BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic...

22
BELTRAMI FIELDS IN ELECTROMAGNETISM Theophanes Raptis 2009 Computational Applications Group Division of Applied Technologies Division of Applied Technologies NCSR Demokritos, Ag. Paraskevi, Attiki, 151 35

Transcript of BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic...

Page 1: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

BELTRAMI FIELDS IN ELECTROMAGNETISM

Theophanes Raptis2009

Computational Applications GroupDivision of Applied TechnologiesDivision of Applied Technologies

NCSR Demokritos, Ag. Paraskevi, Attiki, 151 35

Page 2: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

�Εugenio Beltrami, 16 November 1835 - 4 June 1899)

�“Considerations in Hydrodynamics” (1889)

� Vorticity in Navier-Stokes eq. w = curlv� Vorticity in Navier-Stokes eq. w = curlv

�Mangus Flow v x (curlv) = 0 (force-free!)

�Three basic velocity field types

• Solenoidal divv = 0

• Lamellar v(gradv) = 0

• Beltrami 2v(gradv)=grad|v|2, curlv = λv

Eigenvorticity : λ = v(curlv)/|v|2 = w(curlw)/|w|2Eigenvorticity : λ = v(curlv)/|v|2 = w(curlw)/|w|2

Page 3: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

Quasi-static space magnetic fields

• [Lundquist 1951, Lust-Schluter 1954, Chandrasekhar

1957-1959]1957-1959]

• Relaxed state of plasma (from Force-Free condition)

• λ usually assumed constant

BB

BJBB

λ=×∇⇒

=×=××∇ 0)(

• λ usually assumed constant

• If displacement current taken into account then

exponential relaxation to equilibrium state.

Page 4: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

BIRKELAND CURRENTS

Jovian Currents with the characteristic helical form

[K. Birkeland 1903, H. Alfven 1939, Dressler &Freeman,

1969, Navy Sat TRIAD – Zmuda & Armstrong, 1974]

Lundquist solution w. const. λ

)](),(,0[ 01 rJrJ λλ=B

Page 5: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

The Generic Beltrami Problem

(1-A) ArA ),( tλ=×∇

from

either

(1-B)

or

(1-C)

0)( =∇+∇=∇ AAA λλλ

00 =∇⇔=∇ AA λ

AA λλ ∇=∇=Φ∂ −1

t

In case of const. λ we have a linear (Trkalian) flow [V. Trkal, 1910]

In case of (1-B) we have a natural orthogonal frame

{ }AA ×∇∇ λλ,,

t

Page 6: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

• Linear case: Equivalent with a special class of Helmholtz solutions

0)( 2

0

2 =+∇ Bλ

• Leads to Chandrasekhar-Kendall eigen-functions.

• Non-linear case: no known general solution• Non-linear case: no known general solution

BBr ×∇=+∇ λλ ))(( 22

Page 7: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

The paradox of parallel E & B fields

If one starts with a vector potential of the form

)()( φφ nnA ×∇×∇+×∇=

where φ is a solution of the scalar wave equation then one gets

[Chu & Okhawa ]

)()( φφ nnA ×∇×∇+×∇=

ABAiEAA λωλ =−==×∇ ,,

[Chu & Okhawa ]

tkzkzB

tkzkzE

k z

ω

ω

cos]0,cos,[sin

sin]0,cos,[sin

],0,0[,0

0

0

=

=

==

B

E

kj

Page 8: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

[Brownstein 1986]

Equivalent to 4-wave interference – 2 pairs of “phase conjugated” waves

PC ∑∑−−

==4

1

4

1 2

1,

2

1

i

i

i

i BBEE

)sin(),sin(

)cos(),cos(

4,34,3

2,12,1

tkzkatkzka

tkzkatkzka

ωω

ωω

mmm

mm

iBjE

jBiE

==

=±=

Page 9: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

Maxwell fields as complex Beltrami fields

[Silberstein 1907, Chubykalo 80’s, Lakhtakia 80s-90s, Hillion 90’s]90s, Hillion 90’s]

