Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient...

107
Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coef cient of (linear) thermal expansion, α, for selected materials (COE or CTE) (units are ×10 6 °C 1 (i.e. ppm/°C)) A. Pure metals Aluminium 25 Chromium 6 Cobalt 12 Copper 17 Gold 14 Iron 12 Lead 29 Magnesium 25 Molybdenum 5 Nickel 13 Platinum 9 Silver 19 Tantalum 7 Tin 20 Titanium 9 Tungsten 5 Zinc 35 B. Alloys and MMCs Alloy 42 4.4 Aluminium (40 % silicon) 13.5 Aluminium, AA 6061 23.6 Aluminium, AA 3003 23.2 Aluminium, AA 2017 22.9 Boron aluminium (20 %) 12.7 Brass 18.0 Copper/invar/copper 20/60/20 thick 5.8 Copper/molybdenum/copper 20/60/20 thick 7.0 Graphite/aluminium 46 Invar 36 1.6 Invar 42 4.5 Inconel 600 13.0 Kovar (FeNiCo) 5.0 (continued) (continued) Indiumlead 33.0 Lead (95 %) tin solder 28.0 Tinlead solder 60/40 25.0 Magnesium, AZ31B 26.0 Ni-clad Molybdenum 56 Steel, 1020 12.0 Stainless steel (18-8) 17.0 Tungsten/copper (90/10) 6.5 Aluminium MMC with SiC particles (8050 % reinforcement) 614 C. Insulators and substrate materials (for electronic systems) a E glass 5.5 S glass 2.6 Glassceramic >3.0 Silicon 2.6 Diamond 0.9 Aluminium nitride 4.5 Silicon nitride 3.7 Quartz, fused silica 0.5 Kevlar 49 5 Beryllia 69 Cubic boron nitride xy 3.7 z 7.2 E glass/epoxy xy 1417 z 80280 E glass/polyimide xy 1216 z 4080 E glass/PTFE xy 24 z 260 Kevlar/epoxy xy 57 z 70 Kevlar/polyimide (continued) © Springer International Publishing Switzerland 2016 B.D. Dunn, Materials and Processes, Springer Praxis Books, DOI 10.1007/978-3-319-23362-8 557

Transcript of Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient...

Page 1: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Appendix 1: Coefcient of (Linear) ThermalExpansion for Selected Materials (COE or CTE)

Coefficient of (linear) thermal expansion, α, for selectedmaterials (COE or CTE) (units are ×10−6 °C−1 (i.e. ppm/°C))

A. Pure metals

Aluminium 25

Chromium 6

Cobalt 12

Copper 17

Gold 14

Iron 12

Lead 29

Magnesium 25

Molybdenum 5

Nickel 13

Platinum 9

Silver 19

Tantalum 7

Tin 20

Titanium 9

Tungsten 5

Zinc 35

B. Alloys and MMCs

Alloy 42 4.4

Aluminium (40 % silicon) 13.5

Aluminium, AA 6061 23.6

Aluminium, AA 3003 23.2

Aluminium, AA 2017 22.9

Boron aluminium (20 %) 12.7

Brass 18.0

Copper/invar/copper 20/60/20 thick 5.8

Copper/molybdenum/copper 20/60/20thick

7.0

Graphite/aluminium 4–6

Invar 36 1.6

Invar 42 4.5

Inconel 600 13.0

Kovar (Fe–Ni–Co) 5.0(continued)

(continued)

Indium–lead 33.0

Lead (95 %) tin solder 28.0

Tin–lead solder 60/40 25.0

Magnesium, AZ31B 26.0

Ni-clad Molybdenum 5–6

Steel, 1020 12.0

Stainless steel (18-8) 17.0

Tungsten/copper (90/10) 6.5

Aluminium MMC with SiC particles(80–50 % reinforcement)

6–14

C. Insulators and substrate materials (for electronic systems)a

E glass 5.5

S glass 2.6

Glass–ceramic >3.0

Silicon 2.6

Diamond 0.9

Aluminium nitride 4.5

Silicon nitride 3.7

Quartz, fused silica 0.5

Kevlar 49 –5

Beryllia 6–9

Cubic boron nitride

x–y 3.7

z 7.2

E glass/epoxy

x–y 14–17

z 80–280

E glass/polyimide

x–y 12–16

z 40–80

E glass/PTFE

x–y 24

z 260

Kevlar/epoxy

x–y 5–7

z 70

Kevlar/polyimide(continued)

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

557

Page 2: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

x–y 3.4–6.7

z 83

Quartz/polyimide

x–y 5–8

z 68.4

Quartz/bismaleimide

x–y, 35 % resin 6.2

z 35 % resin 41

Alumina (90 %) TF substrate 7.0

Alumina (ceramic chip carrier) 5.9–7.4

Epoxy (70 % silica) plastic packaging 20–23

Mulite co-fired 4.2

Gallium arsenide 5.7

Silicon carbide 3.6

Carbon fibre 60 %–epoxy −1.1

D. Other ceramics

A12O3 6.5–8.8

BeO 9

MgO 13.5

SiC 4.8

Silicon 2.6(continued)

(continued)

Si3N4 (α-phase) 2.9

Si3N4 (β-phase) 2.3

Spinel (MgAl2O4) 7.6

Soda–lime–silicate glass 9.2 (used in lightbulbs)

Borosilicate glass 4.6 (used with Kovar)

Silica (96 % pure) 0.8

Silica (99.9 % pure) 0.55

Zerodur Class 2 0.1

Zerdur Class 0 Extreme 0.007

E. Polymers (unorientated)

Polyethylene 100–200

Polypropylene 58–100

Polystyrene 60–80

Polytetrafluoroethylene 100

Polycarbonate 66

Nylon (6/6) 80

Cellulose acetate 80–160

Polymethylmethacrylate 50–90

Epoxy 45–90

Phenolformaldehyde 60–80

Silicones 20–40aFor temperature range −55 to +100 °C

558 Appendix 1: Coefficient of (Linear) Thermal Expansion for Selected Materials (COE or CTE)

Page 3: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Appendix 2: Properties of Printed Circuit Laminates

Material Thermal Mechanical

ConductivityW/M-K

CTEX, Y Dir.ppm/°C

CTEZ. Dirppm//°C

Max. useTemperature°C

GlasstransitionTemperature °C

TensilestrengthMPa

YieldstrengthMPa

Elongation%

Polymer compositesPolyimide glass 0.35 12–16 40–60 215–280 250–260 345 –

Epoxy glassa 0.16–0.2 14–18 180 130–160 125–135 276 –

Modified epoxyb – 14–16 – – 140–150 – –

PTFEe glass,non-woven

0.1–0.26 20 – 230–260 – – –

PTFEe glass,woven

419–837 10–25 – 248 – 38–52 –

Epoxy aramid 0.12 6–8 66 – 125 68–103 – –

Epoxy quartz – 6–13 62 – 125 – –

Polyimide aramid 0.28 5–8 83 – 250 – –

Polyimide quartz 0.35 6–12 35 – 188–250 207 –

Epoxy—cordierite 0.9–1.3 3.3–3.8 – – – – – –

Modified epoxyaramid

– 5.5–5.6 100 – 137 – –

PTFEe quartz – 7.5–9.4 88 – 19d – –

Polyimide 4.3–11.8 45–50 – 260–315 – – – 6–7

Metal compositesCu/Invar/Cu(20/60/20)

15–18c 5.3–5.5 16 – N/A 310–414 170–270 36

Cu/Invar/Cu(12.5/75/12.5)

14c 4.4 – – N/A 380–480 240–340

Cu/Mo/Cu 90–174 2.6 – – N/A – –

Ni/Mo/Ni 129.8c 5.2–6 5.2–6 – N/A 621 552 50

Published with permission from the IPC, 2215 Sanders Road, Northbrook, Illinois, USA. (Table from IPC-D-279 Design Guidelines for ReliableSurface Mount Technology Printed Circuit Board Assemblies, July 1996)aFR-4, G-10bPolyfunctional FR-4cZ-directiondPolymorphic pePTFE=Polytetrafluoroethylene

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

559

Page 4: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Appendix 3: Reagents for MicroetchingMetals and Alloys

A wide variety of techniques may be used for the identifi-cation of grain structures, phases, and other constituents inmetals and alloys. Metallographers are often able to predictthe chemical composition and processing history of ametallic sample by selectively etching its polished surfaceand comparing the microstructure to those of referencesamples in conjunction with published phase diagrams.

The following chemical reagents (etch compositions) arerecommended by the author for the etching of metals andalloys commonly encountered during the metallurgicalassessment of electrical and structural spacecraft materials.

Each chemical must be stored and handled according to themanufacturer’s recommendations. All chemicals are poten-tially dangerous and it is assumed that the person mixing,pouring, or etching is thoroughly familiar with their use. Ifthere is any uncertainty about their use, toxicity, or means ofdisposal, the user’s Chemical and Safety Department shouldbe contacted.

The concentrations of acids are given in terms of specificgravity (s.g.), or as a percentage (%) of the fully concen-trated value.

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

561

Page 5: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

No.

Reagent

compositio

nRem

arks

Metal

Aluminium

anditsalloys

1Hydrofluoricacid

(40%)

0.5ml

15sim

mersion

isrecommended.

Particlesof

allcommon

microconstituentsareoutlined.

Colourindicatio

ns

Hydrochloricacid

(1.19)

1.5ml

Nitric

acid

(1.4)

2.5ml

Water

95.5

ml

Mg 2Si

andCaSi 2

Blueto

brow

n

α(A

lFeSi)and(A

lFeM

n)Darkened

β(A

lCuF

e)Light

brow

n

(Keller’setch)

MgZ

n 2,NiAl 3,(A

lCuF

eMn),Al 2CuMgandAl 6CuM

gBrownto

black

α(A

lCuF

e)and(A

lCuM

n)Blackened

Al 3Mg 2

Heavily

outlinedandpitted

The

coloursof

otherconstituentsarelittle

altered.

Not

good

forhigh

Sialloys

Desmut

in50

%nitric

acid

ifnecessary

2So

dium

hydroxide

1g

Specim

ensareetched

bysw

abbing

for10

s.Allusualconstituentsareheavily

outlined,

except

forAl 3Mg 2

(which

may

belig

htly

outlined)

and(A

lCrFe)

which

isboth

unattacked

anduncoloured.Colourindicatio

nsWater

99ml

FeAl 3andNiAl 3

Slightly

darkened

(AlCuM

g)Light

brow

n

α(A

lFeSi)

Dullbrow

n

α(A

lFeSi)

Rough

andattacked;slightly

darkened

MnA

l 6and(A

lFeM

n)Colouredbrow

nto

blue

(unevenattack)

MnA

l 4Tends

tobe

darkened

The

coloursof

otherconstituentsareonly

slightly

altered

Berylliu

m

3Hydrofluoricacid

(40%)

10ml

Etchby

immersion

for10

–30

sto

outline

grainboundaries

andmicroconstituents

Ethyl

alcohol

90ml

4Water

95ml

Bealloys

may

beetched

inthereagent(1–15

s)

Sulphuricacid

(1.84)

5ml

Note:during

thepreparationof

beryllium

samples,d

onotb

reathe

dust,asthisisextrem

elytoxic.Cuttin

goperations

mustb

edone

undercontrolledconditions,preferably

inaglovebox.

Seetext

fortheremovalof

mechanicaltwins.Po

lishing

clothwill

becontam

inated

with

berylliaandneedsto

bedisposed

ofaccordingto

localh

ealth

andsafety

requirem

ents.M

etallographersshould

wearrubber

gloves

andavoidcontactw

ithetchants

Chrom

ium

5Hydrochloricacid

(concentrated)

Show

sstriations

inelectrodeposits

Cop

per,

copp

eralloys,brass,bron

ze,e

tc.

6Ammonium

hydroxide

50ml

Usedforcopper,manycopper-richalloys

Water

50ml

Gives

agrainboundary

etch,a

ndalso

tendsto

darken

theαsolid

solutio

n,leavingtheβsolid

solutio

nlig

hter.T

hehydrogen

peroxide

contentmay

bevaried.Lessisrequired

thelower

thecopper

content

Hydrogenperoxide

(30vol.)

20ml

7Ferric

chloride,variousstrengthsandcompositio

nsUsedas

ageneralreagent

forc

opper,brass,bronze,n

ickel–silver,aluminium–bronze,and

othercopper-richalloys.It

darkenstheβconstituent

inbrassesandgivesgraincontrastfollo

wingam

moniacalo

rchromicacid

etches.T

hemost

suitablecompositio

nshould

befoundby

trialand

errorin

specificcases.Thisreagentg

enerally

emphasizes

scratches

inim

perfectly

prepared

specim

ens,andtendsto

roughenthesurface.

Forsensitive

workitisfrequently

agreat

advantageto

replacethewater

inthereagentby

a50:50water–alcoholmixture

orby

pure

alcohol

To100partsof

water

areadded

Hydrochloricacid

(1.19)

Ferric

chloride

(g)

201

105

505

(con

tinued)

562 Appendix 3: Reagents for Microetching Metals and Alloys

Page 6: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(con

tinued)

No.

Reagent

compositio

nRem

arks

8Po

tassium

dichromate

2g

Usedforcopper,and

copper

alloys

with

beryllium

,manganese,and

silicon.A

lsosuitablefornickel–silver,b

ronzes,

andchromium–copper

alloys.Thisreagentshould

befollo

wed

byaferric

chloride

etch

togive

addedcontrast

Water

100ml

Sodium

chloride

(saturated)

4ml

Sulphuricacid

(s.g.1.84)

8ml

Gold

9Hydrochloricacid

(concentrated)

60ml

Use

underahood,im

merse

forafew

seconds

Nitric

acid

(concentrated)

(AquaRegia)

40ml

10Po

tassium

cyanide,

10%

inwater

10ml

Usedforg

oldandits

alloys.A

freshsolutio

n,warmed

ifnecessary,mustb

eused

foreachoperation.The

etchingtim

evaries

from

0.5to

3min.T

heattack

may

bespeededup

bytheadditio

nof

2%

ofpotassium

iodide,b

utthisisliable

togive

staining

effects

Ammonium

persulphate,

10%

inwater

10ml

11Tinctureof

iodine,50

%solutio

nin

aqueouspotassium

iodide

Usedforgold

alloys.W

ithsilver-goldalloys

asilver

iodide

film

may

form

.Thismay

beremoved

byim

mersion

inpotassium

cyanidesolutio

n

Indium

andindium

alloys

12Hydrochloricacid

(1.19)

20ml

General

etchant,useby

immersion

forafew

seconds.[For

very

detailedstudiesof

indium

–gold

reactio

nlayers,see

Millares

andPeraggi(1992)]

Picric

acid

4g

Ethyl

alcohol

400ml

Iron

andsteel

13Nitric

acid

(1.40)

1.5–5mlto

100ml

Ferrite

g.b.’s

inlow-carbonsteels.Darkens

pearliteandgivescontrast

with

ferrite

orcementitenetwork.

Etches

martensite

andits

decompositio

nproductsin

manysteels.B

etterthan

Picralforlow-allo

ysteelsandforferriticgrain

boundaries

5–30

sdependingon

steel

Ethanol

(Nitaletch)

14Picric

acid

1g

Attacksprioraustenite

boundaries

Hydrochloricacid

(Vilella’s

reagent)

5ml

Goodforferriticsteels

15Nitric

acid

(1.40)

10ml

Immerse

upto

30s.Goodforhigh-chrom

ium

steels,austeniticstainlesssteel,etc.

Donotkeep,discardwhenyello

w,ifleftthisreagentcan‘explode’

Hydrochloricacid

(1.19)

20ml

Glycerol

30ml

16Ferric

chloride

2g

Intool

steelsattacksferrite

andmartensite,outlinescarbides,leaves

austenite

unattacked

Hydrochloricacid

(1.19)

5ml

Water

(Kallin

g’sreagent)

30ml

Immerse

1–5min

Molyb

denu

m

17(a)Po

tass,hydroxideWater

10gto

100ml

Mix

equalam

ountsof

(a)and(b)as

needed

Grain

boundary

etch

(b)Po

t.ferricyanide

Water

10gto

100ml

18Ammonia

(0.88)

50ml

Boilforup

to10

min

General

etch

Hydrogenperioxide(3

%)

50ml

Water

50ml

Nickelan

ditsalloys

19Nitric

acid

(1.40)

10ml

Pure

nickel,andnickel–chromium

alloys.Grain

boundaries

etched

Hydrochloricacid

(1.19)

20ml

Glycerol

30ml

20Nitric

acid

(1.40)

10ml

Usedforpure

nickel,cupro-nickel,Monel

metal,andnickel–silver

Acetic

acid

10ml

Acetone

10ml

(con

tinued)

Appendix 3: Reagents for Microetching Metals and Alloys 563

Page 7: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(con

tinued)

No.

Reagent

compositio

nRem

arks

21Hydrochloricacid

(1.19)

300ml

Standin

fumecupboard

for24

h;usediluted50:50with

water.G

oodforNilo

Ketc.Can

bekept

asstocksolutio

n

Nitric

acid

(1.40)

100ml

Ferric

chloride

25g

Cupricchloride

25g

(‘Green

specialetch’,also

know

nas

Pinder’s

etch)

Platinu

mgrou

pof

metals(e.g.Pt,Pd,

Rh,

Ru,

Ir,O

s)

–Use

AquaRegia—

seeEtchant

No.

9(m

ayneed

tobe

warmed)

Grain

contrasting

22Po

tasssium

ferricyanide

3.5g

Severalminutes

immersion

Mostalloys,forgeneraletchingof

grainboundaries

Sodium

hydroxide

1g

Water

150ml

Silver

23Ammonium

hydroxide

50ml

Recom

mendedforsilver,silver–nickel,andsilver–palladium

alloys.Alsouseful

fortheexam

inationof

silver-

soldered

joints

Hydrogenperoxide

(3%)

10–30

ml

24Su

lphuricacid

(10%

inwater)to

which

afew

crystalsof

chromic

acid

CrO

3

have

been

added(2

g)Thisreagentrevealsthegrainstructureof

silver

andsilver

rich-allo

ys

Tin

anditsalloys

25Nitric

acid

(1.40)

2%

inalcohol

Micro

etch

with

high

contrast,which

blackens

lead

anddarkenstin

tolig

htbrow

nafterprolongedim

mersion

26Silver

nitrate

5g

Micro

etch

recommendedforlead-richalloys.Darkens

prim

aryandeutectic

lead

andproduces

avery

high

grain

contrast

Water

100ml

Titan

ium

anditsalloys

27Hydrofluoricacid

(40%)

1–3ml

3–10

sMostuseful

generaletch,especially

forTi6A14V

alloy

Plastic

mountsmustbe

thoroughly

washedto

removeallhydrofluoricacid

asredisudalacid

will

etch

anddamage

glassmicroscopelens

Nitric

acid

(1.40)

2–6ml

Water

(Kroll’sreagent)

to100ml

28Po

tassium

hydroxide(40%)

10ml

3–20

sUsefulforα/βalloys,αisattacked

orstained.

