Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1....

21
Basis Generator Method Calculations for Ion-Atom Collisions of Indirect and Direct Relevance to Neutral Beams in Fusion Plasmas Anthony C. K. Leung and Tom Kirchner

Transcript of Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1....

Page 1: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

Basis Generator Method Calculations

for Ion-Atom Collisions of Indirect

and Direct Relevance to Neutral

Beams in Fusion Plasmas

Anthony C. K. Leung and Tom Kirchner

Page 2: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

Two (not so) easy pieces

Lyman line ratios in

charge-exchange

collisions of C6+ and

O8+ ions with hydrogen

and krypton atoms

Phys. Rev. A 97,

062705 (2018)

Target excitation,

electron capture, and

ionization in p-H(n = 2)

collisions

(work in progress)

Page 3: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

Outline

1. Intro X

2. Theory : brief recap of treatment of

few-electron problem and two-center basis

generator method (TC-BGM)

3. Study #1: collisions with hydrogen vs.

krypton atoms

4. Study #2: collisions with excited hydrogen

atoms

5. Summary and outlook

Page 4: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

2. Theory: the few-electron problem

and the TC-BGM

Page 5: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

Few-electron problem I

• Explicit solution is hard

• Ansatz (independent electrons – IEM):

He(t) →

N∑

j=1

hj(t), i∂tψj(r , t) = h(t)ψj(r , t)

h(t) = −1

2∆−

ZT

r−

Zp

|r − R(t)|+ vee(r , t)

• Choice of vee defines model

• Time-dependent density functional theory

(TDDFT) provides foundation

Page 6: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

Few-electron problem II

Choices:

vee(r , t) = v0ee(r ) no response

vee(r , t) = f (t)v0ee(r ) global target response∗

(vee(r , t) = vee[ψj ](r , t) microscopic response)

• TC-BGM can be used within IEM

• Model uncertainties (IEM) ↔ numerical

uncertainties (convergence etc.)

∗Kirchner et al., PRA 2000

Page 7: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

Few-electron problem III

Single-particle solutions → many-electron info

• Option 1: IEM (multinomial) analysis

e.g. single and double capture for N = 2:

P1 = 2pcap(1 − pcap)

P2 = p2cap

• Option 2: determinants (density matrices)∗

• Further options: correlation integrals∗∗,

single-active electron model, ...

analysis = source of model uncertainties

∗Ludde and Dreizler, JPB 1985; ∗∗Baxter and TK, PRA 2016

Page 8: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

Two-Center Basis Generator Method

Expansion (of single-particle solutions) in

dynamically adapted model space

• Start with bound target and projectile states

φ0v(r) =

{

φv(rt) exp(ivtr) if v ≤ Vt

φv(rp) exp(ivpr) else

• Add pseudo states

χµ

v(r, t) = [Wp(t)]µφ0

v(r) v = 1, . . . ,Vt

• Expand

|ψi(t)〉 =∑

v ,µ

c iv ,µ(t)|χ

µ

v(t)〉

• TC-BGM = TCAO + (special) pseudo states

Page 9: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

3. Study #1: collisions with

hydrogen vs. krypton atoms

Page 10: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

Objective: Lyman-line emissions

• Radiative transitions of one electron in

excited projectile state

• Consider pure single capture and

autoionizating double capture1

• Solve rate equations

dNp(t)

dt=

m∑

i=p+1

Ni(t)Ai→p − Np(t)

p−1∑

f=1

Ap→f

• Total photon counts

(counts)nl→n′ l ′ = Aradnl→n′l ′

∫ ∞

0

Nnl(t)dt

1Auger rates calculated with RATIP by S. Fritzsche (2001)

Page 11: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

Some basis parameters

• Projectile states: n = 1, . . . , 7 (∑

= 84)

• Target states

• hydrogen: KLMN shell states (∑

= 20)• krypton: MNO shell states (

= 31)

• BGM pseudo states

• hydrogen: up to 52• krypton: up to 66

Page 12: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

C6+-impact: total capture

krypton

1 10

10

100

EP (keV/amu)

σcap(10−

16cm

2)

Total SEC

Pure SEC

Response

No-response

(b)C6+-Kr

hydrogen

0

10

100

EP (keV/amu)

σcap(10−

16cm

2)

TC-BGM

Recommended SEC(a)C6+-H

1 1

Recommended values: Janev et al., ADNDT 1988

Leung and Kirchner, PRA 97, 062705 (2018)

Page 13: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

C6+-impact: n-state distributions

krypton

0

0.2

0.4

0.6

0.8EP = 1 keV/amu

No-response

Response

0

0.2

0.4

0.6

0.8EP = 8 keV/amu

σrel

n

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8EP = 25 keV/amu

n state

(b)

C6+-Kr

hydrogen

0

0.2

0.4

0.6

0.8EP = 1 keV/amu

0

0.2

0.4

0.6

0.8EP = 8 keV/amu

σrel

n

0

0.2

0.4

0.6

0.8EP = 25 keV/amu

n state

(a)

C6+-H

1 2 3 4 5 6 7

Page 14: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

C6+-impact: Lyman-emission ratios

0

0.1

0.2

0.3 Pure SEC

SEC+ADC

Ly-β/Ly-α

Theory: C6+–Kr

Expt.

