraction problem, moderate contrast 0.0175)

Page 20: Data‐Compatible T‐Matrix Completion (DCTMC)€¦ · AI V VB ()−Γ = Φ −1 A ... If ( ) , we can analyse the algorithm in the linear regime: wr ... (Convergence of Levenberg‐Marquardt

CONCLUSIONS• DCTMC works for nonlinear ISP with fairly strong nonlinearity• DCTMC is, unfortunately, a complicated method: it requires

many tweaks, attention to detail, and good programming to work

• As any other method, DCTMC breaks at some point. Not every nonlinear ISP can be solved!

• Please listen to Howard Levinson at 15:15 today (this room)

Preprints: arXiv:1401.3319, arXiv:1505.06777Under consideration in Phys. Rev. E