βunattacked

Hydrogenperoxide

(30%)

5ml

Water

(can

bevaried

tosuitalloy)

20ml

Marinol

blue—

50%

Benzalconium

chloride

solutio

n10

–15

ml

Stainetch

toshow

alpha-stabilizedlayer

29Glycerol

40ml

The

specim

enmustb

edry,

andsw

abetchinggivesbestcontrol;tim

eof

etchingvaries;contin

ueuntil

specim

enturns

light-brown

Methylatedspirit

40ml

Hydrofluoricacid

(40%

)5–

10ml

Tun

gsten

30So

dium

hydroxide,

10%

inwater

10ml

Thisreagentisused

cold

and,

onim

mersion

ofthespecim

enforapproxim

ately10

s,develops

grainboundaries

(Murakam

i’sreagent)

Potassium

ferricyanide,10%

inwater

10ml

31Hydrogenperoxide,3%

inwater

Thisreagentdevelops

grainboundaries,butonly

aftersome30

–90

sin

theboiling

reagent

564 Appendix 3: Reagents for Microetching Metals and Alloys

Page 8: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Appendix 4: Conversion Table for MechanicalProperties

Conversion table for mechanical properties (N/mm2(MPa) to hbar,tonf/in2, lbf/in2and kgf/mm2)

N/mm2 hbar tonf/in.2 lbf/in.2 kgf/mm2

5 0.5 0.3 700 0.5

10 1 0.6 1500 1.0

15 1.5 1.0 2200 1.5

20 2 1.3 2900 2.0

25 2.5 1.6 3600 2.5

30 3 1.9 4400 3.1

35 3.5 2.3 5100 3.6

40 4 2.6 5800 4.1

45 4.5 2.9 6500 4.6

50 5 3.2 7300 5.1

55 5.5 3.6 8000 5.6

60 6 3.9 8700 6.1

65 6.5 4.2 9400 6.6

70 7 4.5 10,200 7.1

75 7.5 4.9 10,900 7.6

80 8 5.2 11,600 8.2

85 8.5 5.5 12,300 8.7

90 9 5.8 13,100 9.2

95 9.5 6.2 13,800 9.7

100 10 6.5 14,500 10.2

105 10.5 6.8 15,200 10.7

110 11 7.1 16,000 11.2

115 11.5 7.4 16,700 11.7

120 12 7.8 17,400 12.2

125 12.5 8.1 18,100 12.7

130 13 8.4 18,900 13.3

135 13.5 8.7 19,600 13.8

140 14 9.1 20,300 14.3

145 14.5 9.4 21,000 14.8

150 15 9.7 21,800 15.3

155 15.5 10.0 22,500 15.8

160 16 10.4 23,200 16.3

165 16.5 10.7 23,900 16.8

170 17 11.0 24,700 17.3

175 17.5 11.3 25,400 17.8(continued)

(continued)

N/mm2 hbar tonf/in.2 lbf/in.2 kgf/mm2

180 18 11.7 26,100 18.4

185 18.5 12.0 26,800 18.9

190 19 12.3 27,600 19.4

195 19.5 12.6 28,300 19.9

200 20 12.9 29,000 20.4

205 20.5 13.3 29,700 20.9

210 21 13.6 30,500 21.4

215 21.5 13.9 31,200 21.9

220 22 14.2 31,900 22.4

225 22.5 14.6 32,600 22.9

230 23 14.9 33,400 23.5

235 23.5 15.2 34,100 24.0

240 24 15.5 34,800 24.5

245 24.5 15.9 35,500 25.0

250 25 16.2 36,300 25.5

255 25.5 16.5 37,000 26.0

260 26 16.8 37,700 26.5

265 26.5 17.2 38,400 27.0

270 27 17.5 39,200 27.5

275 27.5 17.8 39,900 28.0

280 28 18.1 40,600 28.6

285 28.5 18.5 41,300 29.1

290 29 18.8 42,100 29.6

295 29.5 19.1 42,800 30.1

300 30 19.4 43,500 30.6

305 30.5 19.7 44,200 31.1

310 31 20.1 45,000 31.6

315 31.5 20.4 45,700 32.1

320 32 20.7 46,400 32.6

325 32.5 21.0 47,100 33.1

330 33 21.4 47,900 33.7

335 33.5 21.7 48,600 34.2

340 34 22.0 49,300 34.7

345 34.5 22.3 50,000 35.2

350 35 22.7 50,800 35.7

355 35.5 23.0 51,500 36.2(continued)

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

565

Page 9: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

N/mm2 hbar tonf/in.2 lbf/in.2 kgf/mm2

360 36 23.3 52,200 36.7

365 36.5 23.6 52,900 37.2

370 37 24.0 53,700 37.7

375 37.5 24.3 54,400 38.2

380 38 24.6 55,100 38.7

385 38.5 24.9 55,800 39.3

390 39 25.3 56,600 39.8

395 39.5 25.6 57,300 40.3

400 40 25.9 58,000 40.8

405 40.5 26.2 58,700 41.3

410 41 26.5 59,500 41.8

415 41.5 26.9 60,200 42.3

420 42 27.2 60,900 42.8

425 42.5 27.5 61,600 43.3

430 43 27.8 62,400 43.8

435 43.5 28.2 63,100 44.4

440 44 28.5 63,800 44.9

445 44.5 28.8 64,500 45.4

450 45 29.1 65,300 45.9

455 45.5 29.5 66,000 46.4

460 46 29.8 66,700 46.9

465 46.5 30.1 67,400 47.4

470 47 30.4 68,200 47.9

475 47.5 30.8 68,900 48.4

480 48 31.1 69,600 48.9(continued)

(continued)

N/mm2 hbar tonf/in.2 lbf/in.2 kgf/mm2

485 48.5 31.4 70,300 49.5

490 49 31.7 71,100 50.0

495 49.5 32.1 71,800 50.5

500 50 32.4 72,500 51.0

505 50.5 32.7 73,200 51.5

510 51 33.0 74,000 52.0

515 51.5 33.3 74,700 52.5

520 52 33.7 75,400 53.0

525 52.5 34.0 76,100 53.5

530 53 34.3 76,900 54.0

535 53.5 34.6 77,600 54.6

540 54 35.0 78,300 55.1

545 54.5 35.3 79,000 55.6

550 55 35.6 79,800 56.1

555 55.5 35.9 80,500 56.6

560 56 36.3 81,200 57.1

565 56.5 36.6 81,900 57.6

570 57 36.9 82,700 58.1

575 57.5 37.2 83,400 58.6

580 58 37.6 84,100 59.1

585 58.5 37.9 84,800 59.7

590 59 38.2 85,600 60.2

595 59.5 38.5 86,300 60.7

600 60 38.8 87,000 61.2

566 Appendix 4: Conversion Table for Mechanical Properties

Page 10: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Appendix 5: Aluminium Alloy Temper Designations

The compositions and temper conditions of aluminiumalloys are designated by the Aluminium Association (AA)and are recognized internationally. Further information canbe obtained from the AA.

The Basic Temper Designations are as follows:

F As fabricatedO AnnealedH Strained hardenedT Thermally treated to produce stable tempers other

than F, O, H

The Subdivisions of H temper are as follows:

(a) First digitH1 strain hardened onlyH2 strain hardened and partially annealedH3 strain hardened and stabilized

(b) Second digit1 1/8 hard2 quarter hard3 3/8 hard4 half hard5 5/8 hard6 three quarters hard7 7/8 hard8 fully hard

9 the minimum ultimate tensile strength exceeds thatof the fully hard by at least 10 MPa.

The second digit indicates the degree of hardening andis a number from 1 to 9.

(c) Third digitA third digit may be used to denote a further charac-teristic or variation.

Spacecraft aluminium alloys are generally subdivisionsof the T temper, as shown below

A more precise description of the T tempers is as follows,but whenever possible the original material specificationshould be consulted, as some deviations exist:

T1 Cooled from an elevated temperature-shapingprocess and naturally aged to a substantiallystable condition

T2 Cooled from an elevated temperature-shapingprocess, cold-worked, and naturally aged to asubstantially stable condition

T3 Solution heat-treated, cold-worked, and natu-rally aged to a substantially stable condition

T351 Solution heat-treated and stress-relieved bystretching to produce a permanent set of 2 %nominal but not less than 1.5 % nor more than3 %. Product shall receive no further straight-ening after stretching

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

567

Page 11: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

T3510 Solution heat-treated and stress-relieved bystretching to produce a nominal permanent setof 1.5 %, but not less than 1 % nor more than3 %. Extrusions shall receive no straighteningafter stretching

T3511 Solution heat-treated and stress-relieved bystretching to produce a nominal permanent setof 1–1.5 %, but not less than 1 % nor more than3 %. Extrusions may receive minor straighten-ing, after stretching, of an amount necessary tomeet the tolerances

T352 Solution heat-treated and stress-relieved bycompression to produce a permanent set of 1.5–5 %. During compression, primary focus shallbe applied in the axial direction

T36 Solution heat-treated and cold-worked byreduction of approximately 6 %

T361 Solution heat-treated and cold-reduced approx-imately 6 % in thickness

T4 Solution heat-treated and naturally aged to asubstantially stable condition

T42 Material purchased in any temper and subse-quently solution heat-treated and naturally agedto a substantially stable condition by the user

T451 Rolled or cold-finished, stress-relieved bystretching to produce a nominal permanent set of1.5 % but not less than 1 % nor more than 3 %Product shall receive no further operations afterstretching unless specifically authorized bypurchaser

T4510 Solution heat-treated and stress-relieved bystretching to produce a permanent set of 1.5 %nominal, but not less than 1 % nor more than3 %. Material shall receive no further straight-ening after stretching

T4511 Solution heat-treated and stress-relieved bystretching to produce a permanent set of 1.5 %nominal, but not less than 1 % nor more than3 %. Material may receive minor straighteningafter stretching

T5 Cooled from an elevated temperature-shapingprocess and then artificially aged (wroughtproducts). Stress-relieved (castings)

T51 Precipitation heat-treated (castings)T6 Solution and precipitation heat-treatedT61 Solution heat-treated and precipitation

heat-treated. Quenching from the solution tem-perature shall be into water at 80–85 °C

568 Appendix 5: Aluminium Alloy Temper Designations

Page 12: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

T611 Solution and precipitation heat-treated, lowresidual stressesMaterial may, after quenching from the solutionheat-treatment temperature, receive minorstraightening in an amount necessary to meettolerances specified on the drawing

T62 Solution heat-treated and then artificially agedby the user

T651 Solution heat-treated and stress-relieved bystretching to produce a permanent set of 2 %nominal but not less than 1.5 % nor more than3 %, and artificially aged. Product shall receiveno further straightening after stretching

T6510 Solution heat-treated and stress-relieved bystretching to produce a permanent set of 1.5 %nominal, but not less than 1 % nor more than3 % and artificially aged. Material shall receiveno further straightening after stretching

T6511 Solution heat-treated and stress-relieved bystretching to produce a permanent set of 1.5 %nominal, but not less than 1 % nor more than3 %, and artificially aged. Material may receiveminor straightening after stretching

T652 Solution heat-treated and stress-relieved bycompression to produce a permanent set of 1.5–5 %, and precipitation heat-treated. Duringcompression, primary focus shall be applied inthe axial direction and on individual ringsapproximately final dimensions

T66 Solution and precipitation heat-treatedT7 Solution heat-treated and overaged/stabilizedT71 Solution and precipitation heat-treated (castings)T72 Solution heat-treated and then artificially over-

aged by the userT73 See T74T7351 Solution heat-treated and stress-relieved by

stretching to produce a nominal permanent setof 2 % but not less than 1.5 % nor more than3 %, and precipitation heat-treated. Plate shallreceive no further straightening operations afterstretching

T73510 Solution heat-treated and stress-relieved bystretching to produce nominal permanent set of1.5 % but not less than 1 % nor more than 3 %,and precipitation heat-treated. Material shallreceive no further straightening after stretching

T7311 Solution heat-treated and stress-relieved bystretching to produce nominal permanent set of1.5 %, but not less than 1 % nor more than 3 %,and precipitation heat-treated. Material mayreceive minor straightening, after stretching, anamount necessary to meet required dimensionaltolerances

T7352 Solution heat-treated and stress-relieved bycompression to produce a permanent set of notless than 1 % nor more than 5 %, andprecipitation heat-treated. The method anddirection of compression shall be as agreed uponby purchaser and vendor

T736 See T74T73651 Solution heat-treated and stress-relieved by

stretching to produce a nominal set of 2 % butno less than 1.5 % nor more than 3 %, andprecipitation heat-treated

T736511 Solution heat-treated and stress-relieved bystretching to produce a nominal permanent setof 1.5 % but not less than 1 % nor more than3 %, and precipitation heat-treated. Materialmay receive minor straightening after stretching,to meet required dimensional tolerances

T73652 Solution heat-treated and stress-relieved bycompression to produce a permanent set of notless than 1 % nor more than 5 %, andprecipitation heat-treated. The method anddirection of compression shall be as agreed uponby purchaser and vendor

T74 (Previously T73 or T736.) Solution heat-treatedand artificially aged to resist stress-corrosioncracking

T7451 Solution heat-treated and stress-relieved bystretching to produce a nominal permanent setof 2 % but not less than 1.5 % nor more than3 %, and precipitation heat-treated. Plate shallreceive no further straightening operations afterstretching

T7452 Solution heat-treated and stress-relieved bycompressing to produce a permanent set of 1–5 % and overaged

T76 Solution heat-treated and artificially aged suffi-cient to produce improved resistance toexfoliation

T761 Solution heat-treated and precipitationheat-treated. The T7 tempers require closercontrol on ageing practice variables such astime, temperature, heating-up rates, etc

T7651 Solution heat-treated and stress-relieved bystretching to produce a permanent set of 2 %nominal but not less than 1.5 % nor more than3 %, and artificially aged sufficient to produceimproved resistance to exfoliation andstress-corrosion cracking. Plate shall receive nofurther straightening after stretching

T76511 Solution heat-treated and stress-relieved bystretching to produce a nominal permanent setof 1.5 %, but not less than 1 % nor more than3 %, and precipitation treated. Material may

Appendix 5: Aluminium Alloy Temper Designations 569

Page 13: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

receive minor straightening, after stretching, ofan amount necessary to meet required dimen-sional tolerances

T77 Solution-treated and stabilizedT8 Solution heat-treated, cold-worked, and then

artificially agedT81 Solution heat-treated, cold-worked by the flat-

tening operation, and then artificially agedT851 Solution heat-treated and stress-relieved by

stretching to produce a permanent set of 2 %nominal but not less than 1.5 % nor more than3 %, and artificially aged. Plate shall receive nofurther straightening after stretching

T8511 Solution heat-treated and stress-relieved bystretching to produce a nominal permanent set

of 1.5 % but not less than 1 % nor more than3 %, and precipitation heat-treated

T852 Solution heat-treated and stress-relieved bycompression, to produce a permanent set of 1–5 %, and precipitation heat-treated

T86 Solution heat-treated, cold-worked by a reduc-tion of approximately 6 %, and then artificiallyaged

T861 Solution heat-treated, cold-reduced approxi-mately 6 % in thickness, and precipitationheat-treated

T9 Solution heat-treated, artificially aged, and thencold-worked

T10 Cooled from an elevated temperature-shapingprocess, cold-worked, and then artificially aged

570 Appendix 5: Aluminium Alloy Temper Designations

Page 14: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Appendix 6: Metal Alloy Comparison Tables

Introduction

Marshall Space Flight Center document MSFC-SPEC-522A,entitled ‘Design criteria for controlling stress corrosioncracking’, contains a list of alloys. Each alloy bears a five-digit classification number, which is made up as follows:

The first digit denotes the class:

1. Steels2. Nickel alloys3. Aluminium alloys4. Copper alloys5. Titanium alloys6. Magnesium alloys7. Miscellaneous

The second digit denotes the subclass.The last three digits are a serial number within the

subclass.The list contained in the following pages is based on the

list described above, which forms as it were the framework.Into this framework have been intercalated those British,French and German alloy specifications that most closelycorrespond to their American counterparts. If an Americanspecification is not followed by such a European specifica-tion, that means that diligent searching has failed to reveal anequivalent.

It is for the user to decide from the composition whetherthe related specifications are sufficiently similar to permit theBritish, French or German alloy to be regarded as a suitablesubstitute for the American alloy. In all critical applicationsthe individual alloy specifications must be consulted asprecise compositions, tolerance in composition, the presentof trace elements, etc. can be important. No attempt has beenmade to relate materials on the basis of form, but reference tothe specification numbers will give guidance in this matter.

In the case of the steels and the aluminium alloys, the listmust be used in conjunction with the notes appended at theend of the relevant section.

Following the list, there is an index that enables the five-digit table numbers to be related to the unified numberingsystem (UNS) of the Society of Automotive Engineers(SAE) and the American Society for Testing Materials(ASTM). The UNS numbers are prefixed by letter symbolsthat have the following meaning:

A Aluminium and aluminium alloysC Copper and copper alloysG AISI and SAE carbon steelsJ Cast steels (except tool steels)K Miscellaneous nonferrous metals and alloysN Nickel and nickel alloysR Reactive and refractory metals and alloysS Heat- and corrosion-resistant (stainless) steelsT Tool steels, wrought and cast

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

571

Page 15: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Alloy equivalents—steels

Composition

Country Designation C Si Mn P S Other

Carbon steels

11001 USA AISI/SAE 1005 (UNS G10050) <.06 *1 <.35 <.04 <.05 –

UK BS970 015A03 <.06 *1 <.3 <.05 <.05 –

F AFNOR FD5 .04–.07 – .2–.4 .02 .025 –

F AFNOR FD4 .04–.07 <.1 .2–.4 .025 .03 –

G DIN 17140 D6-2 Wk. 1.0314 <.06 *2 <.4 <.04 <.04 N < .007 *3

G DIN 17140 D5-1 Wk. 1.0312 <.06 *2 <.4 <.05 <.05 –

11002 USA AISI/SAE 1006 (UNS G10060) <.08 *1 .25–.4 <.04 <.05 –

UK BS970 030A04 <.08 *1 .2–.4 <.05 <.05 –

G DIN 17140 D7-1 Wk. 1.0311 <.08 *2 <.45 <.06 <.05 –

G DIN 17140 D8-2 Wk. 1.0313 <.08 *2 <.45 <.045 <.04 N < .007 *3

11003 USA AISI/SAE 1008 (UNS G10080) <.1 *1 .3–.5 <.04 <.05 –

UK BS970 040A04 <.08 *1 .3–.5 <.05 <.05 –

F AFNOR FdTu4 <.09 – .25–.5 – – N < .006

F AFNOR FdTu2 <.08 – .35–.6 – N < .014 Mn/S > 10

F AFNOR FdTu10 <.1 – .25–.5 – – N < .01

F AFNOR FdTu11 <.1 <.1 .25–.5 – –

F AFNOR Fd2 .04–.1 – .2–.45 – – N < .007

F AFNOR Fd12 .04–.1 – .2–.5 – – N < .007

G Ust4, US14 Wk. 1.0336 <.09 *2 .25–.5 <.03 <.03 N < .007

G DIN 1623; 1624; 5512; st2, st12 Wk.1.0330

<.1 *2 .2–.45 <.033 <.035 N < .007 *3

G DIN 1623. B11; 001624; st3, st13 Wk.1.0333

<.1 *2 .2–.4 <.025 <.023 N < .007

G DIN 17115; Ust35-2; Wk. 1.0207 .06–.14 *2 .4–.6 <.04 <.04 N < .007 *3—AlsoAISI 1010

G DIN 17115; Rst35-2; Wk. 1.0208 .06–.12 .03–25 .4–.6 <.04 <.04 Also AISI 1010

G DIN 17111; UQst 36-2; Wk. 1.0204 .08–.13 *2 1.25–.45 <.04 <.04 N < .007 *3—AlsoAISI 1010

G DIN 17111; Rst 36-2; Wk. 1.0205 <.13 <.4 25–.5 <.05 <.5 N < .007 *3-Also AISI1010

11004 USA AISI/SAE 1010 (UNS G10100) .08–.13 *1 .3–.6 <.04 <.05 –

UK BS970 040A10 .08–.13 *1 .3–.5 <.05 <.05 –

UK BS970 045A10 .08–.13 *1 .3–.6 <.05 <.05 –

F AFNOR Xc9 .06–.12 .05–.3 .3–.5 – – –

G DIN 17210; 1652 Ck10 Wk. 1.1121 .07–.13 .15–.35 .3–.6 <.035 <.035 –

G DIN 17210; 1652 c9 Wk. 1.0301 .07–.13 .15–.33 .3–.6 <.045 <.043 –

11005 USA AISI/SAE 1011 (UNS G10110) .08–.13 *1 .6–.9 <.04 <.05 –

UK BS970 060A10 .08–.13 *1 .5–.7 <.05 <.05 –

11006 USA AISI/SAE 1012 (UNS G10120) .1–.15 – .3–.6 <.04 <.05 –

UK BS970 040A12 .1–.15 *1 .3–.5 <.05 <.05 –

F AFNOR XC 12 .1–.16 .05–.3 .3–.5 – – –

G DIN 17210; 1652 Ck10Wk. 1.1121 .07–.13 .15–.35 .3–.6 <.035 <.035 –

G DIN 17210; 1652 c9 Wk. 1.0301 .07–.13 .15–.35 .3–.6 <.045 <.045 –

11007 USA AISI/SAE 1015 (UNS G10150) .13–.18 *1 .3–.6 <.04 <.05 –

UK BS970 040A15 .13–.18 *1 .3–.5 <.05 <.05 –

UK BS970 050A15 .13–.18 *1 .4–.6 <.05 <.05 –

F AFNOR XC12 .1–.16 .05–.3 .3–.5 – – –

G DIN 17210; 1652 Ck15 Wk. 1.1141 .12–.18 .15–.35 .3–.6 <.035 <.035 –

11008 USA AISI/SAE 1016 (UNS G10160) .13–18 *1 .6–.9 <.04 <.05 –

UK BS970 080A15 .13–.18 *1 .7–.9 <.05 <.05 –

G DIN 17111; Rst 44.2 Wk. 1.0419 <.18 <.45 <.8 <.05 <.05 N < .007

11009 USA AISI/SAE 1017 (UNS G10170) .15–.2 *1 .3–.6 <.04 <.05 –

UK BS970 040A17 .15–.2 *1 .3–.5 <.05 <.05 –

F AFNOR XC18 .16–.22 <.25 .4–.65 – – –

G DIN 17210; 1652 Ck15 Wk. 1.1141 .12–.18 .15–.35 .3–.6 <.035 <.035 –

(continued)

