Coherently amplified multi-photon emission toward neutrino...

27
Coherently amplified multi-photon emission toward neutrino mass spectroscopy Takahiro Hiraki, for the SPAN collaboration 1 Research Institute for Interdisciplinary Science (RIIS) Okayama University 10 th International workshop on Fundamental Physics Using Atoms

Transcript of Coherently amplified multi-photon emission toward neutrino...

Page 1: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Coherently amplified multi-photon emission toward neutrino mass spectroscopy

Takahiro Hiraki, for the SPAN collaboration

1

Research Institute for Interdisciplinary Science (RIIS)Okayama University

10th International workshop on Fundamental Physics Using Atoms

Page 2: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Introduction

2

Page 3: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

SPectroscopy with Atomic Neutrino3

meV meV meV𝑚𝑚0: lightestν mass

(a.u.)

photon energy (eV)

~1 meV (~200 GHz)

determine unknown neutrino properties (ex. absolute masses)by using techniques of laser spectroscopy

• Radiative Emission of Neutrino Pair (RENP)

emission rate𝛾𝛾

𝜈𝜈�̅�𝜈

|g⟩

|e⟩ • Emission rate spectra (near endpoint)

• threshold energy

𝐸𝐸eg

𝐸𝐸𝑡𝑡𝑡 =𝐸𝐸eg2−

((𝒎𝒎𝝂𝝂 + 𝒎𝒎�𝝂𝝂)𝑐𝑐2)2

2𝐸𝐸eg

Xe

Y. Miyamoto et al. Prog. Theor. Exp. Phys. 2015 081C01

(no boost case)

Page 4: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Rate Amplification 4

• If holds, the emission rate ∝ N2 (rate amplification)- momentum conservation among initial and emitted particles study the mechanism using multi-photon emission processes

• De-excitation rate of RENP: extremely small➡ Rate amplification using atomic coherence

lasers forexcitation

N atomscoherence generation

De-excitation processemitted particles de-excitation rate ∝

initial spatial phase

Page 5: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Previous experiments5

532 nm 684 nm

pH2 Energy diagram

v=0

v=1

Two-photon emission (TPE) process using vibrational states(v=0, J=0 ↔ v=1, J=0) of para-hydrogen (pH2) molecules

• 1-photon E1: forbidden, 2-photon E1×E1: allowed

• Coherence generation by stimulated Raman process

- 532 nm, 684 nm pulse lasers• stimulate TPE process by a trigger laser- injection from the same direction

pH2

filters

trigger laser

78K

detectorexperimental setup

trigger wavelength: 4423 nm

signalwavelength:5263 nm

Rate amplification factor >1018

signal(a.u.)

signal

Prog. Theor. Exp. Phys. 2014, 113C01

|g⟩

|e⟩

Page 6: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Current experiment: Two-photon emission frompH2 molecules excited by

counter-propagating lasers

6

Page 7: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Coherent amplification condition7

Energy-momentum conservation among photons Process: Two-photon emission (TPE)

• one-sideexcitation

• counter-propagatingexcitation

trigger

Energy

trigger

momentum

0

0

no dispersion case

The condition is satisfied in both cases

|g⟩

|e⟩

pump

pump

signal

signalpump

pump

|g⟩

|e⟩

Page 8: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Coherent amplification condition8

0

0

no dispersion case

|g⟩

|e⟩

Energy momentum

• one-sideexcitation

• counter-propagatingexcitation

Energy-momentum conservation among photons+ν Process: Radiative emission of neutrino pair (RENP)

pump

pump

trigger

pump

pump

trigger

not satisfied

satisfied

|e⟩

|g⟩High-quality mid-infrared (4806 nm) laser is required.

Page 9: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Laser setup (previous experiment)9

Ti:Sapphire

Nd:YAG532 nm (SHG)

1064 nm (fundamental)

PPLN LBO

1367 nm

KTA4806 nm

871 nmcontinuous-wave (cw) OPG OPA

DFG

cw→pulse

10 Hz, 10 ns

MIR pulse energy: ~15 μJ/pulseMIR linewidth: ~1 GHzwavelength-tunable

• We previously used a mid-infrared laser as the trigger.Y.Miyamoto et al. Jpn. J. Appl. Phys.56, 032101 (2017)

50 mJ

50 mJ

poster: H. Hara

• We use this laser as one of the trigger laser again.• Intensity and linewidth of this laser are not enough

for the excitation laser.

Page 10: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Laser setup (new)10

ECDL TA

Nd:YAG532 nm (SHG)

1064 nm(fundamental)

LBO LBO

1367 nm

KTA4806 nm

871 nmcontinuous-wave (cw)

OPG OPA

DFG

cw→pulse

10 Hz, 10 ns

MIR pulse energy: ~5 mJ/pulseMIR linewidth: ~150 MHzMIR pulse duration: ~5 ns (FWHM)

• high-power Nd:YAG laser • adopt a cavity in the OPG section (effective injection seeder)

100 mJ

700 mJ

significant improvement!

