Bilinear Element: Quadrilateral.users.wpi.edu/~sullivan/WebSite-ME515/Lectures/Finite...ME 525...

7

Click here to load reader

Transcript of Bilinear Element: Quadrilateral.users.wpi.edu/~sullivan/WebSite-ME515/Lectures/Finite...ME 525...

Page 1: Bilinear Element: Quadrilateral.users.wpi.edu/~sullivan/WebSite-ME515/Lectures/Finite...ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 4 CONSTRAINTS: 1.) 1 : 1 mapping

ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 1

Bilinear Element: Quadrilateral. 4 straight element sides with 4 nodes - 1 at each corner.

y

x

k

ji

m

Note: m is used instead of lowercase L to eliminate confusion with number 1. Νi = (aix + bi)(ciy + di) = αi + βix + γiy + δixy Note the Bilinear term. αi = bidi; βi = aidi; γi = bici; δi = aici As with triangles: Νi = 1 at node i = 0 at nodes j, k, m. Solve for coefficients:

1

1

1

1

xi

xj

xk

xm

yi

yj

yk

ym

xyi

xyj

xyk

xym

α i

β i

γ i

δ i

=

1

0

0

0

Permutate for i, j, k, m in CCW order.

Page 2: Bilinear Element: Quadrilateral.users.wpi.edu/~sullivan/WebSite-ME515/Lectures/Finite...ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 4 CONSTRAINTS: 1.) 1 : 1 mapping

ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 2

Consider an irregularly shaped linear quadrilateral:

x

yi

kj

m

In general one wants to evaluate:

∇ . ( Κ ∇U ) + V . ∇U + f U = g or, numerically

{ }

{ }

( ) ( )j j j ji ix y i j i j

i iS

N N N NW WK V V W fN W Ux x y y x y

gW K U WdS

∂ ∂ ∂ ∂ ∂ ∂< − + > + < + >+ < > ∂ ∂ ∂ ∂ ∂ ∂

< > − ∇∫ ni

However this ∫ ( )dxdy over each element E will present problems due to the irregular geometry. SOLUTION: Transform x, y space to local coordinates (ξ, η) and integrate numerically.

A Bilinear Basis function implies that for any constant x or y the function is

linear in the other direction. let x = xc = constant then Νi = Ai + Biy where Ai = (αi + βixc) Bi = (γi + δixc)

Page 3: Bilinear Element: Quadrilateral.users.wpi.edu/~sullivan/WebSite-ME515/Lectures/Finite...ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 4 CONSTRAINTS: 1.) 1 : 1 mapping

ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 3

Examine a Bilinear local coordinate system:

η

ξ

η = 1

ξ = −1

η = −1

ξ = 1

∆ξ = ∆η = 2; ξ = η = 0 at center of element. Νi = 1/4 (1 + ξiξ)(1 + ηiη) which is the bilinear solution of local system.

α

β

γ

δ

=

1

0

0

0

Coefficient Matrix

Note: for i = local node 1 Ν1 = 1/4 (1+(-1)(-1))(1+(-1)(-1)) = 1 at ξ = -1, η = -1 = 1/4 (1+(-1)(-1))(1+(-1)(1)) = 0 at ξ = -1, η = +1 = 1/4 (1+(-1)(1))(1+(-1)(1)) = 0 at ξ = 1, η = 1 = 1/4 (1+(-1)(1))(1+(-1)(-1)) =0 at ξ = 1, η = −1 We need coordinate transformation => use trial function approach.

x = ∑

4

k = 1x k ψ k ( ξ , η )

y = ∑

4

k = 1y k ψ k ( ξ , η )

with (x, y) being any point within the element and xk, yk being the nodal coordinates in (x, y) space. However, ψk is formulated in (ξ, η) space.

Page 4: Bilinear Element: Quadrilateral.users.wpi.edu/~sullivan/WebSite-ME515/Lectures/Finite...ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 4 CONSTRAINTS: 1.) 1 : 1 mapping

ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 4

CONSTRAINTS: 1.) 1 : 1 mapping of nodes between 2 coordinate systems. 2.) linear variation in x and y along sides of (ξ, η) element. => x = a1 + b1ξ + c1η + d1ξη y = a2 + b2ξ + c2η + d2ξη Note that solution of ψi yields the basis functions Νi when the transformation (mapping) function = basis function the element is an Isoparametric element when transformation function is of higher degree than basis function => Superparametric and when transformation function is of lower degree than basis function => Subparametric.