• Introduce the new vectors

• Rewrite Maxwell equations

• Monochromatic waves

• Introduce Debye-Hertz potentials

iBEF ±=± µε±± ∂=×∇ FiF tn

±± =×∇ FF ωn

±±± ∂+= ϕϕ tLMF

*

( ) rLMrLi ×∇×∇=×∇=∇×−==∂−∇±= ,,0, 22 φφφφ

• Beltrami condition acts like a filter on a primordiallongtitudinal complex field (C = conj. operator)

( ) rLMrLi ×∇×∇=×∇=∇×−==∂−∇±= ±ΜΕ± ,,0, 22 φφφφ t

001

10=

×∇ ±φωtt

Cn

C

L

M

L

M

Page 10: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

General solutions for the Spherical Beltrami problem

[Papageorgiou-Raptis 2009 CHAOS conf.]

• Introduce Vector Spherical Harmonics• Introduce Vector Spherical Harmonics

• Expansion of (1-A) leads to lmlmlm r Ψ=Ψ∇=Ψ∇×= rNMrL ,,

)1(=

+− lmlm ac

r

llλ

0

0

=−−+

=++

=−

lm

lmlm

lm

lm

lm

lm

lmlm

cr

a

r

bb

br

cc

acr

λ

λ

λ

&

&

Page 11: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

• Equivalent to a “lossless” Transmission Line

dI

ZIIdr

dVrcV =−=→=

γ

λj

2 )1(, 22

2

22 +=−= llL

Lλγ

• Propagation condition

• Evanescence

• Hidden Lorentz Group

YVVdr

dIrbI =−=→=

λγj

j2 )1(,

2+=−= llL

rλγ

)1(

||02

+><

llror

λγ

)1(

||02

+<>

llror

λγ• Hidden Lorentz Group

)1( +ll

0)()(2

222 =−+

r

Lrr λγ 0)( 2222 =−+= LTYXs

Page 12: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

Solutions w. special geometry (Rules of another game)

• Introduce partial vector fields

Utilize the natural frame where

)(,0 iji xyAA ==

{ }λ∇ ×∇= λCUtilize the natural frame where

is a field complementary to A.

• Naturally

• This also carries an apparent “charge”

{ }λ∇,, CAA AA ×∇= λC

2|| A

AAC×

=∇λ

• This also carries an apparent “charge”

)(2

ixρλ =∇

Page 13: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

• Example :

• leads to the systemAA )(rλ±=×∇

))(()(

))(()(

2211

1122

yrcrsyrc

yrcrsyrc

λ

λ

=′

=′−

)](),(,0[)(sin 2211

1 rycryc−= θA

))(()( 2211 yrcrsyrc λ=′

))](sinh()),(cosh(,0[sin

1

))](sin()),(cos(,0[sin

1

21

21

rhcrhcr

rhcrhcr

±=

±=

θ

A

A

• where and s = +1.

• The permutation holds for s = -1.

∫= )()( rdrrh λ

1221 , yyyy →−→

Page 14: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

Beltrami-TEM Waves

• CASE I:

EBEE )(,)( uu t λλ =∂−=×∇ ΕΕ

• CASE II:

BEBB

EBEE

)(,)(

)(,)(

uu

uu

MtM

t

λλ

λλ

=∂=×∇

=∂−=×∇ ΕΕ

EBBE )(,)( uu t λλ =∂−=×∇ ΕΕ

(Dual Beltrami-Ballabh waves)

EEEB )(,)( uu MtM λλ =∂=×∇

Page 15: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

• For case 1 just replace

• From previous example

0Br

=

MEi ctxu λλ =−→ ,

))(sin(

0

ctrh

Er

=

θ

θ

φ

θ

sin

))(sin(

sin

))(cos(

r

ctrhB

r

ctrhB

−−=

−=

θ

θ

φ

θ

sin

))(cos(

sin

))(sin(

r

ctrhE

r

ctrhE

−=

−=

r̂• Momentum transfer

(<g> divergent!)

• Angular Momentum 0=×∝ grL

)2cos(sin

ˆ22

hr θ

rBEg =×∝

Page 16: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

Can there be Zero-momentum waves?

