ASM Umesh poster 2015 Poster-22

1
RB50 ΔbtrA#1 ΔbtrA#2 RB50 ΔbtrA#1 ΔbtrA#2 time (h) O.D 600 0 5 10 15 20 25 0.1 1 10 Growth rate (h) RB50: 1.89±0.17 ΔbtrA: 6.78±1.35 bvgΔ54 RB50 ΔbtrA ΔbtrS n=3 btrA btrS bsp22 bopN bscN bteA fhaB cyaA prn flaA bipA relative fold difference 0.0 0.5 1.0 1.5 2 4 6 8 10 12 14 16 100 150 200 250 Pellet Supernatant ΔbteAHA RB50HA WD3HA ΔbteAHA RB50HA WD3HA ΔbteA RB50 WD3 ΔbteA RB50 WD3 BvgA BtrA-HA PRN Bsp22 Supernatant RB50 ΔbtrA ΔbtrS 25- 20- 15- 37- 10- 50- 75- 100- 150- 250- kDa CyaA Bsp22 Prn FhaB RB50 ΔbtrA ΔbtrS Pellet bvgΔ54 bvgΔ54 - Bsp22 - BopD - BopN BopB - * * * * LDH release (% max. lysis) Hela 0 20 40 60 80 100 RB50 ΔbscN ΔbteA ΔbtrA ΔbteAΔbtrA Bbr77 0 20 LDH release (% max. lysis) A549 40 60 80 100 p <0.0001 ns bsc locus bscP btrA btrW btrU btrV alr BB1640 BB1641 BB1643 btrS bscC bscW bscU bscT bscC bscR bscQ fhaB cyaA prn ptx bvgS bipA btrS bsc T3SS BvgS BvgA vrgs (e.g.flagella) FIGURE 3: btrA over expression; A, Colony morphology on Bordet-Gengou agar containing 7.5% defibrinated blood. B, Semi-quantitative RT-PCR of indicated gene transcripts. C, qRT-PCR of indicated gene transcripts. D, Expression and secretion of virulence gene products in pellet and culture supernatants. Coomassie brilliant blue protein stain after SDS-PAGE of O.D. normalized pellets and supernatants of indicated strains. Lower panels, immunoblots of the indicated virulence determinants. btrS over expression; E, Colony morphology on Bordet- Gengou agar containing 7.5% defibrinated blood. F, Semi-quantitative RT-PCR of indicated gene transcripts. G, qRT- PCR of indicated gene transcripts. H, Upper panel; Coomassie brilliant blue protein stain after SDS-PAGE of O.D. normalized pellets and supernatants of indicated strain. Lower panels, immunoblots of the indicated virulence determinants.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Microbiology, Immunology & Molecular Gene4cs Host Adaptation by Bordetella species: Differential control of Type Three Secretion System Umesh Ahuja and Jeff F. Miller ([email protected]) ABSTRACT Model of the Evolution of Mammalian Bordetellae Overexpression of btrA and btrS Confer Contras4ng Phenotypes BtrA is a T3SS Substrate That Regulates Mul4ple Virulence Genes BtrAS Selec4vely Regulate T3SS Expression in B. pertussis New Model of Virulence Gene Regulation RNA-Seq Reveals Novel Regulatory Network FIGURE 1: Minimum spanning tree of 3 closely related Bordetellae: A, The tree is based on the sequence of seven house keeping gene. The sequence types (STs) sharing the highest number of single locus variants were connected first. Each circle represents a ST, the size of which is related to the number of isolated. B, Model of the evolution of mammalian bordetellae. The bar on left indicates increasing degree of adaptation. Reference: Diavatopoulos, D.A., Cummings, C.A., Schouls, L.M., Brinig, M.M., Relman, D.A., and Mooi, F.R. (2005) Bordetella pertussis, the Causative Agent of Whooping Cough, Evolved from a Distinct, Human-Associated Lineage of B. bronchiseptica. PLoS Pathog 1: e45. B. bronchiseptica isolates from diverse hosts, including humans, display potent cytotoxicity against a broad range of mammalian cells which is dependent on BteA, a type three secretion system (T3SS) effector. In contrast, neither clinical nor laboratory isolates of B. pertussis display T3SS-dependent phenotypes in vitro, despite the fact that bsc T3SS genes are present, intact, and nearly identical to their B. bronchiseptica counterparts. Furthermore, bteA alleles are functionally interchangeable between these Bordetella subspecies. An hypothesis that could explain subspecies-specific differences in T3SS activity is that the regulatory network that