572 Appendix 6: Metal Alloy Comparison Tables

Page 16: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

Composition

Country Designation C Si Mn P S Other

11010 USA AISI/SAE 1018 (UNS G10180) .15–.2 *1 .6–.9 <.04 <.05 –

UK BS970 080A17 .15–.2 *1 .7–.9 <.05 <.05 –

G DIN 17172; st43.7 Wk. 1.0484 <.22 <.4 .5–1.1 <.04 <.045 –

11011 USA AISI/SAE 1019 (UNS G10190) .15–.2 *1 .7–1.0 <.04 <.05 –

UK BS970 080A17 .15–.2 *1 .7–.9 <.05 <.05 –

G DIN 17172; St43.7 VVk.1.0484 <.22 <.4 .5–1.1 <.04 <.045 –

11012 USA AISI/SAE 1020 (UNS G10200) .18–.23 *1 3–.6 <.04 <.05 –

UK BS970 040A20 .18–.23 *1 .3–.5 <.05 <.05 –

F AFNOR CC20 .15–.25 .1–.4 .4–.7 <.04 <.04 –

G DIN 17200; 17242; 17243; 1652. C22Wk. 1.0402

.18 .25 .15–.35 .3–.6 <.045 <.045 –

11013 USA AISI/SAE 1021 (UNS G10210) .18–.23 *1 .6–.9 <.04 <.05 –

UK BS970 080A20 .18–.23 *1 .7–.9 <.05 <.05 ––

G DIN 17172; St47.7 Wk. 1.0409 <.22 .2–.45 .7–1.3 <.04 <.035 N < .009

11014 USA AISI/SAE 1022 (UNS G10220) .18–.23 *1 .7–1.0 <.04 <.05 –

UK BS970 080A20 .18–.23 *1 .7–.9 <.05 <.05 –

G DIN 17172; St47.7 Wk. 1.0409 <.22 .2–.45 .7–1.3 <.04 <.035 –

11015 USA AISI/SAE 1023 (UNS G10230) .2–.25 *1 .3–.6 <.04 <.05 –

UK BS970 040A22 .2–.25 *1 .3–.5 <.05 <.05 –

F AFNOR XC18S .15–.22 <.25 .4–.65 <.04 <.035 –

G DIN 17200; 1652. Ck22 Wk. 1.1151 .18–.25 .15–.35 .3–6 <.035 <.035 Cr < .5

11016 USA AISI/SAE 1025 (UNS G10250) .22–.28 *1 .3–.6 <.04 <.05 –

UK BS970 060A25 .23–.28 *1 .5–.7 <.05 <.05 –

F AFNOR XC25 .23–.29 .1–.4 .4–.7 – – –

G Ck25 Wk. 1.1158 .22–.29 .15–.4 .4–.7 <.035 <.035 –

11017 USA AISI/SAE 1026 (UNS G10260) .22–.28 *1 .6–.9 <.04 <.05 –

UK BS970 080A25 .23–.28 *1 .7–.9 <.05 <.05 –

11018 USA AISI/SAE 1029 (UNS G10290) .25–.31 *1 .6–.9 <.04 <.05 –

UK BS970 080A27 .25–.30 *1 .7–.9 <.05 <.05 –

11019 USA AISI/SAE 1030 (UNS G10300) .28–.34 *1 .6–.9 <.04 <.05 –

UK BS970 080A30 .28–.33 *1 .7–.6 <.05 <.05 –

11020 USA AISI/SAE 1035 (UNS G10350) .32–.38 *1 .6–.9 <.04 <.05 –

UK BS970 080A35 .33–.38 *1 .7–.9 <.05 <.05 –

F AFNOR XC32 .3–.35 .1–.4 .5–.8 – –– –

G DIN 17200; 17240; 0017242. Ck35Wk. 1.1181

.32–.39 .15–.35 .5–.8 <.035 <.035 –

11021 USA AISI/SAE 1037 (UNS G10370) .32–.38 *1 .7–1.0 <.04 <.05 –

UK BS970 080A35 .33–.38 *1 .7–.9 <.05 <.05 –

F AFNOR XC35 .32–.38 .1–.4 .5–.8 <.04 <.035 –

G DIN 17200; 17240; 0017242 Ck35Wk. 1.1181

.32–.39 .15–.35 .5–.8 <.035 <.035 –

11022 USA AISI/SAE 1038 (UNS G10380) .35–.42 *1 .6–.9 <.04 <.05 –

UK BS970 080A37 .35–.4 *1 .7–.9 <.05 <.05 –

F AFNOR XC38 .35–.4 .1–.4 .5–.8 <.035 <.035 –

G Ck38 Wk. 1.1176 .35–.4 .35–.5 .5–.7 <.035 <.035 N < .007, *3

11023 USA AISI/SAE 1039 (UNS G10390) .37–.44 *1 .7–1.0 <.04 <.05 –

UK BS970 080A40 .38–.43 *1 .7–.9 <.05 <.05 –

F AFNOR XC42 .4–.45 .1–.4 .5–.8 <.035 <.035 –

G Ck42A1 Wk. 1.1190 .39–.44 .25–.4 .75–.9 <.035 <.035 N < .007 *3

11024 USA AISI/SAE 1040 (UNS G10400) .37–.44 *1 .6–.9 <.04 <.05 –

UK B 970 060A40 .38–.43 *1 .5–.7 <.05 <.05 –

G Ck40 Wk. 1.1186 .37–.43 .15–.35 .5–.8 <.035 <.035 N < .007 *3

11025 USA AISI/SAE 1042 (UNS G10420) .4–.47 *1 .6–.9 <.04 <.05 –

UK BS970 060A42 .4–.45 *1 .5–.7 <.05 <.05 –

F AFNOR XC42 .4–.45 .1–.4 .5–.8 <.035 <.035 –

G Ck42A1 Wk. 1.1190 .39–.44 .25–.4 .75–.9 <.035 <.035 N < .007 *3(continued)

Appendix 6: Metal Alloy Comparison Tables 573

Page 17: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

Composition

Country Designation C Si Mn P S Other

11026 USA AISI/SAE 1043 (UNS G10430) .4–.47 *1 .7–1.0 <.04 <.05 –

UK BS970 080A42 .4–.45 *1 .7–.9 <.05 <.05 –

G DIN 17200; 17242; 1652. C45 Wk.1.0503

.42–.45 .15–.35 .5–.8 <.045 <.045 –

11027 USA AISI/SAE 1045 (UNS G10450) .43–.50 *1 .6–.90 <.04 <.05 –

UK BS970 080M46 .42–.50 *1 .6–1.0 <.05 <.05 –

F AFNOR XC45 .42–.48 .1–.35 .5–.8 <.035 <.035 –

G DIN 17200; 1652; 0017242 Ck45 Wk.1.1191

.42–.5 .15–.35 .5–.8 <.035 <.035 N < .007 *3

G DIN 17200 Cm45 Wk. 1.1201 .42–.5 .15–.35 .5–.8 <.035 .020–.035 –

CEN EN 10083-1 2C45 (C45E) 1.1191 Near equivalent toBS970 070M55

11028 USA AISI/SAE 1046 (UNS G10460) .43–.5 *1 .7–1.0 <.04 <.04 –

UK BS970 080A47 .45–.5 *1 .7–.9 <.05 <.05 –

11029 USA AISI/SAE 1049 (UNS G10490) .46–.53 *1 .6–.9 <.04 <.05 –

UK BS970 080M50 .45–.55 *1 .6–1.0 <.05 <.05 –

F AFNOR XC50 .46–.52 .15–.35 .5–.8 <.035 <.035 –

G CK50 Wk. 1.1206 .47–.55 .15–.35 .6–.9 <.035 <.035 –

CEN EN 10083-1 2C50 (C50E) 1.1206 Near equivalent toBS970 080M50

11030 USA AISI/SAE 1050 (UNS G10500) (*4) .48–.55 *1 .6–.9 <.04 <.05 –

UK BS970 080A52 .5–.55 *1 .7–.9 <.05 <.05 –

11031 USA AISI/SAE 1053 (UNS G10530) .48–.55 *1 .7–1.0 <.04 <.05 –

UK BS970 080A52 .5–.55 *1 .7–.9 <.05 <.05 –

11032 USA AISI/SAE 1055 (UNS G10550) (*4) .5–.6 *1 .6–.9 <.04 <.05 –

UK BS970 070M55 .5–.6 *1 .5–.9 <.05 <.05 –

F AFNOR XC55 .52–.6 .1–.4 .5–.8 <.035 <.035 –

G DIN 17200 Cm55 Wk. 1.1209 .52–.6 .15–.35 .6–.9 <.035 .020–.035 –

CEN EN 10083-1 2C55 (C55E) 1.1203 Near equivalent toBS970 070M55

11033 USA AISI/SAE 1060 (UNS G10600) (*4) .55–.65 *1 .6–.9 <.04 <.05 –

UK BS970 080A57 55–.6 .1–.4 .7–.9 <.05 <.05 –

F AFNOR XC60 .57–.65 .15–.35 .4–.7 <.035 <.035 –

G DIN 17200 Cm60 Wk. 1.1223 .57–.65 .15–.35 .6–.9 <.035 .02–.035 –

G DIN 17200; 1652; 0017222 Ck60 Wk.1.1221

.57–.65 .15–.35 .6–.9 <.035 <.035 –

G DIN 17200; 1652; 17222 C60 Wk.1.0601

.57–.65 .15–.35 .6–.9 <.045 <.045 –

11034 USA AISI/SAE 1064 (UNS G10640) (*4) .6–.7 *1 .5–.8 <.04 <.05 –

UK BS970 060A62 .6–.65 .1–.4 .5–.7 <.05 <.05 –

UK BS970 060A67 .65–.7 .1–.4 .5–.7 <.05 <.05 –

F AFNOR XC65 .6–.69 .1–.4 .5–.8 <.035 <.055 –

G DIN 17223 Federstahldraht FD (VD)Wk. 1.1230

.6–.7 <.25 .5–.9 <.03 <.03 (<.02) –

G Ck65 .65 .3 .75 <.035 <.035 –

11035 USA AISI/SAE 1065 (UNS G10650) (*4) .6–.7 *1 .6–.9 <.04 <.05 –

UK BS970 080A62 .6–.65 .1–.4 .7–.9 <.05 <.05 –

UK BS970 080A67 .65–.1 .1–.4 .7–.9 <.05 <.05 –

11036 USA AISI/SAE 1069 (UNS G10690) .66–.75 *1 .4–.7 <.04 <.05 –

UK BS970 060A72 .7–.75 .1–.4 .5–.7 <.05 <.05 –

F AFNOR XC68 .65–.73 .15–.35 .4–.7 <.035 <.035 –

G DIN 0017222 Ck67 Wk. 1.1231 .65–.72 15–.35 .6–.9 <.035 <.035 –

11037 USA AISI/SAE 1070 (UNS G10700) .65–.75 *1 .6–.9 <.04 <.05 –

UK BS970 080A72 .7–.75 .1–.4 .7–.9 <.05 <.05 –

G DIN001 7222 Ck67 Wk. 1.1 231 .65–.72 .15–.35 .6–.9 <.035 <.035 –

(continued)

574 Appendix 6: Metal Alloy Comparison Tables

Page 18: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

Composition

Country Designation C Si Mn P S Other

11038 USA AISI/SAE 1074 (UNS G10740) .7–.8 *1 .5–.8 <.04 <.05 –

UK BS970 070A78 .75–.82 .1–.4 .6–.8 <.05 <.05 –

F AFNOR XC75 .7–.8 .15–.3 .4–.7 <.035 <.035 –

G DIN0017222 Ck75Wk. 1.1248 .7–.8 .15–.35 .6–.8 <.035 <.033 N < .007 *3

11039 USA AISI/SAE 1075 (UNS G10750) .7–.8 *1 .4–.7 <.04 <.05 –

UK BS970 060A78 .75–.82 .1–.4 .5–.7 <.05 <.05 –

F AFNOR XC75 .7–.8 .15–.3 .4–.7 <.035 <.035 –

G Wk. 1.1246 .7–.77 <.2 .4–.6 <.025 <.025 –

11040 USA AISI/SAE 1078 (UNS G10780) .72–.85 *1 .3–.6 <.04 <.05 –

UK BS970 060A78 .75–.82 .1–.4 .5–.7 <.05 <.05 –

F AFNOR XC75 .7–.8 .15–.3 .4–.7 <.035 <.035 –

G Wk. 1.1246 .7–.77 <.2 4–.6 <.025 <.025 –

11041 USA AISI/SAE 1080 (UNS G10800) .75–.88 *1 .6–.9 <.04 <.05 –

UK BS970 080A83 .7–.9 .1–.4 .7–.9 <.05 <.05 –

F AFNOR XC80 .75–.85 .1–.4 .5–.8 <.035 <.035 Cr < 2

G DIN 0017222 Ck75 .7–.8 .15–.35 .6–.8 <.035 <.035 N < .007 *3

G Ck80 .8 .35 .75 <.035 <.035 –

11042 USA AISI/SAE 1084 (UNS G10840) .8–.93 *1 .6–.9 <.04 <.05 –

UK BS970 080A86 .83–.9 .1–.4 .7–.9 <.05 <.05 –

F AFNOR XC85 .8 .2–.4 .4–.7 <.03 <.025 –

G DIN 0017222.Ck85 Wk. 1.1269 .8–.9 .15–.35 .45–.65 <.035 <.035 N < .007 *3

11043 USA AISI/SAE 1085 (UNS G10850) .8–.93 *1 .7-1.0 <.04 <.05 –

UK BS970 080A86 .83–.9 .1–.4 .7–.9 <.05 < –

G 90Mn4 Wk. 1.1273 .85–.95 .25–.5 .9–1.1 <.035 <.035 –

11044 USA AISI/SAE 1086 (UNS G10860) .8–.93 *1 .3–.5 <.04 <.05 –

UK BS970 050A86 .83–.9 .1–.4 .4–.6 <.05 <.05 –

F AFNOR XC90 .85–.95 .15–.3 .3–.5 <.03 <.025 –

G Mk83 Wk. 1.1262 .8–.84 .1–.25 .35–.55 <.03 <.03 N < .007 *3

G Mk82 Wk. 1.1261 .8–.84 .1–.25 .25–.45 <.025 <.025 –

11045 USA AISI/SAE 1090 (UNS G10900) .85–.98 *1 .6–.9 <.04 <.05 –

UK BS970 060A96 .93–1.0 .1–.4 .5–.7 <.05 <.05 –

11046 USA AISI/SAE 1095 (UNS G10950) .9–1.03 *1 .3–.5 <.04 <.05 –

UK BS970 060A99 .95–1.05 .1–.4 .5–.7 <.05 <.05 –

F AFNOR Xc90 .95–1.05 .15–.3 .2–.45 <.03 <.025 –

G Mk97 .9–1.05 .15–.25 .3–.5 .045–.055 .060–.070 N < .007 *3

Higher manganese steels

12001 USA AISI 1513 (UNS G15130) .1–.16 *1 1.1–1.4 <.04 <.05 –

F AFNOR 12M5 .1–.15 <.4 .9–1.4 <.04 <.035 –

12002 USA AISI 1518 (UNS G15180) .15–.21 *1 1.1–1.4 <.04 <.05 –

UK BS970 120M19 .15–.23 *1 1.0–1.4 <.05 <.05 –

F AFNOR 20M5 .16–.22 .1–.4 1.1–1.4 <.035 <.035 –

G 20Mn6 Wk. 1.1169 .17–.23 .3–.6 1.3–1.6 <.035 <.035 –

12003 USA AISI 1522 (UNS G15220) .18–.24 *1 1.1–1.4 <.04 <.05 –

UK BS970 120M19 .15–.23 *1 1.0–1.4 <.05 <.05 –

F AFNOR 20M5 .16–.22 .1–.4 1.1–1.4 <.035 <.035 –

F AFNOR 18M5 .16–.22 .1–.4 1.1–1.5 <.04 .18–.23 –

G 20Mn6 Wk. 1.1169 .17–.23 .3–.6 1.3–1.6 <.035 <.035 –

12004 USA AISI 1524 SAE 1024 (UNS G15240) .19–.25 *1 1.35–1.65

<.04 <.05 –

UK BS970 150M19 .15–.23 *1 1.35–1.7 <.05 <.05 –

G 20Mn6 Wk. 1.1168 .17–.23 .3–.6 1.3–1.6 <.035 <.035 –

12005 USA AISI 1525 (UNS G15250) .23–.29 *1 .8–1.1 <.04 <.05 –

UK BS970 080A25 .23–.28 *1 .7–.9 <.05 <.05 –

(continued)

Appendix 6: Metal Alloy Comparison Tables 575

Page 19: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

Composition

Country Designation C Si Mn P S Other

12006 USA AISI 1526 (UNS G15260) .22–.29 *1 1.1–1.4 <.04 <.05 –

UK BS970 120M28 .24–.32 *1 1.0–1.4 <.05 <.05 –

G 9S-24 Mn4 Wk. 1.1136 .20–.28 .3–.6 .9–1.2 <.035 <.035 –

12007 USA AISI 1527 SAE 1027 (UNS G15270) .22–.29 *1 1.2–1.5 <.04 <.05 –

UK BS970 150M28 .24–.32 *1 1.3–1.7 <.05 <.05 –

G DIN 17200 Wk. 1.1170 .25–.32 .15–.4 1.3–1.65 <.035 <.035 –

12008 USA AISI 1536 SAE 1036 (UNS G15360) .3–.37 *1 1.2–1.5 <.04 <.05 –

UK BS970 120M36 .32–.4 *1 1.0–1.4 <.05 <.05 –

UK BS970 150M36 .32–.4 *1 1.3–1.7 <.05 <.05 –

F AFNOR 35 M5 .32–.38 .1–.4 1.1–1.4 <.035 <.035 –

G 36Mn5, GS-36Mn5 Wk. 1.1167 .32–.4 .15–.35 1.2–1.5 <.035 <.035 –

12009 USA AISI 1541 SAE 1041 (UNS G15410) .36–.44 *1 1.35–1.65

<.04 <.05 –

F AFNOR 40Mn .36–.44 .1–.4 1.0–1.35 <.04 <.035 –

G 36Mn5, GS-36 Mn5, Wk. 1.1167 .32–.4 .15–.35 1.2–1.5 <.035 <.035 –

12010 USA AISI 1547 SAE 1047 (UNS G15470) .43–.51 *1 1.35–1.65

<.04 <.05 –

F AFNOR 45 M5 .39–.48 .1–.4 1.2–1.5 <.04 <.035 –

12011 USA AISI 1548 SAE 1048 (UNS G15480) .44–.52 *1 1.1–1.4 <.04 <.05 –

F AFNOR 45 M5 .39–.48 .1–.4 1.2–1.5 <.04 <.035 –

12012 USA AISI 1551 SAE 1051 (UNS G15510) .46–.56 *1 .85–1.15 <.04 <.05 –

UK BS970 080M50 .45–.55 *1 .6–1.0 <.05 <.05 –

CEN EN 10083-1 2C50 (C50E) 1.1206 Near equivalent toBS970 080M50

12013 USA AISI 1552 SAE 1052 (UNS G15520) .47–.55 *1 1.2–1.5 <.04 <.05 –

F AFNOR 55 M5 .5–.6 .1–.4 1.2–1.5 <.05 <.035 –

12014 USA AISI 1561 SAE 1061 (UNS G15610) .55–.65 *1 .75–1.05 <.04 <.05 –

UK BS970 080A57 .55–.60 *1 .7–.9 <.05 <.05 –

G Ck60 Wk. 1.221 .57–.65 .15–.35 .6–.9 <.035 <.035 –

12015 USA AISI 1566 SAE 1066 (UNS G15660) .6–.71 *1 .85–1.15 <.04 <.05 –

UK BS970 080A67 .65–.7 *1 .7–.9 <.05 <.05 –

12016 USA AISI 1572 SAE 1072 (UNS G15720) .65–.76 *1 1.0–1.3 <.04 <.05 –

Free cutting steels

Composition

Country Designation C Si Mn P S Other

13001 USA AISI/SAE 1108 (UNS G11080) .08–.13 *1 .5–.8 <.04 .08–.13 –

G DIN 17111, U7S10, Wk. 1.0700 <.l *2 .4–.7 <.08 .08–.12 N < .007

G 10320 Wk. 1.0721 .07–.13 .1–.4 .5–.9 <.06 .15–.25 –

13002 USA AISI/SAE 1109 (UNS G11090) .08–.13 *1 .6–.9 <.04 .08–.13 –

13003 USA AISI/SAE 1110 (UNS G11100) .08–.13 *1 .3–.6 <.04 .08–.13 –

The changes in manganese range at this carbon level are not reflected in European specifications

F AFNOR 12MF (approximate equivalent) .09–.15 .1–.4 .9–1.2 <.06 .12–.24 –

13004 USA AISI/SAE 1116 (UNS G11160) .14–.2 *1 1.1–1.4 <.04 .16–.23 –

UK BS970 220M07 <.15 *1 .9–1.3 <.07 .2–.3 –

G 9S20 Wk. 1.0711 <.13 <.05 .6–1.2 <.1 .18–.25 –

13005 USA AISI/SAE 1117 (UNS G11170) .14–.2 *1 1.0–1.3 <.04 .08–.13 –

F AFNOR13MF .1–16 .1–.4 .8–1.1 <.04 .09–.13 –

G 9SMN 28 Wk. 1.0715 <.14 <.05 .9–1.3 <.1 .24–.32 –

UK BS970 230M07 <.15 *1 .9–1.3 <.07 .25–.35 –

13006 USA AISI/SAE 1118 (UNS G11180) .14–.2 *1 1.3–1.6 <.04 .08–13 –

13007 USA AISI/SAE 1119 (UNS G11190) .14–.2 *1 1.0–1.3 <.04 .24–.33 –

13008 USA AISI/SAE 1132 (UNS G11320) .27–.34 *1 1.35–1.65 <.04 .08–.13 –

UK BS970 216M28 .24–.32 *1 1.1–1.5 <.06 .12–.2 –

(continued)

576 Appendix 6: Metal Alloy Comparison Tables

Page 20: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

Composition

Country Designation C Si Mn P S Other

13009 USA AISI/SAE 1137 (UNS G11370) .32–.39 *1 1.35–1.65 <.04 .08–.13 –

UK BS970 225M36 .32–.4 <.25 1.3–1.7 <06 .12–.2 –

F AFNOR 35 M6 .33–39 .1–.4 1.3–1.7 <.04 .09–.13 –

G Wk. 1.0726 .32–39 .1–.4 .5–.9 <.06 .15–.25 –

13010 USA AISI/SAE 1139 (UNS G11390) .35–.43 *1 1.35–1.65 <.04 .13–.2 –

13011 USA AISI/SAE 1140 (UNS G11400) .37–.44 *1 .7–1.0 <.04 .08–.13 –

13012 USA AISI/SAE 1141 (UNS G11410) .37–.45 *1 1.35–1.65 <.04 .08–.13 –

UK BS970 212A37 .35–.40 *1 1.0–1.3 <.06 .12–.2 –

13013 USA AISI/SAE 1144 (UNS G11440) .4–.48 *1 1.35–1.65 <.04 .24–.33 –

13014 USA AISI/SAE 1145 (UNS G11450) .42–.49 *1 .7–1.0 <.04 .04–.07 –

13015 USA AISI/SAE 1146 (UNS G11460) .42–.49 *1 .7–1.0 <.04 .08–13 –

UK BS970 212M44 .4–.48 *1 1.0–1.4 <.06 .12–.2 –

UK BS970 225M44 .4–.48 *1 1.3–1.7 <.06 .2–.3 –

F AFNOR 45 MF6 .41 .48 .1 .4 1.3–1.7 <.04 .24 .32 –

G 45S20 Wk. 1.0727 .42–.5 .1–.4 .5–.9 <.06 .15–.25 –

13016 USA AISI 12L 13 (UNS G12134) <.13 *1 .7–1.0 .07–.12 .24–.33 Pb .15–.35

13017 USA AISI/SAE 12L 14 (UNS G12144) <.15 *1 .85–1.15 .04–.09 .26–.35 Pb .15–.35

F AFNOR 10 Pb2 .05–.15 <.3 .3–.6 <.04 <.04 Pb .15–.30

G 9SMn Pb28 <.14 <.05 .9–1.3 <.1 .24–.32 Pb .15–.30

G 10 SPb 20 .07–13 .1–.4 .5 .9 <.06 .15–.25 Pb .15–.30

G 9SMn Pb 36 <.15 <.05 1.0–1.5 <.1 .32–.40 Pb .15–.30

Note Where USA grades are closely graded they have been grouped together with groups of approximating European specifications