Page 11: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Experimental setup (1)11

|g⟩

|e⟩

|mJ=-1⟩ | mJ=+1⟩

σ-

σ-σ+

σ+

• use circularly polarized beam - excitation by the single beam

is not allowed

pH2 cellQWP

QWP

BS

damper

QWP

pump1pump2

trigger78 K

15 cm

• inject pump and trigger beams simultaneously into the para-H2 target

σ+

σ-σ-

Page 12: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Experimental setup (2)12

pH2 cellQWP

QWP

BS

damper

QWP

PBS

BG light

pump1pump2

trigger

MCT78 K

15 cm

• Signal light is generated by the trigger laser and advancesin the backward direction

- amplification condition (momentum conservation)

• Wrong-polarization component of the background scattering light is reduced by using a polarized beam splitter.

Page 13: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Experimental setup13

Construction of the laser system was finished last year.

Page 14: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Results: detuning dependence14

δ

|g⟩

|e⟩

ω

ωωω

Successfully observed a clear signal peak!• Signal energy: ~20 nJ/pulse at δ=0

target pressure: 280 kPa vary the detuning δdetuning curve

• use the new mid-infrared laser as both pumps and trigger- pump energy: ~1 mJ/pulse, trigger energy: ~ 0.6 mJ/pulse

Page 15: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Results: detuning dependence15

δ

|g⟩

|e⟩

ω

ωωω

• Circular polarization of a pump is flipped.➡ no signal is observed.- confirmation of the excitation by

counter-propagating lasers

σ-

target pressure: 280 kPa• vary the detuning δ detuning curve

|g⟩

|e⟩

|mJ=-1⟩ | mJ=+1⟩

σ-

σ-σ+

σ+

Page 16: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Results: detuning dependence16

δ

|g⟩

|e⟩

ω

ωωω

• comparison with simulation based on Maxwell-Bloch equations- describe development of laser fields and coherence • Though it is difficult to reproduce absolute signal intensity,

curve shape is consistent between data and simulation.

target pressure: 280 kPa• vary the detuning δ

datasimulation(normalized)

Page 17: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Results: Pressure dependence17

detuning curvewidth (FWHM) normalized intensity

δ=0

datasimulation

datasimulation

Consistent tendency is obtained between data and simulation.

• vary the pH2 target pressure

• Laser linewidth and pressure broadening determine the width• Signal intensity increases as the target density larger.

Page 18: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

trigger frequency dependence18

δ

|g⟩

|e⟩

ω

ω+Δωω-Δ

• vary only the frequency of the trigger laser• amplification condition requires Δ=0

• Setup construction is finished very recently

0

preliminary

δ=0 A signal peak is observed- obscure peak due to weaker

trigger intensity

Further studies (experiment/simulation) will be conducted.

Page 19: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Next step

19

Page 20: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Higher QED process20

- E1×M1, E1×E1×E1: allowed 5p6

1S0

5p5(2P°3/2)6s2[3/2]°

8.315 eV

596 nm596 nm

298 nm|g⟩

|e⟩

- E1, E1×E1: forbidden

𝛾𝛾 𝛾𝛾

𝛾𝛾

𝛾𝛾

𝜈𝜈

�̅�𝜈same kinematics

3-photon emission RENP

• study of coherent amplification of higher QED process- 2-photon E1×M1, 3-photon E1×E1×E1

3-photon excitationXe target:

one of the candidates of the RENP experiment

• use metastable excited state

Poster: K. Okai

Page 21: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Laser setup (Xe)21

ECDL TA

Nd:YAG

532 nm (SHG)

355 nm (THG)

LBO Ti:S LBO

876 nmcontinuous-wave (cw)

OPG

Amp DFGcw→pulse

Nd:YAG

LBOSHG

298 nm

596 nm

ECDL, LBO (OPG) Ti:Sapphire (OPA)

Experiment will start soon!

Poster: O. Sato

Page 22: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Summary

• coherence generation by counter-propagating laser• observed two-photon emission signal• further investigation ongoing

• coherent amplification of higher-order QED processes• Laser system construction is almost finished and

experiment will start soon.

22

para-H2 experiment

Xe experiment

Page 23: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Back up

23

Page 24: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Parahydrogen24

ortho-H2

I (nuclear spin) =1 I=0

J=0 (ground state) para-H2: completely spherical wavefunction➡ weak intermolecular interaction➡ longer decoherence time

J=1, 3, 5… J=0, 2, 4…

para-H2

• generate high-purity (>99.9%) para-H2 from normal H2- converter: cooled to 13.8 K, FeO(OH) as magnetic catalyst

dominant @ 78 K

Page 25: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Laser linewidth measurement25

• measurement of the narrow-linewidth MIR laser • method: absorption spectroscopy of carbonyl sulfide (OCS)

Page 26: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Laser linewidth26

width (FWHM)Observed linewidth 175 (13)Doppler width 99MIR Laser linewidth 145 (16)

narrow laser linewidth (~1.6×FT-limit ) is achieved.

• observed absorption spectra

Page 27: Coherently amplified multi-photon emission toward neutrino ...inst.cyric.tohoku.ac.jp/fpua2018/slide/fpua2018-hiraki.pdf · pulse Amp. DFG. Nd:YAG. LBO. SHG. 298 nm. 596 nm. ECDL,

Maxwell-Bloch equations27

Development of the density matrix

Development of the electric fields

ρ: density matrixΩgg(ee): two-photon

Rabi frequencyΩeg(ge): AC Stark shiftγ1, γ2 :relaxation ratesδ: detuning

ωl: laser frequencyNt: target densityα: polarizability