controls T3SS has co-evolved with host specificity. Indeed, T3SS activity is known to be controlled at multiple levels. bteA and bsc apparatus genes are transcriptionally activated by an extracytoplasmic function (ECF) sigma factor, BtrS, which is encoded by a BvgAS-activated gene. We have discovered and characterized a regulatory node in B. bronchiseptica involving BtrA, a secreted antagonist of BtrS. RNA-seq analysis shows that BtrA negatively regulates expression of T3SS apparatus, effector, and regulatory loci, and positively controls hundreds of genes encoding toxins, adhesins, and products of unknown function. Deletion of btrA or over-expression of btrS leads to increased T3SS activity, while over-expression of btrA mimics the effects of btrS allele on T3SS expression and phenotypes. Antagonism is mediated by a physical interaction between BtrA and BtrS which couples secretion to gene expression. Of particular relevance to human disease, deletion of btrA in B. pertussis derepressess bsc T3SS gene expression and confers readily detectable BteA-dependent cytotoxicity in vitro. On the basis of these and other results, we propose that the BtrA regulatory node determines, at least in part, subspecies-specific differences in T3SS expression between B. bronchiseptica and B. pertussis. The implications of these results for the design of improved vaccines against pertussis will be discussed. A B BtrA Physically Interacts with BtrS FIGURE 4: A, Schematic diagram of BtrA constructs used in this study and their effect on T3SS expression, FhaB expression and interaction with BtrS. B, Interactions between BtrA and BtrS in a yeast two-hybrid system.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx FIGURE 6: A, Immunoblot analysis of normalized pellet and culture supernatant of wild type B. pertussis and its btrA isogenic null mutant. B and C, Cytotoxicity of wild type B. pertussis and its isogenic mutant derivatives measured by LDH release. HeLa cells were infected with indicated bacteria at different MOIs for 6h and 24h. Results are average of 3 independent experiments. FIGURE 5: A and D, Heat map depicting the results of cluster analysis of the log 2 transformed RPKM values. B and E, The box plots showing the distribution of transcripts. C, Predicted regulatory pathways. F, Log 2 fold change gene expression of known virulence-related genes compared to the wild-type. G, Venn diagrams showing overlap of various overexpression gene clusters (a-c) with null-mutant gene clusters (1-4). xxxxxxxxxxxxxxxx A B C In view of our current findings we propose a new general model of virulence gene regulation in Bordetella that involves intricate interaction between BtrS and BtrA in fine-tuning the Bvg-driven response. BtrS act as a positive regulator of T3SS locus genes while BtrA acts as an antagonist of BtrS. The transcription of btrS is BvgAS-dependent while the activity of BtrS is regulated by sequestration by BtrA. The transcription of btrA is regulated by BtrS while the inhibitory intracellular levels of BtrA are controlled by its secretion through the T3SS pore. The secretion through the T3SS pore augurs further T3SS induction. The rate of BtrA production and secretion through T3SS is dependent on the level of BtrS activation. FIGURE 2: A, Genomic organization of btrA-btrS locus. B, T3SS-dependent secretion of BtrA. C, Colony morphology on Bordet- Gengou agar containing 7.5% defibrinated blood. D, Growth rate determination in Stainer-Scholte medium. E, Model of BvgAS-dependent virulence gene regulation. F, qRT-PCR of indicated virulence- related genes. G, Immunoblot analysis of indicated virulence gene products in culture supernatants and pellets. H, In vitro cytotoxicity of indicated