Low alloy steels: Manganese—Molybdenum

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

14001 USA AISI/SAE 4012 (UNSG40120)

.09–.14 .2–.35 .75–1.0 <.035 <.04 – .15–.25 – –

G 15Mn Mo53 Wk. 1.5418 (*5) <.2 .3–.5 1.1–1.4 <.04 <.04 – .35 – –

14002 USA AISI/SAE 4023 (UNSG40230)

.2–.25 .2–.35 .7–.9 <.035 <.04 – .2-3 – –

F AFNOR 18MD4.05 (*5) <.22 .1–.4 .9–1.5 <.035 <.035 <.3 .35–.6 – V < .04

G 20Mo3 Wk. 1.5416 .16–.24 .15–.35 .5–.8 <.04 <.04 – .25–.35 – –

14003 USA AISI/SAE 4024 (UNSG40240)

.2–.25 .2–.35 .7–.9 <.035 .035–.05 – .2–.3 – –

F/G See AISI 4023

14004 USA AISI/SAE 4027 (UNSG40270)

.25–.3 .2–.35 .7–.9 <.035 <.04 – .2–.3 – –

14005 USA AISI/SAE 4028 (UNSG40280)

.25–.3 .2–.35 .7–.9 <.035 .035–.05 – .2–.3 – –

G 15Mo3 Wk. 1.5415 (*5) .12–.2 .1–.35 .4–.8 <.04 <.04 <.3 .2–.35 – –

G 22Mo4 Wk. 1.5419 (*5) .18–.25 .2–.4 .4–.7 <.035 <.033 <.3 .3–4 – –

14006 USA AISI/SAE 4032 (UNSG40320)

.3–.35 .2–.35 .7–.9 <.035 <.04 – .2–.3 – –

14007 USA AISI/SAE 4037 (UNSG40370)

.35–.40 .2–.35 .7–.9 <.035 <.04 – .2–3 – –

UK BS970 605M30 (*5) .26–.34 1–.35 1.3–1.7 <.04 <.05 – .22–.32 – –

UK BS970 605M36 (*5) .32–.4 .1–.35 1.3–1.7 <.04 <.05 – .22–.32 – –

G GS-35Mn Mo5 Wk. 1.5411 .32–.38 .3–.5 1.0–1.4 <.035 <.035 – .15–.25 – –

14008 USA AISI/SAE 4042 (UNSG40420)

.4–.45 .2–.35 .7–.9 <.035 <.04 – .2–.3 – –

14009 USA AISI/SAE 4047 (UNSG40470)

.45–.5 .2–.35 .7–.9 <.035 <.04 – .2–.3 – –

UK BS970 608M38 (*5) .32–.4 .1–.35 1.3–1.7 <.04 <.05 – .4–.55 – –

G GS-40Mn Mo43 (*5) .36–.43 .3–.5 .9–1.2 <.035 <.05 – .25–.35 – –

Appendix 6: Metal Alloy Comparison Tables 577

Page 21: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Low alloy steels: Chromium–Molybdenum

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

14010 USA AISI/SAE 4118(UNS G41180)

.18–.23 .2–.35 .7–.9 <.035 <.04 .4–.6 .08–.15 – –

14011 USA AISI/SAE 4130(UNS G41300)

.28–.33 .2–.35 .4–.6 <.035 <.04 .8–1.1 .15–.25 – –

14012 USA AISI/SAE 4135(UNS G41350)

.33–.38 .2–.35 .7–.9 <.035 <.04 .8–1.1 .15–.25 – –

F AFNOR 15CD3.5 .14–.18 <.35 .3–.6 <.04 <.035 .85–1.15 .15–.3 – –

F AFNOR12CD 4 .08–.14 .14–.4 .5–.8 <.04 <.035 .85–1.15 .15–.3 – –

F AFNOR 15CD4.05 <.2 .1–.4 .4–.85 <.035 <.035 .75–1.23 .4–.6 – V < .04

F AFNOR 18CD4(S) *6 .16–.22 .1–.4 .6–.9 <.035 <.035 .85–1.15 .15–.3 – –

F AFNOR 30CD 4 *6 .28–.34 .1–.4 .6–.8 <.035 <.035 .85–1.15 .15–.3 – –

F AFNOR 35CD 4 *6 .33–.39 .1–.4 .6–.9 <.035 <.035 .85–1.13 .15–.3 – –

G DIN 17155; 17175:0017243. 13Cr Mo4.4Wk. 1.7335

.1–.18 .1–.35 .4–.7 <.04 <.04 .8–1.15 .4–.65 – –

G 15Cr Mo5 .13–.17 .15–.35 .8–1.0 <.035 <.035 1.0–1.3 .2–.3 – –

G 20Cr Mo5 .18–.23 .15–.35 .9–1.2 <.035 <.035 1.1–1.4 .2–.3 – –

G DIN 17200: 001654.(GS)25Cr Mo4 Wk.1.7218

.22–.29 .15–.4 .5–.8 <.035 <.035 .9–1.2 .15–.3 – –

G DIN 17200: 001654.(GS)34Cr Mo4 Wk.1.7220

.3–.37 .15–.4 .5–.8 <.035 <.033 .9–1.2 .15–.3 – –

14013 USA AISI/SAE 4137(UNS G41370)

.35–.4 .2–.35 .7–.9 <.035 <.04 .8–1.1 .15–.25 – –

14014 USA AISI/SAE 4140(UNS G41400)

.38–.43 .2–.35 .75–1.0 <.035 <.04 .8–1.1 .15–.25 – –

UK BS970 708A37 .35–.4 .1–.35 .7–1.0 <.04 <.05 .9–1.2 .15–.25 – –

UK BS970 708M40 .36–.44 .1–.35 .7–1.0 <.04 <.05 .9–1.2 .15–.25 – –

F AFNOR 40CD 4 .39–.46 .2–.50 .5–.8 <.03 <.025 .95–1.3 .15–.3 – –

F AFNOR 42CD4 .39–.46 .1–.4 .6–.9 <.035 <.035 .85–1.15 .15–.3 – –

G DIN 17200; 001654.GS42CrMo4Wk.1.7225

.38–.5 .3–.5 .5–.8 <.035 <.035 .8–1.2 .2–.3 – –

G DIN 17200.34CrMoS4

.3–.37 .15–.4 .5–.8 <.035 .02–.035 .9–1.2 .15–.3 – –

CEN EN 10083-1 42CrMo4 1.17225Near equivalent to BS970 708M40

14015 USA AISI/SAE 4142(UNS G41420)

.4–.45 .2–.35 .75–1.0 <.035 <.04 .8–1.1 .15–.25 – –

14016 USA AISI/SAE 4145(UNS G41450)

.43–.48 .2–.35 .75–1.0 <.035 <.04 .8–1.1 .15–.25 – –

14017 USA AISI/SAE 4147(UNS G41470)

.45–.50 .2–.35 .75–1.0 <.035 <.04 .8–1.1 .15–.25 – –

UK BS970 708 H42 .39–.46 .1–.35 .65–1.05 <.04 <.05 .8–1.25 .15–.25 – –

F AFNOR 42CD 4 .39–.46 .1–.4 .6–.9 <.035 .035 .85–1.15 .15–.3 – –

G DIN 17200, 42Cr MoS4 Wk. 1.7227

.38–.45 .15–.4 .5–.8 <.035 .02–.035 .9–1.2 15–.3 – –

14018 USA AISI/SAE 4150(UNS G41500)

.48–.53 .2–.35 .75–1.0 <.035 <.04 .8–1.1 .15–.25 – –

14019 USA AISI/SAE 4161(UNS G41610)

.56–.64 .2–.35 .75–1.0 <.035 <.04 .7–.9 .25–.35 – –

G DIN 17200. 50CrMo4 Wk. 1.7228

.46–.54 .15–.4 .5–.8 <.035 <.035 .9–1.2 .15–.25 – –

G GS-58 Cr Mn Mo443Wk. 1.7266

.54–.62 .3–.5 .6–1.2 <.035 <.033 .8–1.2 .2–.3 – –

578 Appendix 6: Metal Alloy Comparison Tables

Page 22: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Low alloy steels: Nickel–Chromium–Molybdenum

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

14020 USA AISI/SAE 4320(UNS G43200)

.17–.22 .2–.35 .45–.65 <.035 <.04 .4–.6 .2–.3 1.65–2.0 –

F AFNOR 20 NCD 7 .16–.22 .2–.33 .45–.65 <.03 <.023 .2–.6 .2–.3 1.65–2.0 Cu < 35

14021 USA AISI/SAE 4340(UNS G43400)

.38–.43 .2–.35 .6–.8 <.035 <.04 .7–.9 .2–.3 1.65–2.0 –

G DIN 0017242. 40 Ni Cr Mo73 Wk. 1.6562

.37–.44 <.4 .7–.9 <.02 <.015 .7–.95 .3–.4 1.65–2.0 –

14022 USA AISI/SAE 4718(UNS G47180)

.16–.21 – .7–.9 – – .35–.55 .3–.4 .9–1.2 –

F AFNOR 18NCD4 .16–.22 .2–.35 .5–.8 <.03 <.025 .35–.55 .15–.3 .9–1.2 Cu < .35

14023 USA AISI/SAE 4720(UNS G47200)

.17–.22 .2–.35 .5–.7 <.035 <.04 .35–.55 .15–.25 .9–1.2 –

See AISI 4718 (UNS G47180)Table No. 14022

14024 USA AISI/SAE 8115(UNS G81150)

.13–.18 .2–.35 .7–.9 <.035 <.04 .3–.5 .08–.15 .2–.4 –

UK BS970 805A15 .13–.18 1–.35 .7–.9 <.04 <.05 .4–.6 .15–.25 .4–.7 –

14025 USA AISI/SAE 8615(UNS G86150)

.13–.18 .2–.35 .7–.9 <.035 <.04 .4–.6 .15–.25 .4–.7 –

14026 USA AISI/SAE 8617(UNS G86170)

.15–.2

14027 USA AISI/SAE 8620(UNS G86200)

.18–.23

14028 USA AISI/SAE 8622(UNS G86220)

.2–.25 Other elements as AISI/SAE 8615

14029 USA AISI/SAE 8625(UNS G86250)

.23–.28

14030 USA AISI/SAE 8627(UNS G86270)

.25–. 3

14031 USA AISI/SAE 8630(UNS G86300)

.28–. 33

UK BS970 805A17 .15–.2 .1–.35 .7–.9 <.04 <.05 .4–.6 .15–.25 .4–.7 –

UK BS970 805A20 .18–.23

UK BS970 805A22 .2–.25 Other elements as BS970 805A17

UK BS970 805A24 .22–.21

F AFNOR15NCD2 .13–.18 .1–.4 .7–.9 <.04 <.035 .4–.6 .15–.25 .4–.7 –

F AFNOR 20NCD2 .18–.23 .1–.4 .7–.9 <.03 <.025 .4–.6 .15–.25 .4–.7 Cu < .35

F AFNOR 30NCD2 .3–.35 .1–.4 .7–.9 <.04 <.035 .4–.6 .15–.3 .5–.8 –

G DIN001654. 21 Ni Cr Mo2Wk. 1.6523

.17 .23 .15–.4 .6–.9 <.035 <.035 .35–.65 .15–.25 .4–.7 –

G 21 Ni Cr Mo22 Wk. 1.6543 .18–.23 .2–.35 .7–.90 <.035 <.035 .4–.6 .2–3 .4–.7 –

G 30 Ni Cr Mo22 Wk. 1.6545 .27–. .34 15–.34 .7–1.0 <.035 <.035 .4–.6 .15–.3 .4–.7 –

14032 USA AISI/SAE 8637(UNS G86370)

.35–.4 .2–.35 75–1.0 <.035 <.04 4–.6 .15–.25 4–.7 –

14033 USA AISI/SAE 8640 (UNSG86400)

.38–.43

14034 USA AISI/SAE 8642 (UNSG86420)

.4–.45

14035 USA AISI/SAE 8645 (UNSG86450) *7

.43–.48

14036 USA AISI/SAE 8650 (UNSG86500)

.48–.53 Other elements as AISI 8637

14037 USA AISI/SAE 8655 (UNSG86550)

.51–.59

14038 USA AISI/SAE 8660 (UNSG86600)

.56–. 64

UK BS970 805A60 .55–. 65 .1–.35 .7–1.0 <.04 <.05 .4–.6 .15–.25 .4–.7 –

F AFNOR 35 NCD2 .32–.40 .1–.4 .7–1.0 <.04 <.035 .4–.6 .15–.3 .4–.7 –

F AFNOR 40 NCD2 .37–.40 .1–.4 .6–.9 <.04 <.035 .4–.6 .15–.3 .4–.7 –

F AFNOR 40 NCD2TS .38–.44 .1–.4 .7–1.0 <.035 <.03 .4–.6 .15–.3 .4–.7 –

G 40Ni Cr Mo22 Wk. 1.6546 .37–.44 .15–.34 .7–1.0 <.035 <.035 .4–.6 .15–.3 .4–.7 –

Appendix 6: Metal Alloy Comparison Tables 579

Page 23: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Low alloy steels: Nickel–Molybdenum

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

14039 USA AISI/SAE 4615 (UNS G46150) .13–.18 .2–.35 .45–.65 <.035 <.04 – .2–.3 1.65.–2.0 –

14040 USA AISI/SAE 4617 (UNS G46170) .15–.2

14041 USA AISI/SAE 4620 (UNS G46200) .17–.22 Other elements as AISI 4615

UK BS970 665A17 .15–.2 .1–.35 .45–.65 <.04 <.05 <.25 .2–.3 1.6–2.0 –

UK BS970 665A19 .17–.22 Other elements as BS970 665A17

14042 USA AISI 4621 (UNS G46210) .18–.23 .2–.35 .7–.9 <.035 <.04 – .2–.3 1.65–2.0 –

UK BS970 665M20 .17–.23 .1–.35 .35–.75 <.04 <.05 – .2–3 1.5–2.0 –

14043 USA AISI/SAE 4626 (UNS G46260) .24–.29 .2–.35 .45–.65 <.035 <.04 – .15–.25 .7–1.0 –

UK BS970 665A22 *5 .2–.25 .1–.35 .45–.65 <.04 <.05 <.25 .2–.3 1.6–2.0 –

UK BS970 665A24 *5 .22–.27 .1–.35 .45–.65 <.04 <.05 <.25 .2–.3 1.6–2.0 –

Low alloy steels: Chromium

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

14044 USA AISI/SAE 5115 (UNS G51150) .13–.18 .2–.35 .7–.9 <.035 <.04 .7–9 – – –

14045 USA AISI/SAE 5120 (UNS G51200) .17–.22 Other elements as AISI 5115

UK BS970 523A14 *5 .12–.17 .1–.35 .3–.5 <.04 <.05 .3–5 – – –

UK BS970 527A19 .17–.22 .1–.35 .7–.9 <.04 <.05 .7–9 – – –

F AFNOR 18C4 .16–.21 .1–.4 .6–.8 <.04 <.035 .85–1.15 – – –

G DIN 17210:001654. 15Cr3 Wk. 1.7015 .12–.18 .15–.4 .4–.6 <035 <035 .4–7 – – –

G 20Cr MnS33 Wk. 1.7121 .17–.23 .2–.35 .6–1.0 <.04 <.02 .6–1.0 – – –

14046 USA AISI/SAE 5130 (UNS G51300) .28–.33 .2–.35 .7–.9 <.035 <.04 .8–1.1 – – –

14047 USA AISI/SAE 5132 (UNS G51320) .30–.35 .2–.35 .6–.8 <.035 <.04 .75–1.0 – – –

UK BS970 530A30 .28–.33 .1–.35 .6–.8 <.04 <.05 .9–1.2 – – –

UK BS970 530A32 .30–.35 .1–35 .6–.8 <.04 <.05 .9–1.2 – – –

F AFNOR 28 C4 .25–3 <.4 .6–.9 <.04 <.035 .85–1.15 – – –

F AFNOR 32 C4 .3–.35 .1–.4 .6–.9 <.035 <.035 .85–1.15 – – –

G DIN 17200:001654.34Cr4Wk. 1.17033 .3–.37 .15–.4 .6–.9 <.035 <.035 9–1.2 – – –

14048 USA AISI/SAE 5135 (UNS G51350) .33–.38 .2–.35 .6–.8 <.035 <.04 .8–1.05 – – –

14049 USA AISI/SAE 5140 (UNS G51400) .38–.43 .2–.35 .7–.9 <.035 <.04 .7–.9 – – –

UK BS970 530A36 .34–.39 .1–.35 .6–.8 <.04 <.05 .9–1.2 – – –

UK BS970 530A40 .38–.43 .1–.35 .6–.8 <.04 <.05 .9–1.2 – – –

F AFNOR 38 C4 .35–.4 .1–.4 .6–.9 <.035 <.035 .85–1.15 – – –

F AFNOR 42 C4 .39–.45 .1–.4 .6–.9 <.035 <.035 .85–1.15 – – –

G DIN 17200:001654. 34Cr4 Wk. 1.7034 .30–37 15–.4 .6–.9 <.035 <.035 .9–1.2 – – –

G DIN 17200:001654. 37Cr4 Wk. 1.7035 .34–.41 .15–.4 .6–.9 <.035 <.035 .9–1.2 – – –

14050 USA AISI/SAE 5145 (UNS G51450) .43–.49 .2–.35 .7–.9 <.035 <.04 .7–.9 – – –

14051 USA AISI/SAE 5147 (UNS G51470) .46–.51 .2–.35 .7–.95 <.035 <.04 .85–1.15 – – –

F AFNOR 42C4TS .38–.44 .1–.4 .6–.9 <.025 <.03 .85–1.15 – <.3 –

F AFNOR 45 C4 .41–.48 .1–.4 .6–.9 <.035 <.035 .85–1.15 – – –

14052 USA AISI/SAE 5150 (UNS G51500) .48–.53 .2–.35 .7–.9 <.035 <.04 .7–.9 – – –

14053 USA AISI/SAE 5155 (UNS G51550) .51–.59 .2–.35 .7–.9 <.035 <.04 .7–.9 – – –

14054 USA AISI/SAE 5160 (UNS G51600) .56–.64 .2–.35 .75–1.0 <.035 <.04 .7–.9 – – –

UK BS970 526M60 .55–.65 .1–.35 .5–.8 <.04 <.05 .5–.8 – – –

F AFNOR 50 C4 .46–.54 .1–.4 .6–.9 <.04 <.035 .8–1.15 – – –

14055 USA AISI E51100. SAE 51100 (UNSG51986)

.98–1.1 .2–.35 .25–.45 <.025 <.025 .9–1.15 – – –

14056 USA AISI E52100. SAE 52100 (UNSG52986)

.98–1.1 .2–.35 .25–.45 <.025 <.025 1.3–1.6 – – –

UK BS970 534A99 .95–1.1 .1–.35 .25–.4 <.04 <.05 1.2–1.6 – – –

F AFNOR 100 C6 .95–1.1 .15–.35 .2–.4 <.03 <.025 1.35–1.6 – – –

G DIN 0017230:LW. 100Cr6 Wk. 1.3505 95–1.1 .15–.35 .25–.4 <.03 <.025 1.35–1.6 – – –

G 100Cr6 Wk. 1.2067 .95–1.05 .15–.35 .25–.4 <.035 <.033 1.4–1.7 – – –

580 Appendix 6: Metal Alloy Comparison Tables

Page 24: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Low alloy steels: Chromium–Vanadium

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

14057 USA AISI 6118 (UNS G61180) .16–.21 .2–.35 .5–.7 <.035 <.04 .5–.7 – – V .1–.15

G 21 CrV4 Wk. 1.7510 .18–.24 1–.2 .8–1.0 <.035 <.035 .9–1.2 – – V .07–. 12

14058 USA AISI/SAE 6150 (UNS G61500) .48–.53 .2–.35 .7–.9 <.035 <.04 .8–1.1 – – V > .15

UK BS970 735A50 .46–.54 1–.35 .6–.9 <.04 <.05 .8–1.1 – – V > .15

F Y50 CV4 .5 .3 .8 – – 1.0 – – V .15

G DIN 17200; 17221; 17225 (GS)50CrV40 Wk. 1.8159

.47–. 55 .15–.4 .7–1.0 <.035 <.035 .9–1.2 – – V. 1–.2

CEN EN 10083-1 51 CrV4 1.8159 Nearequivalent to BS970 735A50

Austenitic stainless steels

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

15001 USA AISI 201 (UNS S20100) <.15 <1.0 5.5–7.5 <.06 <.03 16.0–18.0 – 3.5–5.5 –

15002 USA AISI 202 (UNS S20200) <.15 <1.0 7.5–10.0 <.06 <.03 17.0–19.0 – 4.0–6.0 N < .25

UK BS970 284S16 <.07 <1.0 7.0–10.0 <06 <.03 16.5–18.5 – 4.0–6.5 N .15–.25

G X8 Cr Mn Ni 189Wk. 1.4371 <1 <1.0 7.5–9.5 <.045 <.03 17.0–19.0 – 4.5–6.5 N .1–.2

