BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division...

22
BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi, Attiki, 151 35

Transcript of BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division...

Page 1: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

BELTRAMI FIELDS IN ELECTROMAGNETISM

Theophanes Raptis2009

Computational Applications GroupDivision of Applied Technologies

NCSR Demokritos, Ag. Paraskevi, Attiki, 151 35

Page 2: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

Εugenio Beltrami, 16 November 1835 - 4 June 1899)

“Considerations in Hydrodynamics” (1889) Vorticity in Navier-Stokes eq. w = curlvMangus Flow v x (curlv) = 0 (force-free!)Three basic velocity field types• Solenoidal divv = 0• Lamellar v(gradv) = 0• Beltrami 2v(gradv)=grad|v|2, curlv = λv

Eigenvorticity : λ = v(curlv)/|v|2 = w(curlw)/|w|2

Page 3: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

Quasi-static space magnetic fields

• [Lundquist 1951, Lust-Schluter 1954, Chandrasekhar 1957-1959]

• Relaxed state of plasma (from Force-Free condition)

• λ usually assumed constant

• If displacement current taken into account then exponential relaxation to equilibrium state.

BB

BJBB

0)(

Page 4: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

BIRKELAND CURRENTS

Jovian Currents with the characteristic helical form

[K. Birkeland 1903, H. Alfven 1939, Dressler &Freeman, 1969, Navy Sat TRIAD – Zmuda & Armstrong, 1974]

Lundquist solution w. const. λ

)](),(,0[ 01 rJrJ B

Page 5: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

The Generic Beltrami Problem

(1-A)

from

either(1-B)

or(1-C)

In case of const. λ we have a linear (Trkalian) flow [V. Trkal, 1910]In case of (1-B) we have a natural orthogonal frame

ArA ),( t

0)( AAA

00 AA

AA ,,

AA 1t

Page 6: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

• Linear case: Equivalent with a special class of Helmholtz solutions

• Leads to Chandrasekhar-Kendall eigen-functions.

• Non-linear case: no known general solution

0)( 20

2 B

BBr ))(( 22

Page 7: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

The paradox of parallel E & B fields

If one starts with a vector potential of the form

where φ is a solution of the scalar wave equation then one gets

[Chu & Okhawa ]

)()( nnA

ABAiEAA ,,

tkzkzB

tkzkzE

k z

cos]0,cos,[sin

sin]0,cos,[sin

],0,0[,0

0

0

B

E

kj

Page 8: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

[Brownstein 1986]

Equivalent to 4-wave interference – 2 pairs of “phase conjugated” waves

PC

4

1

4

1 2

1,

2

1

ii

ii BBEE

)sin(),sin(

)cos(),cos(

4,34,3

2,12,1

tkzkatkzka

tkzkatkzka

iBjE

jBiE

Page 9: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

Maxwell fields as complex Beltrami fields

[Silberstein 1907, Chubykalo 80’s, Lakhtakia 80s-90s, Hillion 90’s]

• Introduce the new vectors• Rewrite Maxwell equations• Monochromatic waves • Introduce Debye-Hertz potentials

• Beltrami condition acts like a filter on a primordial longtitudinal complex field (C = conj. operator)

iBEF FiF tn

FF n

tLMF *

rLMrLi ,,0, 22 t

001

10

tt

Cn

C

L

M

L

M

Page 10: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

General solutions for the Spherical Beltrami problem

[Papageorgiou-Raptis 2009 CHAOS conf.]

• Introduce Vector Spherical Harmonics

• Expansion of (1-A) leads to lmlmlm r rNMrL ,,

0

0

)1(

lmlmlm

lm

lmlm

lm

lmlm

cr

a

r

bb

br

cc

acr

ll

Page 11: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

• Equivalent to a “lossless” Transmission Line

• Propagation condition• Evanescence• Hidden Lorentz Group

YVVdr

dIrbI

ZIIdr

dVrcV

jj

j

2 )1(, 222

22 llL

r

L

)1(

||02

llror

)1(

||02

llror

0)()(2

222

r

Lrr 0)( 2222 LTYXs

Page 12: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

Solutions w. special geometry (Rules of another game)

• Introduce partial vector fields

Utilize the natural frame where

is a field complementary to A.