strains towards HeLa and A549 cells.X wild type bvgSΔ54 ΔbtrS ΔbtrA ΔbtrAΔbtrS 5 95 Percentile Log 2 Transformed RPKM Expression (log 2 ) -2 0 2 4 6 8 10 12 n=89 btrS btrA BvgS BvgA Cluster 1 genes (e.g.flagella) Expression (log 2 ) -2 0 2 4 6 8 10 12 14 n=208 btrS btrA BvgS BvgA Cluster 2 genes (e.g.flagella) Expression (log 2 ) -2 0 2 4 6 8 10 12 14 n=168 btrS btrA BvgS BvgA Cluster 3 genes (e.g.fhaB/cyaA/prn) btrS btrA BvgAS Cluster 4 genes (e.g.T3SS) n=126 wild type bvgSΔ54 ΔbtrS ΔbtrA ΔbtrAΔbtrS Expression (log 2 ) -2 0 2 4 6 8 10 12 14 16 18 Cluster 1 Cluster 2 Cluster 3 Cluster 4a Cluster 4b vector pbtrS 5 95 Percentile Log 2 Transformed RPKM pbtrA Expression (log 2 ) Expression (log 2 ) Expression (log 2 ) vector pbtrS pbtrA -2 0 2 4 6 8 10 12 14 16 18 n=29 -2 0 2 4 6 8 10 12 n=61 -2 0 2 4 6 8 10 12 14 n=12 Cluster a Cluster b Cluster c Log 2 Fold Change (RPKM) cyaC cyaA cyaB cyaD cyaE sphB1 brkB prn fim3 ptxA ptxB ptxE ptxD ptxC ptlA ptlB ptlC ptlD ptlL ptlE ptlF ptlG ptlH fhaL bipA fhaS fimD fimC fimB fimA fhaB bvgA bvgS bvgR fimN fimX fim2 dnt pagP ΔbtrS ΔbtrA ΔbtrAΔbtrS bscF bscE bscD bcrD orf2 orf3 orf4 bopN bsp22 orf6 bcrH1 bopD bopB bcrH2 bcr4 bscI bscJ bscK bscL bscN bscO bscP bscQ bscR bscS bscT bscU bscW bscC btrA btrS btrU btrW btrV btcA bteA -8 -6 -4 -2 0 2 4 6 -4 -3 -2 -1 0 1 2 3 a 2 3 4 abc 1+2 3 4 b 1+2 3 4 c 3 4 D E F G Supernatants Pellets RB50 Bp536 Bp536ΔbtrA#1 Bp536ΔbtrA#2 Bp536 Bp536ΔbtrA#1 Bp536ΔbtrA#2 mid-log stationary RB50 Bp536 Bp536ΔbtrA#1 Bp536ΔbtrA#2 Bp536 Bp536ΔbtrA#1 Bp536ΔbtrA#2 mid-log stationary CyaA Bsp22 S4 subunit Prn FhaB A B C M1 L104 T164 T134 Q194 BtrAFL BtrAΔQ194-M226 BtrAΔT164-M226 BtrAΔT134-M226 BtrAΔL104-M226 M226 T124 S177 BtrAΔL101-V133 BtrAΔT134-D163 BtrAΔT164-M193 BtrAT124-S177 S81 BtrAS81-S177 + + + - - - + + + + + + + + + T3SS FhaB + nd nd - nd nd - nd nd - nd nd - nd nd BtrS interaction BtrAΔT164-M226 BtrAΔT134-M226 BtrAΔL104-M226 BtrAΔL101-V133 BtrAΔT134-D163 BtrAΔT164-M193 BtrAT124-S177 BtrAS81-S177 DDO DDO X/A QDO X/A BtrAFL BteA644 BtrS BtrS BtrS BtrS BtrS BtrAFL BtrS BteA644 BtrAFL BtrAFL BtrS BtrS BtrS BtrS BtrS BtrAΔQ194-M226 Bait Prey RB50/vector ΔbtrA/pbtr A ΔbtrA/vector RB50/pbtr A RB50/vector ΔbtrA/pbtr A ΔbtrA/vector RB50/pbtr A B A RB50/vector ΔbtrA/vector recA btrA + + + + m m m m gDNA bopN bsp22 btrS fhaB RB50/pbtrA ΔbtrA/pbtrA cyaA prn flaA C btrA btrS bsp22 bopN cyaA fhaB prn flaA relative-fold difference 0.0 0.5 1.0 2 4 6 8 10 12 14 16 18 20 22 24 150 300 450 RB50/vector RB50/pbtrA ΔbtrA/vector ΔbtrA/pbtrA RB50/vector RB50/pbtrS ΔbtrA/vector ΔbtrA/pbtrS ΔbtrA/vector RB50/vector 25- 20- 15- 37- 10- 50- 75- 100- 150- 250- kDa Bsp22 RB50/pbtrA ΔbtrA/pbtrA ΔbtrA/vector RB50/vector RB50/pbtrA ΔbtrA/pbtrA pellet supernatant FhaB CyaA Prn 25- 20- 15- 37- 10- 50- 75- 100- 150- 250- kDa D F E G H RB50/vector ΔbtrA/vector ΔbtrA/pbtrS RB50/pbtrS RB50/vector ΔbtrA/vector ΔbtrA/pbtrS RB50/pbtrS RB50/vector ΔbtrA/vector recA btrA + m gDNA bopN bsp22 btrS fhaB RB50/pbtrS ΔbtrA/pbtrS cyaA prn flaA + m + m + m relative-fold difference btrA btrS bsp22 bopN cyaA fhaB prn flaA 0.0 0.4 0.8 1 5 9 13 17 21 25 150 300 450 ΔbtrA/vector RB50/vector 25- 20- 15- 37- 10- 50- 75- 100- 150- 250- kDa CyaA Prn FhaB RB50/pbtrS ΔbtrA/pbtrS ΔbtrA/vector RB50/vector RB50/pbtrS ΔbtrA/pbtrS pellet supernatant Bsp22 25- 20- 15- 37- 10- 50- 75- 100- 150- 250- kDa BvgS BvgA [Adenylate cyclase/CyaA] CyaE CyaB BteA [Pertussis toxin] (Bp only) Capsule [Pertac4n] [FHA] TCT Type I CyaD [Type III] Vag8, BrkA Tcf Pep4doglycan layer OM IM FimC usher FimD Fim2 & 3 FimB Type IV vrg “Phosphorelay” bvgA bvgS bvgR + + FhaB FhaC Adapted from Locht et. al. Current Opinion in Microbiology 2001, 4:82–89 B A F G H A B C D E California NanoSystems Ins4tute