15003 USA AISI 301 (UNS S30100) <.15 <1.0 <2.0 <.045 <.03 16.0–18.0 – 6.0–8.0 –

UK BS970 301S21 <.15 .2–1.0 .5–2.0 <.045 <.03 16.0–18.0 – 6.0–8.0 –

F AFNOR Z12CN17-08 .08–15 <1.0 <2.0 <.04 <.03 16.0–18.0 – 6.5–8.5 –

G DIN 17440:0017442.X5 Cr Ni 18.9 Wk. 1.4301

<.07 <1.0 <2.0 <.045 <.03 17.0–20.0 – 8.5–10.0 –

15004 USA AISI 302 (UNS S30200) <.15 <1.0 <2.0 <.045 <.03 17.0–19.0 – 8.0–10.0 –

UK BS970 302S25 <12 .2–1.0 .5–2.0 <.045 <.03 17.0–19.0 – 8.0–11.0 –

UK BS970 302S17 <.08 .2–1.0 .5–2.0 <.045 <.03 17.0–19.0 – 9.0–11.0 –

F AFNOR Z10CN 18-09 <.12 <1.0 <2.0 <.04 <.03 17.0–19.0 – 8.0–10.0 –

F AFNOR Z12CN 18-10 <.15 .2–.4 .2–.4 <.04 <.03 17.0–19.0 – 8.0–10.0 –

G X12Cr Ni 18 8 Wk. 1.4300 <.12 <.1.0 <2.0 <.045 <.03 17.0–19.0 – 8.5–10.0 –

15005 USA AISI 302 B (UNS S30215) <.15 2.0–3.0 <2.0 <.045 <.03 17.0–19.0 – 8.0–10.0 –

15006 USA AISI 303 (UNS S30300) <.15 <1.0 <2.0 <.2 >.15 17.0–19.0 – 8.0–10.0 –

UK BS970 303S21 <.12 .2–1.0 1.0–2.0 <.045 .15–.3 17.0–19.0 – 8.0–11.0 –

F AFNOR Z10 CNF 18-09 <12 <1.0 <2.0 <.06 >.15 17.0–19.0 – 8.0–10.0 –

G DIN 17440:0017442. X12 CrNi S18 8 Wk. 1.4305

<.15 <1.0 <2.0 <.045 .15–.35 17.0–19.0 – 8.0–10.0 –

15007 USA AISI 303 SE(UNS S30323)

<.15 <1.0 <2.0 <.2 <.06 17.0–19.0 – 8.0–10.0 Se > .15

UK BS970 303S41 <.12 .2–1.0 1.0–2.0 <.045 <.03 17.0–19.0 – 8.0–11.0 Se > .15–.3

15008 USA AISI 304 (UNS S30400) <.08 <1.0 <2.0 <.045 <.03 18.0–20.0 – 8.0–10.5 –

UK BS970 304S15 <.06 .2–1.0 .5–2.0 <.045 <.03 17.5–19.0 – 8.0–11.0 –

UK BS970 304S16 <.06 .2–1.0 .5–2.0 <.045 <.03 17.5–19.0 – 9.0–11.0 –

F AFNOR Z6CN 18-09 <.07 <1.0 <2.0 <.045 <.03 17.0–19.0 – 8.0–11.0 –

G X5 Cr Ni 18 9 Wk. 1.4301 <.07 <1.0 <2.0 <.045 <.03 17.0–20.0 – 8.5–10.0 –

15009 USA AISI 304 L (UNS S30403) <.03 <1.0 <2.0 <.045 <.03 18.0–20.0 – 8.0–12.0 –

UK BS970 304S12 <.03 .2–1.0 .5–2.0 <.045 <.03 17.5–19.0 – 9.0–12.0 –

F AFNOR Z2 CN 18-10 <.03 <1.0 <2.0 <.04 <.03 17.0–19.0 – 9.0–11.0 –

F G X2 Cr Ni 18 9 Wk. 1.4306 <.03 <1.0 <2.0 <.045 <.03 17.0–20.0 – 10.0–12.5 –

15010 USA AISI 305 (UNS S30500) <.12 <1.0 <2.0 <.045 <.03 17.0–19.0 – 10.5–13.0 –

UK BS970 305S19 <.1 .2–1.0 .5–2.0 <.045 <.03 17.0–19.0 – 11.0–13.0 –

F AFNOR Z8 CN 18-12 <.1 <1.0 <2.0 <.04 <.03 17.0–19.0 – 11.0–13.0 –

G DIN 17445 G-X10 Cr Ni 18 8Wk. 1.4312

<.12 <2.0 <1.5 <.045 <03 17.0–19.5 – 18.0–10.0 –

(continued)

Appendix 6: Metal Alloy Comparison Tables 581

Page 25: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

15011 USA AISI 308 (UNS S30800) .08 <1.0 <2.0 <.045 <.03 19.0–21.0 – 10.0–12.0 –

15012 USA AISI 309 (UNS S30900) <.2 <1.0 <2.0 <.0.45 <.03 22.0–24.0 – 12.0–15.0 –

UK BS970 309S24 <.15 .2–1.0 .5–2.0 <.045 <.03 22.0–25.0 – 13.0–16.0 –

F AFNOR Z12 CNS 25-13 <.2 1.0–2.0 <2.0 <.04 <.03 20.0–23.0 – 12.0–14.0 –

G G-XI5 Cr Ni 25-12 Wk. 1.4830 1–2 <1.5 <2.0 <.045 <.03 24.0–26.0 – 12.0–14.0 –

15013 USA AISI 310 (UNS S31000) <.25 <1.5 <2.0 <.045 <.03 24.0–26.0 – 19.0–22.0 –

UK BS970 310S24 <.15 .2–1.0 .5–2.0 <.045 <.03 23.0–26.0 – 19.0–22.0 –

F AFNOR Z12 CN 25-20 <.15 <1.0 2.0 <.04 <.03 23.0–26.0 – 18.0–21.0 –

G G-X15 Cr Ni 25-20 Wk.1.4840

.1–.2 <1.5 <2.0 <.045 <.03 24.0–26.0 – 19.0–21.0 –

15014 USA AISI 310S (UNS S31008) <.08 <1.5 <2.0 <.045 <.03 24.0–26.0 – 19.0–22.0 –

G X5 Cr Ni 25 21 Wk. 1.4335 <.07 <1.0 <2.0 <.045 <.03 19.0–22.0 – 19.0–22.0 –

15C15 USA AISI 314 (UNS S31400) <.25 1.5–3.0 <2.0 <.045 <.03 23.0–26.0 – 19.0–22.0 –

15016 USA AISI 316 (UNS S31600) <.08 <1.0 <2.0 <.045 <.03 16.0–18.0 2.0–3.0 10.0–14.0 –

UK BS970 315S16 <.07 .2–1.0 .5–2.0 <.045 <.03 16.5–18.5 1.25–1.75 9.0–11.0 –

UK BS970 316S16 <.07 .2–1.0 .5–2.0 <.045 <.03 16.5–18.5 2.25–3.0 10.0 13.0 –

F AFNOR Z6 CND 17-11 <.07 <1.0 <2.0 <.04 <.03 16.0–18.0 2.0–2.5 10.0–12.0 –

G DIN 17440; 17445; 17224. X5Cr Ni Mo 18–10 Wk. 1.4401

<.07 <1.0 <2.0 <.045 <.03 16.5–18.5 2.0–2.5 10.5–13.5 –

15017 USA AISI 316 L (UNS S31603) <.03 <1.0 <2.0 <.045 <.03 16.0–18.0 2.0–3.0 10.0–14.0 –

UK BS970 316S12 <.03 .2–1.0 .5–2.0 <.045 <.03 16.5–18.5 2.25–3.0 11.0–14.0 –

F AFNOR Z2 CND 17-12 <.03 <1.0 <2.0 <.04 <.03 16.0–18.0 2.0–2.5 11.0–13.0 –

G DIN 17440; 17442:001654 X2Cr Ni Mo 18-10 Wk. 1.44041

<.03 <1.0 <2.0 <.045 <.03 16.5–18.5 2.0–2.5 11.0–14.0 –

15018 USA AISI 317 (UNS S31700) <.08 <1.0 <2.0 <.045 <.03 18.0–20.0 3.0–4.0 11.0–15.0 –

UK BS970 317S16 <.06 .2–1.0 .5–2.0 <.045 <.03 17.5–19.5 3.0–4.0 12.0–15.0 –

F AFNOR Z2 CND 19-15 <.03 <1.0 <2.0 <.04 <.03 18.0–20.0 13.0–4.0 14.0–16.0 –

G DIN 17440 X2 Cr Ni Mo 18-16Wk. 1.4438

<.025 <1.0 <.02 <.025 <.02 17.0–19.0 3.0–4.0 15.0–17.0 –

15019 USA AISI 321 (UNS S32100) <.08 <1.0 <2.0 <.045 <.03 17.0–19.0 – 9.0–12.0 Ti > 5 × C

UK BS970 321S12 <.08 .2–1.0 .5–2.0 <.045 .03 17.0–19.0 – 9.0–12.0 Ti 5 × C − .7

UK BS970 321S20 <.12 .2–1.0 .5–2.0 <.045 <.03 17.0–19.0 – 8.0–11.0 Ti 5 × C − .9

F AFNOR Z6 CN 18-10 .05–.1 <1.0 <2.0 <.03 <.03 16.0–20.0 – 8.0–10.0 Ti

F AFNOR Z6 CNT 18-11 <.08 <1.0 <2.0 <.04 <.03 17.0–19.0 – 10.0–12.0 Ti 5 × C − .6

G DIN 17440:43720 X10 Cr NiTi 18-9 Wk. 1.4541

<.1 <1.0 <2.0 <.045 <.03 17.0–19.0 – 9.0–11.5 Ti > 5 × C

15020 USA AISI 347 (UNS S34700) <.08 <1.0 <2.0 <.045 <.03 17.0–19.0 – 9.0–12.0 Nb + Ta > 10 × C

UK BS970 347S17 <.08 .2–1.0 .5–2.0 <.045 <.03 17.0–19.0 – 9.0–12.0 Nb 10 × C − 1.0

F AFNOR Z6 CN Nb 18-11 <.08 <1.0 <2.0 <2.0 <.03 17.0–19.0 – 10.0–12.0 Nb + Ta10 × C − 1.0

G DIN 17440 X10 Cr Ni Nb 18-9Wk. 1.4550

<.1 <1.0 <2.0 <.045 <.03 17.0–19.0 – 9.0–11.5 Nb > 8 × C

15021 USA AISI 348 (UNS S34800) <.08 <1.0 <2.0 <.045 <.03 17.0–19.0 – 9.0 .13.0

Nb + Ta > 10 × CTa < .1Co < .2

15022 USA AISI 384 (UNS S38400) <.08 <1.0 <2.0 <.045 <.03 15.0–17.0 – 17.0–19.0 –

582 Appendix 6: Metal Alloy Comparison Tables

Page 26: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Ferritic and martensitic stainless steels

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

15023 USA AISI 403 (UNS S40300) <.15 <.5 <1.0 <.04 <.03 11.5–13.0 – – –

UK BS970 403S17 <.08 <.8 <1.0 <.04 <.03 12.0–14.0 – <.5 –

UK BS970 410S21 .09–.15

<.8 <1.0 <.04 <.03 11.5–13.5 – <1.0 –

F AFNOR Z10 C13 <.12 <1.0 <1.0 <.04 <.03 12.0–14.0 – – –

G X7 Crl4; G-X7 Cr 13 Wk.1.4001

<.08 <1.0 <1.0 <.045 <03 13.0–15.0 – – –

G DIN 17440; 001654 (G-)X10 Cr 13 Wk. 1.4006

.08–.12

<1.0 <1.0 <.045 <.03 12.0–14.0 – – –

15024 USA AISI 405 (UNS S40500) <.08 <1.0 <1.0 <.04 <.03 11.5–14.5 – – AI .1–.3

UK BS970 405S17 <.08 <.8 <1.0 <.04 <.03 12.0–14.0 – <.5 AI .1–.3

F AFNOR Z6 CA 13 <.08 <1.0 <1.0 <.04 <.03 11.5–13.5 – <.5 AI .1–.3

G DIN 17440 X7 Cr AI 13. Wk.1.4002

<.08 <1.0 <1.0 <.045 <.03 12.0–14.0 – – AI .1–.3

15025 USA AISI 410 (UNS S41000) <.15 <1.0 <1.0 <.04 <.03 11.5–13.5 – – –

UK BS970 410S21 .09–.15

<.8 <1.0 <.04 <.03 11.5–13.5 – <1.0 –

F AFNOR Z10C-13 <.12 <1.0 <1.0 <.04 <.03 12.0–14.0 – – –

F AFNOR Z12C-13 .08–.15 <1.0 .04 <.04 <.03 11.5–13.5 – <.5 –

G DIN 17440:0017442 X15Cr 13 Wk. 1.4024

.12–.17 <1.0 <1.0 <.045 <.03 12.0–14.0 – – –

15026 USA AISI 414 (UNS S41400) <.15 <1.0 <1.0 <.04 <.03 11.5–13.5 – 1.25–2.50

15027 USA AISI 416 (UNS S41600) <.15 <1.0 <1.25 <.06 >.15 12.0–14.0 <.6 – –

UK BS970 416S21 .09–.15 <1.0 <1.5 <.06 .15–.3 11.5–13.5 <.6 <1.0 –

F AFNOR Z12 CF 13 <.15 <1.0 <1.5 <.06 >.15 12.0–14.0 <.6 <.5 –

G X 12 Cr S 13 Wk. 1.4005 <.15 <1.0 <1.0 <.045 .15–.25 12.0–13.0 – – –

15028 USA AISI 416 SE (UNS S41623) <.15 <1.0 <1.25 <.06 <.06 12.0–14.0 – – Se > .15

UK BS970 416S41 .09–.15

<1.0 <1.5 <.06 <.06 11.5–13.5 <.6 <1.0 Se.15–.35

15029 USA AISI 420 (UNS S42000) >.15 <1.0 <1.0 <.04 <.03 12.0–14.0 – – –

UK BS970 420S29 .14–.2 <.8 <1.0 <.04 <.03 11.5–13.5 >.6 >1.0 –

UK BS970 420S37 .2–.28 <.8 <1.0 <.04 <.03 12.0–14.0 – <1.0 –

F AFNOR Z20 C13 .15–.24 <1.0 <1.0 <.04 <.03 12.0–14.0 – <1.0 –

G DIN 17440; 17224:0017442X20 Cr 13 Wk. 1.402

.17–.22 <1.0 <1.0 <.045 <.03 12.0–14.0 – – –

15030 USA AISI 420 F (UNS S42020) >.15 <1.0 <1.25 <.06 >.15 12.0–14.0 <.6 – –

15031 USA AISI 429 (UNS S42900) <.12 <1.0 <1.0 <.04 <.03 14.0–16.0 – – –

15032 USA AISI 430 (UNS S43000) <.12 <1.0 <1.0 <.04 <.03 16.0–18.0 – – –

UK BS970 430S15 <1 <.8 <1.0 <.04 <.03 16.0–18.0 – <.5 –

F AFNOR Z15 CN 16-02 <.18 .2–.4 2–.4 <.04 <.03 15.0–17.0 – 1.0–2.0 –

G DIN 17440; 001654 X8 Cr17 Wk. 1.4016

<.1 <1.0 <1.0 <.045 <.03 15.5–17.5 – – –

15033 USA AISI 430 F (UNS S43020) <.12 <1.0 <1.25 <.06 >.15 16.0–18.0 <.6 – –

15034 USA AISI 430 F SE (UNSS43023)

<.12 <1.0 <1.25 <.06 <.06 16.0–18.0 – – Se > .15

15035 USA AISI 431 (UNS S43100) <.2 <1.0 <1.0 <.04 <.03 15.0–17.0 – 1.25–2.5

UK BS970 431S29 .12–.2 <.8 <1.0 <.04 <.03 15.0–18.0 – 2.0–3.0 –

F AFNOR Z15 CN17-03 <.18 .2–.4 .2–.4 <.04 <.03 15.0–17.0 – 1.0–2.0 –

G DIN 17440;001654 X22 CrNi 17 Wk. 1.4057

.15–.23 <1.0 <1.0 <.045 <.03 16.0–18.0 – 1.5–2.5 –

(continued)

Appendix 6: Metal Alloy Comparison Tables 583

Page 27: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

15036 USA AISI 434 (UNS S43400) <.12 <1.0 <1.0 <.04 <.03 16.0–18.0 .75–1.25

– –

UK BS970 434S19 <.1 <.8 <1.0 <.04 <.03 16.0–18.0 .9–1.3 <.5 –

F AFNOR Z8CD 17-01 <.1 <1.0 <1.0 <.04 <.03 16.0–18.0 .9–1.3 <.5 –

G DIN 17440 X6 Cr Mo 17Wk. 1.4113

<.07 <1.0 <1.0 <.045 <.03 16.0–18.0 .9–1.2 – –

15037 USA AISI 436 (UNS S43600) <.12 <1.0 <1.0 <.04 <.03 16.0–18.0 .75–1.25

– Nb+Ta5×C–.7

15038 USA AISI 440 A (UNS S44002) .6–.75 <1.0 <1.0 <.04 <.03 16.0–18.0 <.75 – –

F AFNOR Z50 CD 14 .5–.6 <1.0 <1.0 <.04 <.03 13.0–15.0 .5–.6 – –

G X65 Cr Mo 14 Wk. 1.4109 .6–.75 <1.0 <1.0 <.045 <.03 13.0–15.0 .5–.6 – –

G X55 Cr Mo 14 Wk. 1.4110 .5–.6 <1.0 <1.0 <.045 <.03 13.0–15.0 .5–.6 – –

15039 USA AISI 440 B (UNS S44003) .75–.95

<1.0 <1.0 <.04 <.03 16.0–18.0 <.75 – –

15040 USA AISI 440 C (UNS S44004) .95–1.2 <1.0 <1.0 <.04 <.03 16.0–18.0 <.75 – –

F AFNOR Z100CD17

G DIN 0017230 X105 Cr Mo17

.95–1.2 <1.0 <1.0 <.045 <.03 16.0–18.0 .4–.8 – –

15041 USA AISI 442 (UNS S44200) <.2 <1.0 <1.0 <.04 <.03 18.0–23.0 – – –

UK BS970 442S19 <.1 <.8 <1.0 <.04 <.03 18.0–22.0 – <.5

15042 USA AISI 446 (UNS S44600) <.2 <1.0 <1.5 <.04 <.03 23.0–27.0 – N < .25 –

F AFNOR Z10 C24 <.12 <1.5 <1.0 <.04 <.03 23.0–26.0 – – –

G X20 Cr 25 Wk. 1.3810 <.25 .5–2.0 <.5 – – 24.0–26.0 – – –

G X8 Cr 28 Wk. 1.4083 <.1 <1.0 <1.0 <.045 <.03 27.0–29.0 – – –

15043 USA AISI 501 (UNS S50100) >.1 <1.0 <1.0 <.04 <.03 4.0–6.0 .4–.65 – –

UK BS1504 Grade 1504-625 <.15 <.5 .3–.7 <.045 <.045 4.0–6.0 .45–.65 <.4 Cu < 4

G GS-12 Cr Mo 19 5 Wk. 1.7363

.08–.15 .3–.5 .4–7 <.035 <.035 4.5–5.5 .45–.55 – –

15044 USA AISI 502 (UNS S50200) <.1 <1.0 <1.0 <.04 <.03 4.0–6.0 .4–.65 – –

UK BS1504 Grade 1504–625 <.15 <.5 .3–.7 <.045 <.045 4.0–6.0 .45–.65 <.4 Cu < .4

G GS-12 Cr Mo 19 5 Wk.1.7363

.08–.15 .3–.5 .4–.7 <.035 <.035 4.5–5.5 .45–.55 – –

Specially named steels

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

16001 USA Music Wire ASTMA228(UNS K08500)

.7–1.0 .1–.3 .2–.6 <.025 <.03 – – – –

See AISI 1078; 1086; 1095—(UNS G10780; UNS G 10860; UNS G 10950 Table Nos: 11040; 11044: 11046)

16002 USA HY80—ASTM A543(UNS J42015 (HY80))*8

<.18 .18–.37 <.4 <.02 <.02 1.0–1.5 .45–.60 2.25–3.25 V < .03

USA HY130- <.12 – .6–.9 – – .4–.7 .3–.65 4.75–5.25 V .05–.10

USA HY140—Designation nolonger in use

These steels are made inEurope to the USAanalyses

(continued)

584 Appendix 6: Metal Alloy Comparison Tables

Page 28: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

16003 USA Carpenter 20 Cb Stainless (UNS N08020 (20Cb-3)) Now replaced by20Cb-3 below

USA Carpenter 20 Cb-3 <06 <1.0 <2.0 <.035 <.035 19.0–21.0 2.0–3.0 32.5–35.0 Cu 3.0–4.0 Nb+ Ta 8×C < 1.0

16004 USA Allegheny Ludlum—A286 (UNS K66286)

.08 .4 1.4 – – 15 1.25 26 Ti 2.15 Al .2.004

USA Bofors—A286 .06 – – – – 15 1.3 25 Ti 2.15 AI.2.004

F AFNOR Z6NCT25-15

G DIN0017225 X5 Ni Cr Ti26 15 Wk. 1.4980

<.08 <1.0 1.0–2.0

<.03 <.03 13.5–16.0 1.0–1.5 24.0–27.0 Al < .35 Ti 1.9–2.3 B.003–.010V.1–.5

G LN 1.4944.4

EUR AECMA FE PA92HT

16005 USA Allegheny LudlumAM350 (UNS S35000)

.08 .4 1.0 – – 16.5 2.7 4.3 N .1

16006 USA Allegheny LudlumAM355 (UNS S35500)

.15 .4 1.0 – – 15.5 2.75 4.25 N .1

16007 USA Carpenter. Custom 455(UNS S45500)

.03 – .25 – – 11.75 – 9.0 Ti 1.2 Cu 2.2Nb+ Ta 0.3

16008 USA 15-5 PH (UNS S15500) .04 – .8 – – 15.0 – 4.6 Cu 3.3 Nb .27

16009 USA PH 14–8 Mo(UNS S14800)

.04 – .6 – – 15.1 2.2 8.3 AI 1.2 + N

16010 USA PH 15–7 Mo(UNS S15700)

.07 – – – – 15 2.2 7 AI 1.1

16011 USA PH 17–7 (UNS S17700) .07 – – – – 17 – 7 AI 1.1

16012 USA SAE H11 Tool Steel(UNS T20811)

.3–.4 .8–1.2 .2–.4 – – 4.75–5.50 1.25–1.75 – V .3–.5

USA H11 MOD (UNS K74015)—Replaced by UNS T20811

USA Vascojet 1000

UK BS4659 BH11 .32–.42 .85–1.15

<.4 – – 4.75–5.25 1.25–1.75 – V .3–.5

F E-40CDV20

G (G-) X38 Cr Mo V 5 1Wk. 1.2343

.36–.42 .9–1.2 .3–.5 <.03 <.03 4.8–5.8 1.4 – –

G Wk. 1.7784

EUR AECMA FE-PM13S .37–.43 – .3 – – 4.75–5.25 1.3 – V .5

16013 USA 17/4 PH—ASTM A 579-AIS1630 (UNS J92200)Grade 61

<.07 <1.0 <1.0 <.025 <.025 15.5–17.5 – 3.0–5.0 Cu 3.0–5.0 Nb.15–45

16014 USA PH 13-8 Mo (UNS S13800)

.03 – <.1 – – 12.8 2.2 8.2 AI 1.1

16015 USA Maraging ASTM 579Grade 71 Yield 200 ksi(UNS K92820)

<.03 <.1 <.1 <.01 <.01 – 3.0–3.5 17.0–19.0 Ti .15–.25 Co8.0–9.0 AI .05–15Ca .06 Zr .02 B.003

16016 USA Maraging ASTM 579Grade 72 Yield 250 ksi(UNS K92940)

<.03 <.1 <.1 <.01 <.01 – 4.6–5.2 17.0–19.0 Ti .3–.5 Co7.5–8.3 AI.05–.15Ca .06 Zr .02 B.003

16017 USA Maraging ASTM 579Grade 73 Yield 275 ksi(UNS K93160)

<.03 <.1 <.1 <.01 <.01 – 4.6–5.2 18.0–19.0 Ti .5–.8 Co8.5–9.5 AI.05–.15Ca .06 Zr .02 B.003

(continued)

Appendix 6: Metal Alloy Comparison Tables 585

Page 29: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

European CEN Designations for Steels

European EN specifications for metal alloys are currentlybeing generated and adopted. These will progressivelysupersede the various national standards for steels, as with

other materials. However, it will be some years before thisprocess is completed and fully implemented.