• Naturally

• This also carries an apparent “charge”

)(,0 iji xyAA

,, CAA AA C

2|| A

AA C

)(2ix

Page 13: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

• Example :

• leads to the system

• where and s = +1.

• The permutation holds for s = -1.

AA )(r

)()( rdrrh

1221 , yyyy

))(()(

))(()(

2211

1122

yrcrsyrc

yrcrsyrc

)](),(,0[)(sin 22111 rycryc A

))](sinh()),(cosh(,0[sin

1

))](sin()),(cos(,0[sin

1

21

21

rhcrhcr

rhcrhcr

A

A

Page 14: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

Beltrami-TEM Waves

• CASE I:

• CASE II:

(Dual Beltrami-Ballabh waves)

BEBB

EBEE

)(,)(

)(,)(

uu

uu

MtM

t

EEEB

EBBE

)(,)(

)(,)(

uu

uu

MtM

t

Page 15: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

• For case 1 just replace

• From previous example

• Momentum transfer

(<g> divergent!)

• Angular Momentum

sin

))(sin(sin

))(cos(

0

r

ctrhB

r

ctrhB

Br

MEi ctxu ,

0 grL

sin

))(cos(sin

))(sin(

0

r

ctrhE

r

ctrhE

Er

)2cos(sin

ˆ22

hr

rBEg

Page 16: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

Can there be Zero-momentum waves?

Let there be 2 normal vector potentials on the sphere such that

so that

Then either or would cause

AAA

AAA

fr

fr

)(

)(22

22

),()(),(

),()(),(

AA

AA

r

r

AA AA

!0,),(// 2 LgAABE f

Page 17: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

MACROSCOPIC HELICITY MODULATION

[Moffat 1969] Total Helicity Conservation

Gauge Invariant def.

Local Helicity Density fluctuations MUST propagate

TW = Twisting number, WR = Writhing number,

L = Linking number, NL,R = Left-Right Pol. Photons

MFdVdVH 000 ,BBAAB

rwRL WTLNNL ,2h

Page 18: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

Modulator Types (Simulations in Plasma UCLA-BPPL)

Helical fields

Sun Magnetic Field

Due to Rotation

Page 19: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

A POSSIBLE “WARP” MODULATOR

Local evolution :

For E // B :

Conformal Inversion of Lundqvist solution :

SSVt BABEh2

1

22 |||| ABhh EtMt

)](),(,0[

,,1

22

202

0

ryr

ryr

ru

rur

z

A

yyu

yuyu

zu

zu

02

0

)(

)(1

Ζ-Coils

Φ-Antenna

Page 20: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

Sources for Helical Poynting Flux

Limiting cases:

• J=0 Parallel E – B fields

• E=0 force-free field

From we find

For we get

For Br = [0,y1(r),y2(r)] we approximate a helical flux

jiEBiE

JEiBB

ccc

c

2

2

B

BJiE

BBJ

cc

n)(

2

22

rJ ˆ)(rf BJg

Page 21: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

A Roadmap for Gravito-Electromagnetism

[Robert Forward 1963]

Constitutive Relations in

Curved metrics

+ linearized Field equations

(Ramos 2006) TRY OPTICAL FIBERS?

00

0000

2/1

2/1

,h

hghh

hg

h

h

ii

EgHB

HgED

iiti

i

t

jkjktt

iikjkj

FhG

GcF

TtGcFcG

GttGcF

)(,

0

3/4

0,)(3/14

00

1

21

2

gg

Page 22: BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi,

Warp Engineeringvia Hopf Fibrations

[Ranada, Trueba 1996]

Geodetic Knot w. Hopf invariants

Problem : Can it fit the Alcubierre

Metric?

(Potentials must be velocity

Dependent, Spinning E/M fields?)

Fibers might have to become like…

22

*

22

*

||14,

||14

iiG

n

nnF