Transcript of ASM Umesh poster 2015 Poster-22

Page 1: ASM Umesh poster 2015 Poster-22

RB50

ΔbtrA#1

ΔbtrA#2

RB50

ΔbtrA#1

ΔbtrA#2

time (h)

O.D

600

0 5 10 15 20 250.1

1

10

Growth rate (h)

RB50: 1.89±0.17ΔbtrA: 6.78±1.35

DC

A

B E

F

bvgΔ54RB50 ΔbtrA ΔbtrS

n=3

btrA btrS bsp22 bopN bscN bteA fhaB cyaA prn flaA bipA

relativefolddifference

0.0

0.5

1.0

1.52468

10121416

100150200250

Pellet Supernatant

Δbt

eAH

A

RB5

0HA

WD

3HA

Δbt

eAH

A

RB5

0HA

WD

3HA

Δbt

eA

RB5

0W

D3

Δbt

eA

RB5

0W

D3

BvgA

BtrA-HA

PRN

Bsp22

G HSupernatant

RB

50

Δbt

rA

Δbt

rS

25-20-

15-

37-

10-

50-

75-

100-

150-

250-

kDa

CyaA

Bsp22

Prn

FhaB

RB

50

Δbt

rA

Δbt

rS

Pellet

bvgΔ

54

bvgΔ

54

- Bsp22- BopD- BopN

BopB-

****

LDHrelease(%

max.lysis) Hela

0

20

40

60

80

100

RB50

Δbsc

NΔb

teAΔb

trA

ΔbteAΔb

trABbr7

70

20

LDHrelease(%

max.lysis) A549

40

60

80

100p <0.0001

ns

bsc locusbscP btrA btrW

btrU

btrV

alrBB1640 BB1641 BB1643

btrS

bscC

bscW

bscUbscT

bscC

bscRbscQ

fhaBcyaAprnptxbvgSbipA

btrS

bsc T3SS

BvgS

BvgA

vrgs(e.g.flagella)