The European designation system for steels is set out inthe specification EN10027 and in the ECISS informationcircular DD214:1993 ECISS/IC10:1992. The EN designa-tions for steels will consist of three parts:

(continued)

Composition

Country Designation C Si Mn P S Cr Mo Ni Other

16018 USA ARMCO 21-6-9(UNS S21900)

<.08 <1.0 8.0–10.0

<.06 <.03 19.0–21.5 – 5.5–7.5 N .15–.4

UK BS970 284S16 <.07 <1.0 7.0–10.0

<.06 <.03 16.5–18.5 – 4.0–6.5 N .15–25

G X8 Cr Mn Ni 18 9Wk.1.4371

<.1 <1.0 7.5–9.5

<.045 <.03 17.0–19.0 – 4.5–6.5 N .1–.2

16019 USA ALMAR 362 (UNSS36200)

.03 .2 .3 <.015 <.015 14.5 – 6.5 Ti .8 Nominalcomp.

16020 USA Nitronic 33 <.08 <1.0 11.5–14.5

<.06 <.03 17.0–19.0 – 2.25–3.75 N .2–.4

USA Nitronic 32 <.1 .5 12 <.06 <.03 18 – 1.6 N .34

USA Nitronic 60 (UNSS21800)

<.1 3.5–4.5 7.0–9.0

<.06 <.03 16–18 – 8.0–9.0 N .08–.18

16021 USA Kovar (low expansionalloy)

<.04 <.2 <.5 <.2 <.2 29 Co 17.0 FeBalance.Nominal comp.

UK Nilo K 29 Co 17.0 FeBalance.Nominal comp.

F Dilver P0 29 Co 21.8 FeBalance.Nominal comp.

F Dilver P1 29 Co 18.0 FeBalance.Nominal comp.

G Dilaton 29/18 <.05 <.2 <1.0 – – – – 28–30 Co 17.0–19.0Fe Bal.Nominal comp.

Wk. 1.3981

16022 USA Invar .1 .2 .5 36 Nominal comp.

USA Invar 36 36 Nominal comp.

UK Nilo 36 36 Nominal comp.

16023 USA Invar 42 42 Nominal comp.

UK Nilo 42 42 Nominal comp.

Notes for steel tables<: less than, x–y range>: greater than, x approx*1: Silicon content depends on whether the steel is rimming, balanced or killed. For killed steel Si < 0.4. For AISI up to but excluding 1015 Si < 0.1. Ranges depend on sheetmaking practice*2: Traces*3: For electric steel N < 0.012*4: Spring Steel*5: Only very approximate equivalent*6: Can be alloyed with lead*7: Can have boron content of 0.0005 % minimum. Number then carries a B*8: Pressure vessel plate steels. Special conditions may be required. Vacuum treatment, special testing, impact testing, nondestructive testing

586 Appendix 6: Metal Alloy Comparison Tables

Page 30: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

• European Standard number, e.g. “EN 10083-1”.• ‘Steel Name’ (grade)—Symbolic letters and numbers

expressing the application and principal characteristics,e.g. “2C50 (C50E)”.

• ‘Steel Number’—a 5 digit designation based on theexisting German Werkstoff (Wk.) number, with a furthertwo digits held in reserve, e.g. “1.1206”.

The examples given above make up the complete ENdesignation: EN 10083-1 2C50 (C50E) 1.1206; Seetable 11029. Within the alloy tables, the ‘Steel Name’ parthas been underlined (e.g. EN 10083-1 2C50 (C50E) 1.1206)to indicate the separate the parts of the designation.

In principal, EN steel numbers can be inferred for steelsby using the existing Werkstoff numbers, however there isno guarantee that such numbers have currently been eitheragreed or adopted by any particular country. New specifi-cations, once adopted, will be issued by each nationalstandards organisation, and any existing, competing speci-fications will be withdrawn.

The implementation of the new standards recognisesthree levels of equivalence between EN designations andexisting national grades of steel: ‘Close Equivalent’, ‘NearEquivalent’ and ‘Approximate Equivalent’. The new ENdesignations included in the above tables are all nearequivalents of BS970-1 steel grades.

Appendix 6: Metal Alloy Comparison Tables 587

Page 31: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Allo

yequiva

lent—Nickelba

sedalloys

Com

positio

n(N

i—balanceun

less

otherw

isestated)

Country

Designatio

nC

Co

Cr

Mo

VW

Al

Cu

Nb

Ta

Ti

FeOther

21001

USA

/UK

Hastello

yC

(UNSN10002

<.08

<2.5

14.5–16

.515

–17

<.35

3.0–4.5

––

––

–4.0–7.0

Si<1.0Mn<1.0

GWk2.4537

<.02

2.5

15.5

160.35

3.7

6Nibalance.

Nom

inal

comp.

GWk2.4602

1617

46

Nibalance.

Nom

inal

comp.

21002

USA

/UK

Hastello

yX(U

NSN06002)

.05–.15

.5–2.5

20.5–23

.08.0–10

.0–

.2–1.0

––

––

–17–20

Si<1.0Mn<1.0

GWk.

2.4613

21003

USA

/UK

Incoloy80

0(U

NSN08

800)

<.1

–19

.0–23

.0–

––

.15–.6

––

–.15–.6

Bal.

Ni30

.0–35

.0

GX10

NiCrA

ITi32

20.07

21*

*Ni3

1.0no

minal

comp.

UK

Wk.

1.4876

BS30

72NA

15<.1

–19

.0–23

.0–

––

.15–.6

<.75

––

.15–.6

Bal.

Ni+Co30

.0–35

.0

21004

USA

/UK

Incoloy90

1(U

NSN09

901)

<.1

–11

.0–14

.05–

7–

–<.35

<.5

––

2.35–3.1

Bal.

Ni4

0.0–40

.5Mn<1.0

Si<

.6B.01–.02

21005

USA

/UK

Incoloy90

3(U

NSN19

903)

–13

.0–17

.0–

––

–.3–1.5

–2.4–3.5

–1.0–1.25

Bal.

Ni36

.0–40

.0

21006

USA

/UK

Incoloy90

7(U

NSN19

907)

13.0

4.7

1.5

Bal.

Ni3

8.0no

minal

comp.

21007

USA

/UK

Incoloy90

9(U

NSN19

909)

.113

.04.7

1.5

Bal.

Ni3

8.0no

minal

comp.

21008

USA

/UK

Inconel6

00(U

NSN06

600)

<.15

–14

.0–17

.0–

––

–<.5

––

–6.0–10

.0Ni>72

.0

UK

BS3

072NA14

<.15

–14

.0–17

.0–

––

–<.5

––

–6.0–10

.0Ni+Co>72

.0Mn<1.0Si

<.5

GWk.

2.4816

.05

1610

Nom

inal

comp.

21009

USA

/UK

Inconel6

25(U

NSN06

625)

<.1

–20

.0–23

.08.0–10

.0–

–<.4

–3.15–4.15

<.4

<5.0

Nibalance

21010

USA

/UK

Inconel7

18(U

NSN07

718)

<.08

<1.0

17.0–21

.02.8–3.0

––

.2–.8

–4.75–5.5

.65–1.15

Bal.

Si<.35Mn<.35Ni

50.0–55

.0

F/AECMA

NI-P1

00HT

GWk.

2.4666

CEN

EN

2403PR

(NI-P1

00HTSo

lutio

ntreatedandprecipitatio

ntreatedprecisioncastings—

provisionalspec.)

EN

2404PR

(NI-P1

00HTSo

lutio

ntreatedandprecipitatio

ntreatedbars—

provisionalspec.)

EN

2405PR

(NI-P1

00HTSo

lutio

ntreatedandprecipitatio

ntreatedforgings—provisionalspec.)

EN

2407PR

(NI-P1

00HTSo

lutio

ntreatedandprecipitatio

ntreatedsheetandstrip,

a≤3mm—prov

isionalspec.)

EN

2408PR

(NI-P1

00HTSo

lutio

ntreatedandprecipitatio

ntreatedplates,a≤3mm—

provisionalspec.)

EN

2952PR

(NI-P1

00HTSo

lutio

ntreatedandcold

workedbarforho

tup

setforgingforfasteners,3mm

≤d≤30

mm—prov

isionalspec.)

EN

2961

PR(N

I-P1

00HTColdworkedandsolutio

ntreatedbarformachining

forfasteners,3mm

≤d≤50

mm—provisionalspec.)

EN

3666PR

(NI-P1

00Coldworked—

RM

≥15

00MPa—

barformachining

,3mm

≤d≤50

mm—provisionalspec.)

(con

tinued)

588 Appendix 6: Metal Alloy Comparison Tables

Page 32: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(con

tinued)

Com

positio

n(N

i—balanceun

less

otherw

isestated)

Country

Designatio

nC

Co

Cr

Mo

VW

Al

Cu

Nb

Ta

Ti

FeOther

21011

USA

/UK

InconelX75

0(U

NS

N07

750)

<.08

–14

.0–17

.0–

––

.4–1.0

–.7–1.2

2.25–2.75

5.0–9.0

Si<.5

Mn<1.0Ni

Balance

21012

USA

/UK

Mon

elK50

0(U

NS

N05

500)

<.25

––

––

–2.9

Bal.

––

.35–.85

<2.0

Si<.5

Mn<1.5Ni

63.0–70

.0

GWk.

2.4360

31.0

2.0

Nibalance.

Nom

inal

comp.

GWk.

2.4374

3.0

30.0

.81.5

Nibalance.

Nom

inal

comp.

GWk.

2.4375

.25

3.0

30.0

1.0

2.0

Nibalance.

Nom

inal

comp.

21013

USA

/UK

NI-SP

AN

C90

2(U

NS

N09

902)

<.06

–4.9–5.75

––

–.3–.8

––

–2.2–2.75

Bal.

Ni41

.0–43

.5Mn<.8

Si<1.0

21014

USA

/UK

RENE41

(UNSN07

041)

<.12

10.0–12

.018

.0–20

.09.0–10

.5–

–1.4–1.8

––

–3.0–3.3

<5.0

Si<.5

Mn<.1

B.003–.010

21015

USA

/UK

UNIT

EMP21

2.08

–16

.0–

––

.15

–.5

–4.0

Bal.

Si.15Mn.05B.06Zr

.05Ni25

.0

21016

USA

/UK

WASP

ALLOY

(UNS

N07

001)

.03–.1

12.0–15

.018

.0–20

.03.5–5.0

––

1.2–1.6

––

–2.75–3.25

<2.0

B.003–.010

Zr.02

–.12

F/AECMA

NI-P1

01HT

CEN

EN

2193PR

(NI-P1

01HTSo

lutio

ntreatedandprecipitatio

ntreatedbars—prov

isionalspec.)

EN

2194PR

(NI-P1

01HTSo

lutio

ntreatedandprecipitatio

ntreatedforgings—

provisionalspec.)

EN

2195PR

(NI-P1

01HTSo

lutio

ntreatedandprecipitatio

ntreatedsheetandstrip,

a≤3mm—prov

isionalspec.)

EN

2406PR

(NI-P1

01HTSo

lutio

ntreatedandprecipitatio

ntreatedbars

forforged

bolts,d≤25

mm—provisionalspec.)

EN

2959PR

(NI-P1

01HTSo

lutio

ntreatedandcold

workedbarforho

tup

setforgingforfasteners,3mm

≤d≤30

mm—prov

isionalspec.)

EN

2960PR

(NI-P1

01HTColdworkedandsolutio

ntreatedbarformachining

forfasteners,3mm

≤d≤50

mm—provisionalspec.)

Notes

forNickelalloys

Trade

Nam

es—Usually

nominal

compo

sitio

nson

lyavailable.

Somealloys

arebalanceiron,somebalancenickel

Appendix 6: Metal Alloy Comparison Tables 589

Page 33: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Allo

yequiva

lents—

Aluminium

alloys

(wroug

ht) Com

positio

n(m

ax.unless

otherw

isestated)

Others

Country

Designatio

nSi

FeCu

Mn

Mg

Cr

Zn

Ti

Each

Total

Almin.

Notes

31001

USA

AA

1050

(UNSA91050)

.25

.4.05

.05

.05

–.05

.03

.03

–99.5

(1050A

:Zn<.07)

UK

AA

1050A

(was

BS1B

).3

.4.05

.03

––

.1–

––

99.5

*35

UK

BS5L

36(A

A1050A)

.3.4

.05

.05

––

.10

–0.03

–99.5

FNFA-5

(AA

1050A)

.3.4

.05

.05

.03

.03

.1.05

––

Rem

.

GDIN

1712

AI99.5(A

A1050A)Wk.

3.0255

99.5

CEN

EN

2072

(1050A

-H14

sheetand

strip);

EN

2073PR

(1050A

-H14

tube

forstructures,5mm

<d<100mm—

provisionalspec.)

EN

2114PR

(1050A

-H14

wireforsolid

rivets,d≤10

mm—provisionalspec.)

31002

USA

AA

1060

(UNSA91060)

.25

.35

.05

.03

.03

–.05

.03

.03

–99.6

31003

USA

AA

1100

(UNSA91100)

1.0(Si+Fe)

.05–.2

.05

––

.1–

.05

.15

99.0

*31

UK

AA

1100

1.0(Si+Fe)

.05–.2

.05

––

.1–

.05

.15

99.0

*31

CEN

EN

3996PR

(1100-H14

sheetandstrip,

0.3mm

≤a≤6mm—

provisionalspec.)

31004

USA

AA

1145

(UNSA91145)

.55(Si+Fe)

.05

.05

––

––

.03

–99.45

UK

AA

1145

.55(Si+Fe)

.05

.05

––

––

.03

–99.45

31005

USA

AA

1175

(UNSA91175)

.15(Si+Fe)

.1–

––

.03

–.02

–99.75

*32

UK

AA

1080A

(was

BS1A

).15

.15

.02

.03

––

.06

––

–99.8

*33

FNFA8(A

A1080A)

.15

.15

.03

.03

.01

.02

.06

.05

–.2

Rem

.

GDIN

1712

AI99.7Wk.

3.0275

.20

.25

.03

––

–.07

.05

.02

.3Rem

.

GDIN

1712

AI99.8(A

A1080A)Wk.

3.0285

.15

.15

.02

––

–.06

.03

.01

.2Rem

.

31006

USA

AA

1200

(UNSA91200)

1.0(Si+Fe)

.05

.05

––

.1.05

.05

.15

99.0

UK

AA

1200

(was

BS1C

)1.0(Si+Fe)

.05

.05

––

.1.05

.05

.15

99.0

UK

BS6L

16;BS6L

17;BS4L

34.5

.7.1

.1–

–.1

–.05

–99.0

FNFA-4

.5.8

.1.1

.05

.05

.1.05

––

Rem

.

GDIN

1712

AI99Wk.

3.0205

.5.6

.07

––

–.08

.05

.04

1.0

Rem

.

31007

USA

AA

1230

(UNSA91230)

.7(Si+Fe)

.1.03

––

.1–

.05

–99.3

UK

AA

1230

.7(Si+Fe)

.1.03

––

.1–

.05

–99.3

31008

USA

AA

1235

(UNSA91235)

.65(Si+Fe)

.05

––

––

–.05

–99.35

UK

AA

1235

.65(Si+Fe)

.05

––

––

–.05

–99.35

31009

USA

AA

1345

(UNSA91345)

.3.4

.1–

––

––

.03

–99.45

UK,F,

G:SeeTable

31001(A

A1050)

31010

USA

AA

1350

(UNSA91350)

.1.4

.05

.01

–.01

.05

+V.02

.03

.199.5

Ga<.03B<.05

UK

AA

1350

(was

BS1E);BS2

897

.1.4

.05

.01

–.01

.05

+V.02

.03

.199.5

Ga<.03B<.05

FA

5L,A

5B99.5

GDIN

1712

AI99.5Wk.

3.0255

.3.4

.05

––

–.07

.05

.03

.5Rem

.

GDIN

1712

AI99.5Wk.

3.0257

31011

USA

1420

.05

4.5–6.0

Li1.9–

2.3Zr.08–.15

Nom

inal

comp.

31012

USA

1430

1.4–1.8

2.3–3.0

Li1.5–

1.9Zr.08–.14

Nom

inal

comp.

31013

USA

1440

1.2–1.9

.6–1.1

Li2.1–

2.6Zr.1–.2

Nom

inal

comp.

31014

USA

1460

2.6–3.3

.05

Li2.0–

2.5Zr<.15Sc

<.14

Nom

inal

comp.

31015

USA

AA

2011

(UNSA92011)

.4.7

5.0–6.0

––

–.3

–.05

.15

Rem

.*37

UK

AA2011

(was

BSFC

1);BS4

300/5;

EN

515;

EN

573-3;

EN

573-4

.4.7

5.0–6.0

––

–.3

–.05

.15

Rem

.*37

FA-U

5PbB

i5.5

Rem

.Nom

inal

comp.

GDIN

1725

AlCuBiPb

.Wk.

3.1655

.4.7

5.0–6.0

––

–.3

–.05

.15

Rem

.*37

31016

USA

AA

2014

(UNSA92014)

.5–1.2

.73.9–5.0

.4–1.2

.2–.8

.1.25

.15

.05

.15

Rem

.*310*31

(con

tinued)

590 Appendix 6: Metal Alloy Comparison Tables

Page 34: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(con

tinued)

Com

positio

n(m

ax.unless

otherw

isestated)

Others

Country

Designatio

nSi

FeCu

Mn

Mg

Cr

Zn

Ti

Each

Total

Almin.

Notes

UK

AA

2104A

(was

BSH15);BS

L102;

BSL103;

.5–.9

.53.9–5.0

.4–1.2

.2–.8

.1.2

+Zr.2

––

Rem

.Ni.2,Pb

.05,

Sn.05

BSL105;

BSL156-L159;

BSL163-L168;

BS2L

77;

BS2L

87;BS2L

93;BS3L

63;BS

7L37;DTD

5010A;

DTD

5030A;DTD5040A

FNFA

-U4S

G.5–1.2

.73.9–4.9

.4–1.2

.2–.8

.1.25

.2–

–Rem

.

GDIN

1725

AlCuSi

Mn.

Wk.

3.1255

.5–1.2

.73.9–5.0

.4–1.2

.2–.8

.1.25

.15

.05

.15

Rem

.

CEN

EN

2087PR

(2014A

-T6/T62

clad

sheetandstrip—

provisionalspec.)

EN

2088PR

(2014A

-T4/T42

clad

sheetandstrip—

provisionalspec.)

EN

2089

(2014A

-T6sheetandstrip)

EN

2100

(2014A

-T4511

baranddraw

nprofi

les)

EN

2323PR

(2014A

-T651bar≤200mm—

provisionalspec)

EN

2324PR

(2014A

-T6barandsection≤150mm—provisionalspec.)

EN

2325PR

(2014A

-T6bar≤100mm—provisionalspec.)

EN

2384

(2014A

-T6511

baranddraw

nprofi

les)

EN

2387PR

(2014A

-T6tube

forstructures,0.6mm

≤a≤12.5

mm—

provisionalspec.)

EN

2395

(2014A

-T4/T42

sheetandstrip)

EN

2634PR

(2014A

-T4511

bars

andsections

1.2mm

≤a/d≤200mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

2635PR

(2014A

-T6511

bars

andsections

1.2mm

≤a/d≤150mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

2639PR

(2014A

-T6extruded

bars

andsections

1.2mm

≤a/d≤150mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

2710PR

(2014A

-T4510

barandsection,

1.2mm

≤a/d≤200mm,peripheral

coarse

graincontrol —

provisionalspec.)

EN

2711

PR(2014A

-T6510

barandsection,

1.2mm

≤a/d≤150mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

3346PR

(2014A

-T3tube

forstructures,0.6mm

≤a≤12.5

mm—

provisionalspec.)