TC-BGM

No-response

Response

0

0.1

0.2

0.3

Theory: C6+–H

Expt.

TC-BGM

0

0.1

0.2

0.3

0.4

Ly-γ/Ly-α

0

0.1

0.2

0.3

0.4

0

0.02

0.04

0.06

Ly-δ/Ly-α

0

0.02

0.04

0.06

1 10

0

0.02

0.04

EP (keV/amu)

Ly-ε/Ly-α

1 10

0

0.02

0.04

EP (keV/amu)

Page 15: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

O8+-impact: total capture

krypton

11 0

10

100

EP (keV/amu)

σcap(10−

16cm

2)

Total SEC

Pure SEC

Response

No-response

(b)O8+-Kr

hydrogen

0

10

100

EP (keV/amu)

σcap(10−

16cm

2)

Recommended SEC

HSCC

TC-BGM

(a)O8+-H

11

Rec.: Janev et al., ADNDT 1988; HSCC: Lee et al., PRA 2004

Leung and Kirchner, PRA 97, 062705 (2018)

Page 16: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

O8+-impact: n-state distributions

krypton

0

0.2

0.4

0.6

0.8EP = 1 keV/amu

No-response

Response

0

0.2

0.4

0.6

0.8EP = 8 keV/amu

σrel

n

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8EP = 15 keV/amu

n state

(b)

O8+-Kr

hydrogen

0

0.2

0.4

0.6

0.8EP = 1 keV/amu

0

0.2

0.4

0.6

0.8EP = 8 keV/amu

σrel

n

0

0.2

0.4

0.6

0.8EP = 15 keV/amu

n state

(a)

O8+-H

1 2 3 4 5 6 7

Page 17: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

O8+-impact: Lyman-emission ratios

0

0.1

0.2

0.3 Pure SEC

SEC+ADC

Ly-β/Ly-α

Theory: O8+-Kr

Expt.

TC-BGM

No-response

Response

0

0.1

0.2

0.3

Theory: O8+-H

Expt.

TC-BGM

0

0.02

0.04

0.06

0.08

Ly-γ/Ly-α

0

0.02

0.04

0.06

0.08

0

0.1

0.2

Ly-δ/Ly-α

0

0.1

0.2

1 100

0.02

0.04

0.06

0.08

EP (keV/amu)

Ly-ε/Ly-α

1 100

0.02

0.04

0.06

0.08

EP (keV/amu)

Page 18: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

4. Study #2: collisions with

excited hydrogen atoms

Page 19: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

Some basis parameters

• Projectile states: n = 1, . . . , 6 (∑

= 56)

• Target states

• n=5 basis: KLMNO shell states (∑

= 35)• n=6 basis: KLMNOP shell states (

= 56)

• BGM pseudo states

• n=5 basis: up to 94• n=6 basis: up to 106

Compare results for p-H(2s) with:Abdurakhmanov et al., Plasma Phys. Control. Fusion 60, 095009 (2018)

Pindzola et al., Phys. Rev. A 72, 062703 (2005)

Page 20: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

p-H(2s): total ionization and capture

ionization

1 10 1000

5

10

15

20

25

EP (keV)

σio

n(10−16

cm2)

WP-CCC

TC-BGM (Up to n = 5)

TC-BGM (Up to n = 6)

capture

1 10 100

0.01

0.1

1

10

100

EP (keV)

σca

p(10−16

cm2)

AOCC-PS

CTMC

WP-CCC

TC-BGM (Up to n = 5)

TC-BGM (Up to n = 6)

WP-CCC: Abdurakhmanov et al., Plasma Phys. Control. Fusion 2018

AOCC-PS and CTMC: Pindzola et al., Phys. Rev. A 2005

Page 21: Basis Generator Method Calculations for Ion-Atom Collisions of … · 2020. 2. 28. · Outline 1. Intro X 2. Theory : brief recap of treatment of few-electron problem and two-center

Summary and outlook

(TC)-BGM: coupled-channel method within

semiclassical approximation

Hydrogen vs krypton targets

• Krypton is not a good surrogate for hydrogen

• Need a better response model for more

reliable/accurate Kr calculations

Excited hydrogen targets

• Higher demands on basis sets and sizes

• Overall good agreement with WP-CCC

• Move on to H(2p)