FIGURE 3: btrA over expression; A, Colony morphology on Bordet-Gengou agar containing 7.5% defibrinated

blood. B, Semi-quantitative RT-PCR of indicated gene transcripts. C, qRT-PCR of indicated gene transcripts. D,

Expression and secretion of virulence gene products in pellet and culture supernatants. Coomassie brilliant blue

protein stain after SDS-PAGE of O.D. normalized pellets and supernatants of indicated strains. Lower panels,

immunoblots of the indicated virulence determinants. btrS over expression; E, Colony morphology on Bordet-

Gengou agar containing 7.5% defibrinated blood. F, Semi-quantitative RT-PCR of indicated gene transcripts. G, qRT-

PCR of indicated gene transcripts. H, Upper panel; Coomassie brilliant blue protein stain after SDS-PAGE of O.D.

normalized pellets and supernatants of indicated strain. Lower panels, immunoblots of the indicated virulence

determinants.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Microbiology,  Immunology  &  Molecular  Gene4cs  

Host Adaptation by  Bordetella  species: Differential control of Type Three Secretion System        Umesh  Ahuja    and  Jeff  F.  Miller  

       ([email protected])    

ABSTRACT

Model of the Evolution of Mammalian Bordetellae

Overexpression  of  btrA  and  btrS  Confer  Contras4ng  Phenotypes  

BtrA  is  a  T3SS  Substrate  That  Regulates  Mul4ple  Virulence  Genes  

BtrAS  Selec4vely  Regulate  T3SS  Expression  in  B.  pertussis  

New Model of Virulence Gene Regulation

RNA-Seq Reveals Novel Regulatory Network

FIGURE 1: Minimum spanning tree of 3 closely related Bordetellae: A, The tree is based on the sequence of seven house keeping gene. The sequence types (STs) sharing the highest number of single locus variants were connected first. Each circle represents a ST, the size of which is related to the number of isolated. B, Model of the evolution of mammalian bordetellae. The bar on left indicates increasing degree of adaptation. Reference: Diavatopoulos, D.A., Cummings, C.A., Schouls, L.M., Brinig, M.M., Relman, D.A., and Mooi, F.R. (2005) Bordetella pertussis, the Causative Agent of Whooping Cough, Evolved from a Distinct, Human-Associated Lineage of B. bronchiseptica. PLoS Pathog 1: e45.

B. bronchiseptica isolates from diverse hosts, including humans, display potent cytotoxicity against a broad range of mammalian

cells which is dependent on BteA, a type three secretion system (T3SS) effector. In contrast, neither clinical nor laboratory isolates

of B. pertussis display T3SS-dependent phenotypes in vitro, despite the fact that bsc T3SS genes are present, intact, and nearly

identical to their B. bronchiseptica counterparts. Furthermore, bteA alleles are functionally interchangeable between these

Bordetella subspecies. An hypothesis that could explain subspecies-specific differences in T3SS activity is that the regulatory

network that controls T3SS has co-evolved with host specificity. Indeed, T3SS activity is known to be controlled at multiple levels.

bteA and bsc apparatus genes are transcriptionally activated by an extracytoplasmic function (ECF) sigma factor, BtrS, which is

encoded by a BvgAS-activated gene. We have discovered and characterized a regulatory node in B. bronchiseptica involving

BtrA, a secreted antagonist of BtrS. RNA-seq analysis shows that BtrA negatively regulates expression of T3SS apparatus,

effector, and regulatory loci, and positively controls hundreds of genes encoding toxins, adhesins, and products of unknown

function. Deletion of btrA or over-expression of btrS leads to increased T3SS activity, while over-expression of btrA mimics the

effects of ∆btrS allele on T3SS expression and phenotypes. Antagonism is mediated by a physical interaction between BtrA and

BtrS which couples secretion to gene expression. Of particular relevance to human disease, deletion of btrA in B. pertussis

derepressess bsc T3SS gene expression and confers readily detectable BteA-dependent cytotoxicity in vitro. On the basis of

these and other results, we propose that the BtrA regulatory node determines, at least in part, subspecies-specific differences in

T3SS expression between B. bronchiseptica and B. pertussis. The implications of these results for the design of improved

vaccines against pertussis will be discussed.