31017

USA

AA

2017

(UNSA92017)

.2–.8

.73.5–4.3

.4–1.0

.4–.8

.1.25

.15

.05

.15

Rem

.*310

UK

AA

2017

.2–.8

.73.5–4.3

.4–1.0

.4–.8

.1.25

.15

.05

.15

Rem

.*310

FNFA-U

49.3–.8

.73.5–4.7

.3–.8

.4–1.0

.1.25

.2–

–Rem

.

GDIN

1725

AlCuMg1.

Wk.

3.1325

.6.5

3.5–4.3

.3–1.0

.4–1.0

.1.5

.2.05

.2Rem

.

CEN

EN

2116PR

(2017A

-H13

wireforsolid

rivets,d≤10

mm—provisionalspec.)

EN

2393PR

(2017A

-T4draw

ntube

forstructures,0.6mm

≤a≤12.5

mm—

provisionalspec.)

EN

2509PR

(2017A

-T42

draw

ntube

forstructures—provisionalspec.)

EN

2640PR

(2017A

-T4extruded

bars

andsections

1.2mm

≤a/d≤150mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

2655PR

(2017A

-T42

extruded

bars

andsections

1.2mm

≤a/d≤150mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

2691

PR(2017A

-T3sheetandstrip,

0.4mm

≤a≤6mm—

provisionalspec.)

EN

2692PR

(2017A

-T3clad

sheetandstrip,

0.4mm

≤a≤6mm—provisionalspec.)

EN

2705PR

(2017A

-T44

draw

ntube

forstructures,0.6mm

≤a≤12.5

mm—provisionalspec.)

(con

tinued)

Appendix 6: Metal Alloy Comparison Tables 591

Page 35: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(con

tinued)

Com

positio

n(m

ax.unless

otherw

isestated)

Others

Country

Designatio

nSi

FeCu

Mn

Mg

Cr

Zn

Ti

Each

Total

Almin.

Notes

31018

USA

AA

2024

(UNSA92024)

.5.5

3.8–4.9

.3–.9

1.2–1.8

.1.25

.15

.05

.15

Rem

.*310

UK

AA

2024

.5.5

3.8–4.9

.3–.9

1.2–1.8

.1.25

.15

.05

.15

Rem

.*310

UK

BS2L

97;DTD

5100A;BS

AMD2433

(was

2L98)

.5.5

3.8–4.9

.3–.9

1.2–1.8

.1.2

+Zr.2

––

Rem

.Ni.05,

Pb.05,

Sn.05

FNFA-U

4G1

.5.5

3.8–4.5

.3–.9

1.2–1.8

.1.25

.2–

–Rem

.

GDIN

1725

AlCuMg2.

Wk.

3.1355

.4.4

4.0–4.8

.3–.9

1.2–1.8

.1.25

.2.05

.2Rem

.

ISO

ISO

AlCu4Mg1

CEN

EN

2090PR

(2024-T3clad

sheetandstrip,

0.4mm

<a<6mm—provisionalspec.)

EN

2091

PR(2024-T4clad

sheetandstrip,

0.4mm

<a<6mm—provisionalspec.)

EN

2318

(2024-T3511

baranddraw

nprofi

les,a>1.2mm

/d<150mm)

EN

2320PR

(2024-T3draw

nbar,a≤75

mm—

provisionalspec.)

EN

2321

PR(2024-T4barandsection,

a≤150mm—provisionalspec.)

EN

2319PR

(2024-T3510

draw

nbar,a≤75

mm—

provisionalspec.)

EN

2388PR

(2024-T351tube

forstructures,0.6mm

≤a≤12.5

mm—provisionalspec.)

EN

2419PR

(2024-T351plate,

6mm

≤a≤80

mm—provisionalspec.)

EN

251O

PR(2024-T42

draw

ntube

forstructures—

provisionalspec.)

EN

2633

(2024-T3511

baranddraw

nprofi

les,a>1.2mm

/d<150mm,peripheral

coarse

graincontrol)

EN

2638PR

(2024-T3extruded

bars

andsections,1.2mm

≤a/d≤150mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

2701

PR(2024-T3draw

ntube,6mm

≤d/a≤12.5—

provisionalspec.)

EN

2703PR

(2024-T42

clad

sheetandstrip,

0.4mm

≤a≤6mm—provisionalspec.)

EN

2704PR

(2024-T3511

draw

nbar,a≤75

mm—

provisionalspec.)

EN

2709PR

(2024-T3510

barandsection,

1.2mm

≤a/d≤150mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

2806PR

(2024-T42

extruded

sections,1.2mm

≤a≤100mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

2814PR

(2024-T3511

tube

forstructures,0.6mm

≤a≤12.5

mm—provisionalspec.)

EN

3347PR

(2024-T8511

extruded

bars

andsections,a/d≤150mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

3348PR

(2024-T62

plate,

6mm

≤a/d≤50

mm—provisionalspec.)

EN

3474PR

(2024-T81

sheetandstrip,

0.25

mm

≤a/d≤6mm—provisionalspec.)

EN

3550PR

(2024-T8511

extruded

barsandsections,a/d≤150mm—provisionalspec.)

EN

3657PR

(2024-T3510

draw

nbarformachining,d≤75

mm—provisionalspec.)

EN

3997PR

(2024-T3sheetandstrip,

0.4mm

≤a/d≤6mm—provisionalspec.)

EN

3998PR

(2024-T42

sheetandstrip,

0.4mm

≤a/d≤6mm—

provisionalspec.)

EN

4101

PR(2024-T4sheetandstrip,

0.4mm

≤a/d≤6mm—provisionalspec.)

31019

USA

AA

2048

(UNSA92048)

.15

.22.8–3.8

.2–.6

1.2–1.8

–.25

––

UK

AA

2048

.15

.22.8–3.8

.2–6

1.2–1.8

–.25

––

31020

USA

AA

2090

2.5–2.75

017–

.02

Li2.1–

2.2Zr.11–.12

Nom

inal

comp.

USA

2090

(proprietory)

2.4–3.0

.25

Li1.9–

2.6Zr.08–.15

Nom

inal

comp.

UK

AA

2090

2.5–2.75

.017–.02

Li2.1–

2.2Zr.11–.12

Nom

inal

comp.

31021

USA

AA

2091

.2.3

1.8–2.5

1.1–1.9

Li1.7–

2.3Zr<.1

Nom

inal

comp.

UK

AA

2091

.2.3

1.8–2.5

1.1–1.9

Li1.7–

2.3Zr<.1

Nom

inal

comp.

31022

USA

Welda

lite049(A

A2095)

4.0–6.3

.4Li1.3Zr.14Ag.4

Nom

inal

comp.

31023

USA

AA

2124

(UNSA92124)

.2.3

3.8–4.9

.3–.9

1.2–1.8

.1.25

.15

.05

.15

Rem

.*310

UK

AA

2124

.2.3

3.8–4.9

.3–.9

1.2–1.8

.1.25

.15

.05

.15

Rem

.*310

CEN

EN

2422PR

(2124–T351plate,

25mm

≤a<120mm—provisionalspec.);

(con

tinued)

592 Appendix 6: Metal Alloy Comparison Tables

Page 36: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(con

tinued)

Com

positio

n(m

ax.unless

otherw

isestated)

Others

Country

Designatio

nSi

FeCu

Mn

Mg

Cr

Zn

Ti

Each

Total

Almin.

Notes

31024

USA

AA

2195

3.7–4.3

.25–8

Li.8–1.2Zr.08–

.16

Nom

inal

comp.

31025

USA

AA

2214

.84.5

.6Nom

inal

comp.

UK

AA

2214

.84.5

.6Nom

inal

comp.

CEN

EN

2124PR

(2214-T651plate,

6mm

≤a≤140mm)

EN

2382PR

(2214-T6forgings,≤100mm)

EN

2383PR

(2214-T4forgings,≤100mm)

EN

2485PR

(2214-FExtrudedor

castforgingstock)

EN

2697PR

(2214-T6extruded

barandsection,

1.2≤a/d≤100mm,peripheral

coarse

graincontrol—

provisionalspec)

31026

USA

AA

2219

(UNSA92219)

.2.3

5.8–6.8

.2–.4

.02

–.1

.02–.1

.05

.15

Rem

.*311

UK

AA

2219

.2.3

5.8–6.8

.2–.4

.02

–.1

.02–.1

.05

.15

Rem

.*311

UK

DTD

5004A

.25

.35

5.7–6.5

.2–.35

.15

–.1

+Zr.2

––

Rem

.*312

FNFA-U

6MT

.2.3

5.5–6.5

.2–.3

––

–.05–.15

––

Rem

.

CEN

EN

4099PR

(2219-T62

clad

sheet.andstrip,

0.5mm

≤a≤6mm—provisionalspec.)

EN

4100PR

(2219-T62

sheetandstrip,

0.5mm

≤a≤6mm—provisionalspec)

EN

4102PR

(2219-T81

clad

sheet.andstrip,

0.5mm

≤a≤6mm—provisionalspec.)

31027

USA

AA

2419

.015

.18

5.8–6.8

.2–.4

.02

–.10

.02–.1

.05

.15

Rem

.*321

UK

AA

2419

.015

.18

5.8–6.8

.2–4

.02

–.10

.02–.1

.05

.15

Rem

.*321

31028

USA

AA

2618

.1–.25

.9–1.3

1.9–2.7

–1.3–1.8

–.1

.04–.1

.05

.15

Rem

.*322

UK

AA

2618A

(was

H16)

.1–.25

.9–1.4

1.8–2.7

.25

1.2–1.8

–.15

.04–.2

.05

.15

Rem

.Ni.8–1.4

UK

BS1472;Hid

RR58

.25

.9–1.4

1.8–2.7

.21.2–1.8

–.2

.2–

–Rem

.*322

UK

DTD717A

;731B

;745A

;5084A;5014A

.25

.9–1.4

1.8–2.7

.21.2–1.8

–.1

+Zr.2

––

Rem

.Pb

,Sn

.05,

Ni.8–1.4

FA-U

2GN

.25

.7–1.4

1.8–2.7

.21.2–1.8

–.15

––

–Rem

.*325

CEN

EN

2085PR

(2618A

-T6forgings,≤150mm)

EN

2086PR

(2618A

-T851[A

L-P11-T851]

forged

bars

andlabs,≤150mm)

EN

2123PR

(2618A

-T851plates,6mm

≤a≤140mm)

EN

2256PR

(2618A

-T852[A

L-P11-T852]

forged

bars

andslabs,≤150mm)

EN

2486PR

(2618A

-Fextruded

orcastforgingstock)

EN

3552PR

(2618A

-T6clad

sheetandstrip,

0.4mm

≤a≤6mm—provisionalspec.)

EN

3553PR

(2618A

-T6511

extruded

barandsection,

12mm

≤≤100mm—provisionalspec.)

31029

USA

AA

3003

(UNSA93003)

.6.7

.05–.2

1.0–

1.5

––

.1–

.03

.15

Rem

.*31

UK

AA

3003

(was

BS1470

NS3

).6

.7.1

.8–1.5

.1–

.2.2

––

Rem

.

FNFA-M

I.6

.7.2

1.0–

1.5

.05

–.1

.5–

–Rem

.

GDIN

1725

AlMnWk.

3.0515

.5.6

.1.9–1.4

0–.3

.05

.2.1

.05

.15

Rem

.

31030

USA

AA

3004

(UNSA93004)

.3.7

.25

1.0–

1.5

.8–1.3

–.25

–05

.15

Rem

.*31

UK

AA

3004

.3.7

.25

1.0–

1.5

.8–1.3

–.25

–05

.15

Rem

.*31

FNFA

.3.7

.25

1.0–

1.5

.8–1.3

–.25

.5–

–Rem

.

31031

USA

AA

3005

(UNSA93005)

.6.7

.31.0–

1.5

.2–.6

.1.25

.1.05

.15

Rem

.

UK

AA

3005

.6.7

.31.0–

1.5

.2–.6

.1.25

.1.05

.15

Rem

.

31032

USA

AA

3103

(UNSA93103)

.5.7

.1.9–1.5

.3.1

.2+Z

r.1

.05

.15

Rem

.

UK

AA

3103

.5.7

.1.9–1.5

.3.1

.2+Z

r.1

.05

.15

Rem

.

CEN

EN

4004PR

(3103-H16

sheetandstrip,

0.4mm

≤a≤6mm—

provisionalspec.)

31033

USA

AA

3105

(UNSA93105)

.6.7

.3.3–.8

.2–.8

.2.4

.1.05

.15

Rem

.

UK

AA

3105;ALCAN

E4S

.6.7

.3.3–.8

.2–.8

.2.4

.1.05

.15

Rem

.

UK

BSN31

(old

designation)

.25

.7.25

.4–1.1

.3–.6

.1.2

.2–

–Rem

.

GDIN

1725

AlMn0.5Mg0.5Wk.

3.0505

(con

tinued)

Appendix 6: Metal Alloy Comparison Tables 593

Page 37: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(con

tinued)

Com

positio

n(m

ax.unless

otherw

isestated)

Others

Country

Designatio

nSi

FeCu

Mn

Mg

Cr

Zn

Ti

Each

Total

Almin.

Notes

31034

USA

AA

4032

(UNSA94032)

11.0–13.5

1.0

.5–1.3

–.8–1.3

.1.25

–.05

.15

Rem

.*313

UK

AA

4032

11.0–13.5

1.0

.5–1.3

–.8–1.3

.1.25

–.05

.15

Rem

.*313

UK

ALCAN

GB38S

10.5–13.0

.6.7–1.3

.2.8–1.5

–.1

.2–

–Rem

.*314

FNFA-S12UN

10.5–12.5

–.7–1.3

–.8–1.5

––

.15

––

Rem

.*314

31035

USA

AA

5005

(UNSA95005)

.3.7

.2.2

.5–1.1

.1.25

–.05

.15

Rem

.

UK

AA

5005

.3.7

.2.2

.5–1.1

.1.25

–.05

.15

Rem

.

UK

BSN41

(old

designation)

.4.7

.2.5

.5–1.2

.1.2

.2–

–Rem

.

FNFA-G

0.6

.4.7

.2.2

.5–1.1

.1.2

.5–

–Rem

.

GDIN

1725

AlMg1.

Wk.

3.3315

.3.4

.05

.2.8–1.2

.1.2

.1.05

.15

Rem

.

31036

USA

AA

5050

(UNSA95050)

.4.7

.2.1

1.1–1.8

.1.25

–.05

.15

Rem

.*31

UK

AA

5050

.4.7

.2.1

1.1–1.8

.1.25

–.05

.15

Rem

.*31

FNFA-G

1.4

.7.2

.71.0–1.8

.1.25

.05

––

Rem

.

31037

USA

AA

5052

(UNSA95052)

.45(Si+Fe)

.1.1

2.2–2.8

.15–.35

.1.05

–.15

Rem

.*31

USA

AMS4015E;AMS4016E;AMS

4017E;

AMS4069;AMS4070F;

AMS

4071F;

AMS4114B

2.5

.25

Nom

inal

comp.

UK

AA

5052

.45(Si+Fe)

.1.1

2.2–2.8

.15–.35

.1.05

–.15

Rem

.*31

ISO

ISO

AlMg2

CEN

EN

4005PR

(5052-O

sheetandstrip,

0.3mm

≤a≤6mm—provisionalspec.)

31038

USA

AA

5056

(UNSA95056)

.3.4

.1.05–

.24.5–5.6

.05–.2

.1–

.05

.15

Rem

.*31

UK

AA

5056A;BS3L

58.4

.5.1

.1–.6

4.5–5.6

.2.2

.2.05

.15

Rem

.Mn+Cr.1–.6

UK

BSN6(old

designation)

.3.5

.1.5

4.5–5.3

.25

.2.2

Rem

.Mn+Cr.1–.5

FA-G

5M

(AA

5056A)

.4.4

.05

.55

4.3–5.5

.3.2

.1.05

.15

Rem

.

GDIN

1725

AlMg5.

(AA

5056A)

Wk.

3.3555

.4.4

.05

.55

4.3–5.5

.3.2

.1.05

.15

Rem

.

CEN

EN

2117PR

(5056A

-H32

wireforsolid

rivets,d≤

10mm—

provisionalspec.)

EN

2628PR

(5056A

-Owireforsolid

rivets,d≤

10mm—provisionalspec.)

31039

USA

AA

5083

(UNSA95083)

.4.4

.1.4–1.0

4.0–4.9

.05–.25

.25

.15

.05

.15

Rem

.

UK

AA

5083

.4.4

.1.4–1.0

4.0–4.9

.05–.25

.25

.15

.05

.15

Rem

.

UK

BSN8

.4.4

.1.5–1.0

4.0–4.9

.25

2.15

––

Rem

.

FA-G

4.5M

C.7

4.4

.1Nom

inal

comp.

GDIN

1725

AlM

g4.5MnWk.3.3547

.4.4

.1.6–1.0

4.0–4.9

.05–.25

.2.1

.05

.15

Rem

.

31040

USA

AA

5086

(UNSA95086)

.4.5

.1.2–.7

3.5–4.5

.05–.25

.25

.15

.05

.15

Rem

.

UK

AA

5086

.4.5

.1.2–.7

3.5–4.5

.05–.25

.25

.15

.05

.15

Rem

.

CEN

EN

2508PR

(5086-H111draw

ntube

forsturctures—provisionalspec.)

EN

2693

(5086-H

111sheetandstrip)

EN

2699PR

(5086-H111draw

nbar,6mm

≤d≤50

mm—

provisionalspec.)

31041

USA

AA

5154

(UNSA95154)

.45(Si+Fe)

.1.1

3.1–3.9

.15–.35

.2.2

.05

.15

Rem

.*31

UK

AA5154A

(was

BSN5)

.5.5

.1.5

3.1–3.9

.25

.2.2

.05

.15

Rem

.Mn+Cr.1–.5

*31

GDIN

1725

AlMg3.

Wk.

3.3535

.4.4

.05

.52.6–34

.3.2

.1.05

.15

Rem

.

31042

USA

AA

5251

(UNSA95050)

.4.5

.15

.1–.5

1.7–2.4

.15

.15

.15

.05

.15

Rem

.

UK

AA

5251;BS5L

44;BS3L

80;BS

3L81

.4.5

.15

.1–.5

1.7–2.4

.15

.15

.15

.05

.15

Rem

.

UK

BSN4(old

designation)

.5.5

.1.5

1.7–2.4

.25

.2.2

Mn+Cr

.5Rem

.

FA-G

2M

2Nom

inal

comp.

GDIN

1725

AlMg2.

Mn0.3Wk.

3.3525

.3.4

.05

.31.7–2.4

.3.2

.1.05

.15

Rem

.

(con

tinued)

594 Appendix 6: Metal Alloy Comparison Tables

Page 38: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(con

tinued)

Com

positio

n(m

ax.unless

otherw

isestated)

Others

Country

Designatio

nSi

FeCu

Mn

Mg

Cr

Zn

Ti

Each

Total

Almin.

Notes

31043

USA

AA

5252

(UNSA95252)

.08

.1.1

.12.2–2.8

––

–.03

.1Rem

.

UK

AA

5252

.08

.1.1

.12.2–2.8

––

–.03

.1Rem

.

FNFAG-G

33.0nom

Highpurity

base

31044

USA

AA

5254

(UNSA95254)

.45(Si+Fe)

.05

.01

3.1–3.9

.15–.35

.2.05

.05

15Rem

.

UK

AA

5154A

(was

BSN5)

.5.5

.1.5

3.1–3.9

.25

.2.2

.05

.15

Rem

.Mn+Cr.1–.5

*31

GDIN

1725

AlMg3.Wk.

3.3535

.4.4

.05

.52.6–3.4

.3.2

.1.05

.15

Rem

.

31045

USA

AA

5356

(UNSA95356)

.5(Si+Fe)

.1.05–

.24.5–5.5

.05–.2

.1.06–.2

.05

.15

Rem

.*31

UK

AA

5356

.5(Si+Fe)

.1.05–

.24.5–5.5

.05–.2

.1.06–.2

.05

.15

Rem

.*31

UK

AA

5056A;BS3L

58.4

.5.1

1–.6

4.5–5.6

.2.2

.2.05

.15

Rem

.Mn+Cr.1–.6

UK

BSN6(old

designation)

.3.5

.1.5

4.5–5.3

.25

.2.2

Mn+Cr

.1–.5

Rem

.

FA-G

5M

.4.4

.05

.55

4.3–5.5

.3.2

.1.05

.15

Rem

.

GDIN

1725

AlMg5.

Wk.

3.3555

.4.4

.05

.55

4.3–5.5

.3.2

.1.05

.15

Rem

.

31046

USA

AA

5454

(UNSA95454)

.4(Si+Fe)

.1.5–1.0

2.4–3.0

.05–.2

.25

.2.05

.15

Rem

.

UK

AA5454

(was

BSN51);EN515;

EN

573-3;

.4(Si+Fe)

.1.5–1.0

2.4–3.0

.05–.2

.25

.2.05

.15

Rem

.

EN

573-4

FA-G

2.5M

C.7

2.7

.1Nom

inal

comp.

FA-G

3.4

.5.1

.1–.6

2.6–3.8

.4.2

.2–

–Rem

.

GDIN

1725

AlMg2.7Wk.

3.3537

.45

2.7

Nom

inal

comp.

GDIN

1725

AlMg3.

Wk.

3.3585

.4.4

.05

.52.6–3.4

.3.2

.1.05

.15

Rem

.

31047

USA

AA

5456

(UNSA95456)

.4(Si+Fe)

.1.5–1.0

4.7–5.5

.05–.2

.25

.2.05

.15

Rem

.

UK

BSN61

.4(Si+Fe)

.1.6–1.0

5.0–5.5

.05–.2

.2.05–.2

––

Rem

.

FNFA-G

5.4

.5.1

.2–1.0

4.5–5.5

.4.2

.2–

–Rem

.

GDIN

1725

AlMg5.

Wk.

3.3555

.4.4

.05

.55

4.3–5.5

.3.2

.1.05

.15

Rem

.

31048

USA

AA

5457

(UNSA95457)

.08

.1.2

.15–

.45

.8–1.2

–.03

–.03

.1Rem

.