We need terms such as:

∂N∂x

∂W∂x

+ .....

i.e express ( )

x or y∂

∂ ∂ in terms of ξ, η.

Use chain rule:

( , ) ( , ) ( , )N N x N yx y

ξ η ξ η ξ ηξ ξ ξ

∂ ∂ ∂ ∂ ∂= +

∂ ∂ ∂ ∂ ∂

( , ) ( , ) ( , )N N x N y

x yξ η ξ η ξ ηη η η

∂ ∂ ∂ ∂ ∂= +

∂ ∂ ∂ ∂ ∂

or:

Page 5: Bilinear Element: Quadrilateral.users.wpi.edu/~sullivan/WebSite-ME515/Lectures/Finite...ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 4 CONSTRAINTS: 1.) 1 : 1 mapping

ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 5

∂ N∂ ξ

∂ N∂ η

=

∂ x∂ ξ

∂ x∂ η

∂ y∂ ξ

∂ y∂ η

∂ N∂ x

∂ N∂ y

∂ N∂ ξ

∂ N∂ η

= [ J ]

∂ N∂ x

∂ N∂ y

[ J ] ≡ J a c o b i a n t r a n s f o r m a t i o n m a t r i x .

What we need for evaluation of:

∂N∂x

∂W∂x

+ .....

, is:

∂N∂x

∂N∂y

= [J]− 1

∂N∂ξ

∂N∂η

Recall: Νi = 1/4 (1+ ξiξ)(1+ ηiη)

∂ N i

∂ ξ ,

∂ N i

∂ η ⇒ n o p r o b l e m .

In [ ] , ?xJ etcξ

∂⇒ =

Page 6: Bilinear Element: Quadrilateral.users.wpi.edu/~sullivan/WebSite-ME515/Lectures/Finite...ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 4 CONSTRAINTS: 1.) 1 : 1 mapping

ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 6

x = ∑4

k = 1 x k ψ k a n d ψ k = N k ( I s o p a r a m e t r i c )

∂ x∂ ξ

= ∂

∑ x k ψ k

∂ ξ = ∑

k

∂ ( x k ψ k )∂ ξ

= ∑k

x k∂ ψ k

∂ ξ = ∑

k x k

∂ N k

∂ ξ

∂ y∂ ξ

= ∑k

y k∂ N k

∂ ξ

η = 1

ξ = 1

η = −1

ξ = −1

1

34

41

32

2

Choose any side; Ex.: η = 1 = top side in (ξ,η) = left side (x,y) i.e. node 1 in (x,y) does not need to be lower left. Νi = 1/4 (1+ξiξ)(1+ηi(1)) = Ai + Biξ

∂x∂ξ

= ∑xi∂Ni

∂ξ = Constant

⇒ dxdy

= Constant

∂y∂ξ

= ∑yi∂Ni

∂ξ = Constant

Page 7: Bilinear Element: Quadrilateral.users.wpi.edu/~sullivan/WebSite-ME515/Lectures/Finite...ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 4 CONSTRAINTS: 1.) 1 : 1 mapping

ME 525 (Sullivan) Bilinear Elements and Isoparametric Mapping 7

n Lines of constant

ξ

Lines of constant η

Along any line: η = constant => dx/dy = constant and ξ = constant => same.

∂ ( )∂ x

∂ ( )∂ y

= [ J ] − 1

∂ ( )∂ ξ

∂ ( )∂ η

= 1

[ J ]

∂ y∂ η

− ∂ x∂ η

− ∂ y∂ ξ

∂ x∂ ξ

∂ ( )∂ ξ

∂ ( )∂ η

∂ ( )∂ x

= 1 J

∂ y∂ η

∂ ( )∂ ξ

− ∂ y∂ ξ

∂ ( )∂ η

∂ ( )

∂ y = 1

J

− ∂ x

∂ η∂ ( )

∂ ξ + ∂ x

∂ ξ∂ ( )∂ η

For integration: ∫b

a ∫

d

c ( ) dx dy = ∫1

−1 ∫1

−1 ( )Jdξ dη

and

[J] =

∑ x i∂N i

∂ξ

∑ x i∂N i

∂η

∑ y i

∂N i

∂ξ

∑ y i∂N i

∂η