A   B  

BtrA  Physically  Interacts  with  BtrS  

FIGURE 4: A, Schematic diagram of BtrA constructs used in this study and their effect on T3SS expression, FhaB

expression and interaction with BtrS. B, Interactions between BtrA and BtrS in a yeast two-hybrid

system.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

FIGURE 6: A, Immunoblot analysis of normalized pellet and culture supernatant of wild type B. pertussis and its btrA isogenic null

mutant. B and C, Cytotoxicity of wild type B. pertussis and its isogenic mutant derivatives measured by LDH release. HeLa cells were

infected with indicated bacteria at different MOIs for 6h and 24h. Results are average of 3 independent experiments.

FIGURE 5: A and D, Heat map depicting the

results of cluster analysis of the log2 transformed

RPKM values. B and E, The box plots showing the

distribution of transcripts. C, Predicted regulatory

pathways. F, Log2 fold change gene expression of

known virulence-related genes compared to the

wild-type. G, Venn diagrams showing overlap of

various overexpression gene clusters (a-c) with

null-mutant gene clusters (1-4). xxxxxxxxxxxxxxxx

A B C

In view of our current findings we propose a new general model of

virulence gene regulation in Bordetella that involves intricate interaction

between BtrS and BtrA in fine-tuning the Bvg-driven response. BtrS act as

a positive regulator of T3SS locus genes while BtrA acts as an antagonist

of BtrS. The transcription of btrS is BvgAS-dependent while the activity of

BtrS is regulated by sequestration by BtrA. The transcription of btrA is

regulated by BtrS while the inhibitory intracellular levels of BtrA are

controlled by its secretion through the T3SS pore. The secretion through

the T3SS pore augurs further T3SS induction. The rate of BtrA production

and secretion through T3SS is dependent on the level of BtrS activation.

FIGURE 2: A, Genomic organization

of btrA-btrS locus.

B, T3SS-dependent secretion of BtrA.

C, Colony morphology on Bordet-

Gengou agar containing 7.5%

defibrinated blood.

D, Growth rate determination in

Stainer-Scholte medium.

E, Model of BvgAS-dependent

virulence gene regulation.

F, qRT-PCR of indicated virulence-

related genes.

G, Immunoblot analysis of indicated

virulence gene products in culture

supernatants and pellets.

H, In vitro cytotoxicity of indicated

strains towards HeLa and A549

cells.X

wild ty

pe

bvgSΔ5

4

ΔbtrS

ΔbtrA

ΔbtrAΔbtrS

5

95

Perc

entil

e

Log 2

Tran

sfor

med

RPK

MLo

g 2 Fol

d C

hang

e (R

PKM

)

A

C

cyaCcyaAcyaBcyaDcyaEsphB1brkBpr

nfim3

ptxAptxBptxEptxDptxCptlAptlBptlCptlDptlLptlEptlFptlGptlH

fhaLbipAfhaSfimDfimCfimBfimAfhaBbvgAbvgSbvgR fim

NfimXfim2dntpagP

ΔbtrSΔbtrA ΔbtrAΔbtrS

bscFbscEbscDbcrD or

f2 orf3orf4bopNbsp22orf6bcrH1bopDbopBbcrH2bcr4bscIbscJbscK bs

cLbscNbscObscPbscQbscRbscSbscTbscUbscWbs

cC btrAbtrSbtrUbtrWbtrVbtcAbteA

-8-6-4-20246

-4-3-2-10123

B

Expr

essi

on (l

og2)