Let there be 2 normal vector potentials on the sphere such thatsphere such that

so that ( )( ) AAA

AAA

fr

fr

∝×∇=−∇

∝×∇=−∇ ⊥

λλ

λλ

)(

)(

22

22

),()(),(

),()(),(

ϕθλϕθϕθλϕθ

⊥⊥ =×∇

=×∇

AA

AA

r

r

Then either or would cause

( ) AAA fr ∝×∇=−∇ ⊥⊥ λλ )(22

⊥+ AA ⊥− AA

!0,),(// 2 ==+∝±∝ ⊥ LgAABE fλεµλ

Page 17: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

MACROSCOPIC HELICITY MODULATION

[Moffat 1969] Total Helicity Conservation

Gauge Invariant def.

Local Helicity Density fluctuations MUST propagate

∫ ∫ ∇=−= MFdVdVH 000 ,BBAAB

WTLNNL +=−=Φ∝ ,2h

TW = Twisting number, WR = Writhing number,

L = Linking number, NL,R = Left-Right Pol. Photons

rwRL WTLNNL +=−=Φ∝ ,2h

Page 18: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

Modulator Types (Simulations in Plasma UCLA-BPPL)

Helical fieldsHelical fields

Sun Magnetic FieldSun Magnetic Field

Due to Rotation

Page 19: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

A POSSIBLE “WARP” MODULATOR

Local evolution :

SSVt >×<+>•<−∝∂ BABEh2

1

For E // B :

Conformal Inversion of Lundqvist solution :

><−>∝<−∝−∂=∂ 22 |||| ABhh λEtMt

,,1

2

02

0r

ur

ur

λλ

λεµλλ

=

−∝−→=→φ

λ

λ yuyu

zu

2

0)(1

=∂

=∂−

)](),(,0[ 22

ryr

ryr z

λλφ=A φλ yyu zu 0

2 )( =∂

Ζ-Coils

Φ-Antenna

Page 20: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

Sources for Helical Poynting Flux

Limiting cases:jiEBiE

JEiBB

ccc

c

µωλ

µεωµω

εωλ

−−==×∇

+−==×∇

2

2

Limiting cases:

• J=0 Parallel E – B fields

• E=0 force-free field

From we find

ccc λ

B×∇×∇

BBJ λω

λ ×∇++=×∇c

n)(

2

22

For we get

For Br = [0,y1(r),y2(r)] we approximate a helical flux

( )BJiE λεω

−=c

c2

rJ ˆ)(rf≈ BJg ×∝

Page 21: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

A Roadmap for Gravito-Electromagnetism

[Robert Forward 1963]

Constitutive Relations inConstitutive Relations in

Curved metrics

2/1

2/1

hg

h

h

+=

×+=

×+=−

µνµνµν ηEgHB

HgED

+ linearized Field equations

(Ramos 2006) TRY OPTICAL FIBERS?

00

0

000 ,h

hghh i

i ==r

µνµνµν

[ ]( )

ii

ti

i

t

jkjktt

iikjkj

FhG

GcF

TtGcFcG

GttGcF

)(,

0

3/4

0,)(3/14

00

1

21

2

gg ×∇=∂−−∂=

=∂+×∇

−∂−=∂−×∇

=∇+∂−∂=∇

−−

δπ

επ

Page 22: BELTRAMI FIELDS IN ELECTROMAGNETISMcag.dat.demokritos.gr/publications/Beltrami.pdfThe Generic Beltrami Problem (1-A) ∇×A=λrt( , ) A from either (1-B) or (1-C) ∇(λA)=∇λA+λ∇A=0

Warp Engineeringvia Hopf Fibrations

( ) ( )22

*

22

*

||14,

||14 ζπ

ζζ

π +

∇×∇∝

+

∇×∇∝

iiG

n

nnF

[Ranada, Trueba 1996]

Geodetic Knot w. Hopf invariants

Problem : Can it fit the Alcubierre

Metric?

( ) ( )||14||14 ζππ ++ ii n

Metric?

(Potentials must be velocity

Dependent, Spinning E/M fields?)

Fibers might have to become like…