-2

0

2

4

6

8

10

12 n=89

btrS

btrA

BvgS

BvgA

Cluster 1 genes(e.g.flagella)

Expr

essi

on (l

og2)

-202468

101214 n=208

btrS

btrA

BvgS

BvgA

Cluster 2 genes(e.g.flagella)

Expr

essi

on (l

og2)

-202468

101214

n=168

btrS

btrA

BvgS

BvgA

Cluster 3 genes(e.g.fhaB/cyaA/prn)

btrS

btrA

BvgAS

Cluster 4 genes(e.g.T3SS)

n=126

wild ty

pe

bvgSΔ5

4ΔbtrS

ΔbtrA

ΔbtrAΔbtrS

Expr

essi

on (l

og2)

-202468

1012141618

Cluster 1

Cluster 2

Cluster 3

Cluster 4a

Cluster 4b

vecto

r

pbtrS

5

95

Perc

entil

e

Log 2

Tran

sfor

med

RPK

M

pbtrA

Expr

essi

on (l

og2)

Expr

essi

on (l

og2)

Expr

essi

on (l

og2)

vecto

rpbtrS

pbtrA

-202468

1012141618 n=29

-2

0

2

4

6

8

10

12n=61

-202468

101214

n=12

Cluster a

Cluster b

Cluster c

wild ty

pe

bvgSΔ5

4

ΔbtrS

ΔbtrA

ΔbtrAΔbtrS

5

95

Perc

entil

e

Log 2

Tran

sfor

med

RPK

MLo

g 2 Fol

d C

hang

e (R

PKM

)

A

C

cyaCcyaAcyaBcyaDcyaEsphB1brkBpr

nfim3

ptxAptxBptxEptxDptxCptlAptlBptlCptlDptlLptlEptlFptlGptlH

fhaLbipAfhaSfimDfimCfimBfimAfhaBbvgAbvgSbvgR fim

NfimXfim2dntpagP

ΔbtrSΔbtrA ΔbtrAΔbtrS

bscFbscEbscDbcrD or

f2 orf3orf4bopNbsp22orf6bcrH1bopDbopBbcrH2bcr4bscIbscJbscK bs

cLbscNbscObscPbscQbscRbscSbscTbscUbscWbs

cC btrAbtrSbtrUbtrWbtrVbtcAbteA

-8-6-4-20246

-4-3-2-10123

B

Expr

essi

on (l

og2)

-2

0

2

4

6

8

10

12 n=89

btrS

btrA

BvgS

BvgA

Cluster 1 genes(e.g.flagella)

Expr

essi

on (l

og2)

-202468

101214 n=208

btrS

btrA

BvgS

BvgA

Cluster 2 genes(e.g.flagella)

Expr

essi

on (l

og2)

-202468

101214

n=168

btrS

btrA

BvgS

BvgA

Cluster 3 genes(e.g.fhaB/cyaA/prn)

btrS

btrA

BvgAS

Cluster 4 genes(e.g.T3SS)

n=126

wild ty

pe

bvgSΔ5

4ΔbtrS

ΔbtrA

ΔbtrAΔbtrS

Expr

essi

on (l

og2)

-202468

1012141618

Cluster 1

Cluster 2

Cluster 3

Cluster 4a

Cluster 4b

a2 3

4abc1+2 3

4

b1+2 3

4c 3

4

D E

F

G

Supernatants Pellets

RB

50

Bp5

36

Bp5

36ΔbtrA

#1

Bp5

36ΔbtrA

#2

Bp5

36

Bp5

36ΔbtrA

#1

Bp5

36ΔbtrA

#2

mid-log stationary

RB

50

Bp5

36

Bp5

36ΔbtrA

#1

Bp5

36ΔbtrA

#2

Bp5

36

Bp5

36ΔbtrA

#1

Bp5

36ΔbtrA

#2

mid-log stationary

CyaA

Bsp22S4 subunit

Prn

FhaB

A B

C

M1

L104

T164

T134

Q19

4

BtrAFL

BtrAΔQ194-M226

BtrAΔT164-M226

BtrAΔT134-M226

BtrAΔL104-M226

M22

6

T124

S17

7

BtrAΔL101-V133

BtrAΔT134-D163

BtrAΔT164-M193

BtrAT124-S177 S81

BtrAS81-S177

+ +

+ - -

- +

+ + +

+ +

+ + +

T3S

S

FhaB

+ nd nd

- nd nd

- nd nd

- nd nd

- nd nd

BtrS

inte

ract

ion

BtrAΔT164-M226  

BtrAΔT134-M226  

BtrAΔL104-M226  

BtrAΔL101-V133  

BtrAΔT134-D163  

BtrAΔT164-M193  

BtrAT124-S177  

BtrAS81-S177  

DDO DDO X/A QDO X/A

BtrAFL  

BteA644  

BtrS  

BtrS  

BtrS  

BtrS  

BtrS  

BtrAFL  

BtrS  

BteA644  BtrAFL  

BtrAFL   BtrS  

BtrS  

BtrS  

BtrS  

BtrS  

BtrAΔQ194-M226  

Bait Prey

RB50/vector

ΔbtrA /pbtrA ΔbtrA /vector

RB50/p btrA

RB50/vector

ΔbtrA/p btrA ΔbtrA /vector

RB50/p btrA

BA

RB50/vector

ΔbtrA/vector

recA

btrA

+ + + +m m m mgDNA

bopN

bsp22

btrS

fhaB

RB50/pbtrA

ΔbtrA/pbtrA

cyaA

prn

flaA

C

btrA

btrS

bsp22

bopN

cyaA

fhaB prn

flaA

relative-folddifference

0.0

0.5

1.024681012141618202224150300450

RB50/vectorRB50/pbtrA

ΔbtrA/vectorΔbtrA/pbtrA

RB50/vectorRB50/pbtrS

ΔbtrA/vectorΔbtrA/pbtrS

ΔbtrA/vector

RB50/vector

25-20-

15-

37-

10-

50-

75-100-

150-

250-

kDa

Bsp22

RB50/pbtrA

ΔbtrA/pbtrA

ΔbtrA/vector

RB50/vector

RB50/pbtrA

ΔbtrA/pbtrA

pellet supernatant

FhaB

CyaA

Prn

25-20-

15-

37-

10-

50-

75-100-

150-

250-

kDa

D

FE G H

RB50/vector

ΔbtrA /vector ΔbtrA /pbtrS

RB50/p btrS

RB50/vector

ΔbtrA /vector ΔbtrA /pbtrS

RB50/p btrS

RB50/vector

ΔbtrA/vector

recA

btrA

+ mgDNA

bopN

bsp22

btrS

fhaB

RB50/pbtrS

ΔbtrA/pbtrS

cyaA

prn

flaA

+ m + m + m

relative-folddifference

btrA

btrS

bsp22

bopN

cyaA

fhaB prn

flaA

0.0

0.4

0.815913172125150300450 Δ

btrA/vector

RB50/vector

25-20-15-

37-

10-

50-

75-100-

150-

250-

kDa

CyaA

Prn

FhaB

RB50/pbtrS

ΔbtrA/pbtrS

ΔbtrA/vector

RB50/vector

RB50/pbtrS

ΔbtrA/pbtrS

pellet supernatant

Bsp22

25-20-15-

37-

10-

50-

75-100-

150-

250-

kDa

BvgS  

BvgA  

[Adenylate  cyclase/CyaA]  

CyaE  

CyaB  

 BteA  

[Pertussis  toxin]  (Bp  only)  

Capsule  

[Pertac4n]  

[FHA]  TCT  

Type  I  CyaD  

[Type  III]  

Vag8,  BrkA  Tcf  

Pep4doglycan  layer  

OM  

IM  

FimC  usher  

FimD  

Fim2  &  3  

FimB  

Type  IV  

vrg  

“Phospho-­‐relay”  

bvgA  bvgS   bvgR  

+  +  

FhaB  FhaC  

Adapted  from  Locht  et.  al.  Current  Opinion  in  Microbiology  2001,  4:82–89  

B A

F G H

A

B C D E

California  NanoSystems  Ins4tute