UK

AA

5457

(UNSA95457)

.08

.1.2

.15–

.45

.8–1.2

–.03

–.03

.1Rem

.

FA9-G1andseeAA

5005

1.0

Nom

inal

comp.

31049

USA

AA

5652

(UNSA95652)

.4(Si+Fe)

.04

.01

2.2–2.8

.15–.35

.1–

.05

.15

Rem

.*31

UK

AA

5652

.4(Si+Fe)

.04

.01

2.2–2.8

.15–.35

.1–

.05

.15

Rem

.*31

31050

USA

AA

5657

(UNSA95657)

.08

.1.1

.03

.6–1.0

–.03

–.02

.05

Rem

.*31

UK

AA

5657

.08

.1.1

.03

.6–1.0

.03

–.02

.05

Rem

.*31

UK

BSBTRS2

(old

designation)

1.0

Nom

inal

comp.

31051

USA

AA

6003

(UNSA96003)

.35–1.0

.6.1

.8.8–1.5

.35

.2.1

.05

.15

Rem

.

UK

AA

6003

.35–1.0

.6.1

.8.8–1.5

.35

.2.1

.05

.15

Rem

.

FNFAS–

GM

.6–1.5

.5.1

.1–1.0

.6–1.5

.3.25

.2–

–Rem

.

GDIN

1725

AlMgSi

1.75–1.3

.5.1

.4–1.0

.6–1.2

.3.2

.1.05

.15

Rem

.

31052

USA

AA

6005

(UNSA96005)

.6–.9

.35

.1.1

.4–.6

.1.1

.1.05

.15

Rem

.k

UK

AA

6005

.6–.9

.35

.1.1

.4–.6

.1.1

.1.05

.15

Rem

.

31053

USA

AA

6053

(UNSA96053)

*315

35.1

–1.1–1.4

.15–.35

.1–

.05

.15

Rem

.

UK

AA

6053

*315

.35

.1–

1.1–1.4

.15–.35

.1–

.05

.15

Rem

.

Seealso

AA

6003

(con

tinued)

Appendix 6: Metal Alloy Comparison Tables 595

Page 39: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(con

tinued)

Com

positio

n(m

ax.unless

otherw

isestated)

Others

Country

Designatio

nSi

FeCu

Mn

Mg

Cr

Zn

Ti

Each

Total

Almin.

Notes

31054

USA

AA

6061

(UNSA96061)

.4–.8

.7.15–.4

.15

.8–1.2

.04–

.35

.25

.15

.05

.15

Rem

.

USA

AMS4

025D

;AMS4

026D

;AMS4

027E

;AMS4

043

AMSnumbers

forvariousform

sandconditionsof

AA

6061

alloy

AMS4

053;

AMS4

079;

AMS4

080E

;AMS4

081A

AMS4

082E

;AMS4

083D

;AMS4

115;

AMS4

116A

AMS4

117A

;AMS4

127B

;AMS4

146;

AMS4

150C

;AMS4

160;

AMS4

161

UK

AA

6061;BSL117;

BSL118

.4–.8

.7.15–.4

.15

.8–1.2

.04–

.35

.25

.15

.05

.15

Rem

.

UK

BSH20

.4–.8

.7.15–.4

.2–.8

.8–1.2

*.2

.2Rem

.*E

ither

Mnor

Cr.04–.35

FA-G

SUC

.6.2

1.0

.15

Nom

inal

Cam

p.

GDIN

1725

AlM

gSi

1CuWk.3.3211

CEN

EN

2391

PR(6061-T4tube

forstructures,0.6mm

≤a≤12.5

mm—

provisionalspec.)

EN

2392PR

(6061-T6tube

forstructures,0.6mm

≤a≤12.5

mm—

provisionalspec)

EN

2629PR

(6061—

provisionalspec.)

EN

2694

(6061-T6/T62

sheetandstrip)

EN

2700PR

(6061-T6draw

nbar,6mm

≤d≤75

mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

2702PR

(6061-T6extruded

barandsection,

1.2mm

≤a/d≤150mm—

provisionalspec)

EN

2813PR

(6061-T6tube

forhydraulics,0.6mm

≤a≤12.5

mm—provisionalspec.)

EN

3341

PR(6061-T4sheetandstrip,

0.4mm

≤a≤6mm—provisionalspec.)

EN

3342PR

(6061-T4draw

nbarandsection,

10mm

≤d≤150mm—

provisionalspec.)

EN

3702PR

(6061-T4tube

forhydraulics,0.6mm

≤a≤12.5

mm—provisionalspec.)

31055

USA

AA

6063

(UNSA96063)

.2–.6

.35

.1.1

.45–.9

.1.1

.1.05

.15

Rem

.

UK

AA

6063;DTD

372B

.2–.6

.35

.1.1

.45–.9

.1.1

.1.05

.15

Rem

.

UK

H9(old

designation)

.3–.7

.4.1

.1.4–.9

.1.2

.2–

–Rem

.

FNFA-G

S(N

FA.57.350)

.8.8

Nom

inal

comp.

GDIN

1725

AlMgSi

0.5Wk.

3.3206

.35–

.8.3

.05

.1.4–.8

.05

.2.1

.05

.15

Rem

.

ISO

ISO

AlMgSi

––

31056

USA

AA

6066

(UNSA96066)

.9–1.8

.5.7–1.2

.6–1.1

.8–1.4

.4.25

.2.05

.15

Rem

.

UK

AA

6066

.9–1.8

.5.7–1.2

.6–1.1

.8–1.4

.4.25

.2.05

.15

Rem

.

UK

ALCAN

623;

BS2L

84.8–1.3

.71.0–2.0

1.0

.5–1.2

–.2

.3–

–Rem

.Ni.2

*316

31057

USA

AA

6070

(UNSA96070)

1.0–

1.7

.5.15–.4

.4–1.0

.5–1.2

.1.25

.15

.05

.15

Rem

.

UK

AA

6070

1.0–

1.7

.5.15–.4

.4–1.0

.5–1.2

.1.25

.15

.05

.15

Rem

.

UK

ALCAN

623;

BS2L

84.8–1.3

.71.0–2.0

1.0

.5–1.2

–.2

.3–

–Rem

.Ni.2

*316

31058

USA

AA

6081

CEN

EN

2695

(6081-T6sheetandstrip);

31059

USA

AA

6082

(UNSA96082)

.7–1.3

.5.1

.4–1.0

.6–1.2

.25

.2.1

.05

.15

Rem

.

UK

AA

6082

(was

H30)

.7–1.3

.5.1

.4–1.0

.6–1.2

.25

.2.1

.05

.15

Rem

.

ISO

ISO

AISi1

MgM

n

CEN

EN

2326

(6082-T6<2

00mm

baranddraw

nprofi

les)

EN

2636

(6082-T6<2

00mm

baranddraw

nprofi

les,peripheral

coarse

graincontrol)

EN

2389PR

(6082-T4tube

forstructures,0.6mm

≤a≤12.5

mm—

provisionalspec.)

EN

2390PR

(6082-T6tube

forstructures,0.6mm

≤a≤12.5

mm—

provisionalspec.)

EN

2420PR

(6082-T6bars—

provisionalspec.)

EN

2421

PR(6082-T4wireforrivets—

provisionalspec.)

EN

4006PR

(6082-T4/T42

sheetandstrip,

0.4mm

≤a≤6mm—

provisionalspec.)

EN

4007PR

(6082-T6/T62

sheetandstrip,

0.4mm

≤a≤6mm—

provisionalspec.)

(con

tinued)

596 Appendix 6: Metal Alloy Comparison Tables

Page 40: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(con

tinued)

Com

positio

n(m

ax.unless

otherw

isestated)

Others

Country

Designatio

nSi

FeCu

Mn

Mg

Cr

Zn

Ti

Each

Total

Almin.

Notes

31060

USA

AA

6101

(UNSA96101)

.3–.7

.5.1

.03

.35–.8

.03

.1–

.03

.1Rem

.B.06

UK

AA6101A;BS2

898:6101A

.3–.7

.4.05

–.4–.9

––

–.03

.1Rem

.

UK

BS91E

.3–.7

.5.04

–.4–.9

––

––

–Rem

.

GDIN

1725

E-A

IMgSi

Wk.

3.2305

.5–.6

.1–.3

.02

–.3–.5

–.1

–.03

.1Rem

.*317

31061

USA

AA

6151

(UNSA96151)

.6–1.2

1.0

.35

.2.45–.8

.15–.35

.25

.15

.05

.15

Rem

.

UK

AA

6151

.6–1.2

1.0

.35

.2.45–.8

.15–35

.25

.15

.05

.15

Rem

.

SeeAA

6101

31062

USA

AA

6162

(UNSA96162)

.4–.8

.5.2

.1.1–1.1

.1.25

.1.05

.15

Rem

.

UK

AA

6162

.4–.8

.5.2

.1.1–1.1

.1.25

.1.05

.15

Rem

.

SeeAA

6101

31063

USA

AA

6201

(UNSA96201)

.5–.9

.5.1

.03

.6–.9

.03

.1–

.03

.1Rem

.

UK

AA

6201

.5–.9

.5.1

.03

.6–.9

.03

.1–

.03

.1Rem

.

SeeAA

6101

31064

USA

AA

6253

(UNSA96253)

*315

.5.1

–1.0–1.5

.15–.35

1.6–2.4

–.05

.15

Rem

.

UK

AA

6253

*315

.5.1

–1.0–1.5

.15–.35

1.6–2.4

–.05

.15

Rem

.

31065

USA

AA

6262

(UNSA96262)

.4–.8

.7.15–.4

.15

.8–1.2

.04–.14

.25

.15

.05

.15

Rem

.*318

UK

AA

6262

.4–.8

.7.15–.4

.15

.8–1.2

.04–.14

.25

.15

.05

.15

Rem

.*318

31066

USA

AA

6351

(UNSA96351)

.07–1.3

.5.1

.4–.8

.4–.8

–.2

.2.05

.25

Rem

.

UK

AA

6351

.07–1.3

.5.1

.4–.8

.4–.8

–.2

.2.05

.25

Rem

.

31067

USA

AA

6463

(UNSA96463)

.2–.6

.15

.2.05

.45–.9

––

–.05

.15

Rem

.

UK

AA

6463;E6;

EN

515;

EN

573–

3;EN

573-4

.2–.6

.15

.2.05

.45–.9

––

–.05

.15

Rem

.

UK

BSBTR6

.2–.5

.15

.2.05

.4–.8

––

.05

––

Rem

.

31068

USA

AA

6951

(UNSA96951)

.2–.5

.8.15–.4

.1.4–.8

.2–

.05

.15

Rem

.

31069

USA

AA

7001

(UNSA97001)

.35

.41.6–2.6

.22.6–3.4

.18–.35

6.8–8.0

.2.05

.15

Rem

.

UK

AA

7001

.35

.41.6–2.6

.22.6–3.4

.18–.35

6.8–8.0

.2.05

.15

Rem

.

FNFA-Z8G

U1.6

2.7

.28.0

Nom

inal

comp.

31070

USA

AA

7009

(UNSA97009)

UK

AA

7009

CEN

EN

2093

(7009-T74

Forgings

>20mm

and<1

50mm)

EN

2094

(7009-T74

Die

Forgings

>3mm

and<1

50mm)

EN

2381

(7009-T7452

Forgings

>40mm

and<1

50mm)

EN

2385

(7009-T74511baranddraw

nprofi

les)

EN

2487PR

(7009-Fextruded

orcasr

forgingstock—

provisionalspec.)

EN

2630

(7009-T74511baranddraw

nprofi

les,a≤125mm,peripheral

coarse

graincontrol)

EN

2706PR

(7009-T736510

barandsection,

1.2mm

≤a/d≤125mm,peripheral

coarse

graincontrol—

provisionalspec.)

(con

tinued)

Appendix 6: Metal Alloy Comparison Tables 597

Page 41: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(con

tinued)

Com

positio

n(m

ax.unless

otherw

isestated)

Others

Country

Designatio

nSi

FeCu

Mn

Mg

Cr

Zn

Ti

Each

Total

Almin.

Notes

31071

USA

AA

7010

1.7

2.4

6.3

Nom

inal

comp.

UK

AA

7010

1.7

2.4

6.3

Nom

inal

comp.

UK

DTD

5120

.12

.15

1.5–2

.12.1–2.6

.05

5.7–6.7

–.05

.15

Rem

.*323

UK

DTD

5130A

.1.15

1.5–2

.32.2–2.7

.05

5.7–6.7

–.05

.15

Rem

.*323

UK

DTD

5636

.12

.15

1.5–2

.12.1–2.6

.05

5.7–6.7

.06

.05

.15

Zr.1–.16

CEN

EN

2681

PR(7010-T736dieforgings,a≤150mm—provisionalspec.)

EN

2682PR

(7010-T73652forgings,50

mm

≤a≤150mm—provisionalspec.)

EN

2683PR

(7010-T7651

forgings,80

mm

≤a≤160mm—

provisionalspec.)

EN

2684PR

(7010-T7651

plate,

6mm

≤a≤140mm—provisionalspec.)

EN

2685PR

(7010-T7652

forgings,80

mm

≤a≤160mm—

provisionalspec.)

EN

2686PR

(7010-T73651hand

forgings,50

mm

≤a≤150mm—provisionalspec.)

EN

2687PR

(7010-T73651plate,

6mm

≤a≤150mm—provisionalspec.)

EN

3337PR

(7010-T74511extruded

bars

andsections

a/d≤130mm,peripheral

coarse

graincontrol—

provisionalspec)

EN

3339PR

(7010-T76

dieforgings,a≤200mm—provisionalspec.)

EN

3343PR

(7010-T76511extruded

bars

andsections

1mm

≤a/d≤130mm,peripheral

coarse

graincontrol—

provisionalspec)

EN

3554PR

(7010-T7652

hand

forgings,a≤200mm—provisionalspec.)

31072

USA

AA

7020

.35

.4.2

.05–

.51.0–1.4

.1–35

4.0–5.0

–.05

.15

Rem

.*324

UK

AA

7020;BS4

300/14

/15;

EN

515;

EN

573-3;

EN

573-4

.35

.4.2

.05–

.51.0–1.4

.1–.35

4.0–5.0

–.05

.15

Rem

.*324

UK

BSH17

.4.4

.25

.2–.7

1.0–1.5

.25

3.8–4.8

.1–

–Rem

.Zr.25,

Mn+Cr.7

FA-Z5G

(NFA

.57-702)

.3.8

.15–.35

.4.4–.65

.35

4.5–5.5

.15–.25

.05

.15

Rem

.

GDIN

1725

AlZn4.5Mg1Wk.

3.4335

.5.5

.11–

.51–1.4

.24–5

.2.05

.15

Rem

.

CEN

EN

2807PR

(7020-T6extruded

sections

1.2mm

≤a≤100mm,peripheral

coarse

graincontrol—

provisionalspec.)

31073

USA

AA

7039

(UNSA97039)

.3.4

.1.1–.4

2.3–3.3

.15–.25

3.5–4.5

.1.05

.15

Rem

.

UK

AA

7039

.3.4

.1.1–.4

2.3–3.3

.15–.25

3.5–4.5

.1.05

.15

Rem

.

31074

USA

AA

7049

(UNSA97049)

.25

.35

1.2–1.9

.22.0–2.9

.1–.22

7.2–8.2

.1.1

.15

Rem

.

UK

AA

7049

.25

.35

1.2–1.9

.22.0–2.9

.1–.22

7.2–8.2

.1.1

.15

Rem

.

31075

USA

AA

7050

(UNSA97050)

.12

.15

2.0–2.6

.11.9–2.6

.04

5.7–6.7

.06

.05

.15

Rem

.Zr.0

8–.15

UK

AA

7050

.12

.15

2.0–2.6

.11.9–2.6

.04

5.7–6.7

.06

.05

.15

Rem

.Zr.0

8–.15

CEN

EN

2688PR

(7050-T736dieforgings,a≤150mm—

provisionalspec.)

EN

2689PR

(7050-T73651plate,

6mm

≤a≤150mm—provisionalspec.)

EN

2690PR

(7050-T73652hand

forgings,a≤125mm—

provisionalspec.)

EN

3334PR

(7050-T651plate,

6mm

≤a≤60

mm—provisionalspec)

EN

3338PR

(7050-T74511extruded

bars

andsections

a/d≤130mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

3340PR

(7050-T76

dieforgings,a≤200mm—provisionalspec.)

EN

3344PR

(7050-T76511extruded

bars

andsections

a/d≤130mm,peripheral

coarse

graincontrol—

provisionalspec.)

(con

tinued)

598 Appendix 6: Metal Alloy Comparison Tables

Page 42: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(con

tinued)

Com

positio

n(m

ax.unless

otherw

isestated)

Others

Country

Designatio

nSi

FeCu

Mn

Mg

Cr

Zn

Ti

Each

Total

Almin.

Notes

31076

USA

AA

7075

(UNSA97075)

.4.5

1.2-2.0

.32.1–2.9

.18–.35

5.1–6.1

.2.05

.15

Rem

.Zr+Ti.25

UK

AA

7075

.4.5

1.2–2.0

.32.1–2.9

.18–.35

5.1–6.1

.2.05

.15

Rem

.Zr+Ti.25

UK

DTD5074A

(now

DTD5121)

1.6

2.5

.16

6.2

Nom

inal

comp.

UK

DTD5121

(partsuperceded

byL170);DTD5110

.4.5

1.2–2.0

.32.1–2.9

.1–.25

5.1–6.4

+Zr.2

––

Rem

.Ni,Pb

andSn

<.05

UK

BSL160;

BSL161;

BSL162;

BS

L170

.4.5

1.2–2.0

.32.1–2.9

.18–.28

5.1–6.1

.2.05

.15

Rem

.Zr+Ti.25

FNFA-Z5G

U.4

.51.2–2.0

.1–.9

2.0–3.5

.35

5.0–6.5

.2–

–Rem

.

GDIN

1725

AlZnMgCu1.5Wk.

3.4365

.5.7

1.2–2.0

.32.1–2.9

.18–.35

5.1–6.1

.2.05

.15

Rem

.

CEN

EN

2092

(7075-T6/T62

.4–6mm

sheetandstrip)

EN

2126

(7075-T6516–

80mm

sheet)

EN

2127

(7075-T73511<1

00mm

baranddraw

nprofi

les)

EN

2128

(7075-T7351

6–75

mm

draw

nbars)

EN

2315PR

(7075-T73510/T73511bars

andsections

≤100mm—provisionalspec.)

EN

2316PR

(7075-T73

bars

andsections

≤100mm—provisionalspec.)

EN

2317PR

(7075-T73

draw

nbars

≤75

mm—provisionalspec.)

EN

2380PR

(7075-T73

forgings

≤125mm—provisionalspec.)

EN

2386PR

(7075-T7352

hand

forgings

≤150mm—

provisionalspec.)

EN

2394PR

(7075-T6511

bars

andsections

≤125mm—provisionalspec.)

EN

2488PR

(7075-Fextruded

orcastforgingstock—

provisionalspec.)

EN

2511

PR(7075-T7351

plate,

6mm

≤a≤100mm—provisionalspec.)

EN

2631

PR(7075-T6511

bars

andsections

1.2mm

≤a/d≤125mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

2632

(7075-T73511<1

00mm

baranddraw

nprofi

les,<1

00mm,controlledgrainsize)

EN

2637PR

(7075-T73

extruded

bars

andsections

1.2mm

≤a/d≤100mm,peripheral

coarse

graincontrol—

provisionalspec)

EN

2696

(7075-T6/T62

.4-6

mm

sheetandstrip)

EN

2698PR

(7075-T6510

extruded

barandsection,

1.2mm

≤a/d≤100mm—provisionalspec.)

EN

2707PR

(7075-T6510

barandsection,

1.2mm

≤a/d≤125mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

2708PR

(7075-T73510barandsection,

1.2mm

≤a/d≤100mm,peripheral

coarse

graincontrol—

provisionalspec.)

EN

2804PR

(7075-T7651

plate,

6mm

≤a≤25

mm—

provisionalspec.)

EN

3555PR

(7075-T79510extruded

barandsection,

1.2mm

≤a/d≤100mm,coarse

graincontrol—

provisionalspec.)

31077

USA

AA

7079

(UNSA97079)

.3.4

.4–.8

.1–.3

2.9-3.7

.1–.25

3.8–4.8

.1.05

.15

Rem

.

UK

AA

7079

.3.4

.4–.8

.1–.3

2.9–3.7

.1–.25

3.8–4.8

.1.05

.15

Rem

.

UK

BSH17

.4.4

.25

2–.7

1.0–1.5

.25

3.8–4.8

.1–

–Rem

.Zr.25,

Mn+Cr.7

*319

GDIN

1725

AlZnMgCu0.5Wk.

3.4345

.5.5

.5–1.0

.1–.4

2.6–3.6

.1–.3

4.3–5.2

.2.05

.15

Rem

.

31078

USA

AA

7175

(UNSA97175)

.15

.21.2–2.0

.12.1–2.9

.18–.28

5.1–6.1

.1.05

.15

Rem

.

UK

AA

7175

.15

.21.2–2.0

.12.1–2.9

.18–.28

5.1–6.1

.1.05

.15

Rem

.

CEN

EN

2512PR

(7175-T7351

plate,

6mm

≤100mm—provisionalspec.);

31079

USA

AA

7178

(UNSA97178)

.4.5

1.6–2.4

.32.4–3.1

.18–.35

6.3–7.3

.2.05

.15

Rem

.

UK

AA

7178

.4.5

1.6–2.4

.32.4–3.1

.18–.35

6.3–7.3

.2.05

.15

Rem

.

FNFA-Z5G

U.4

.51.2–2.0

1–.9

2.0–3.5

.35

.5.0–6.5

.2–

–Rem

.

31080

USA

AA

8090

.2.3

1.0–1.6

.6–1.3

Li2.1–

2.7Zr<.16

Nom

inal

comp.

UK

AA

8090

.2.3

1.0–1.6

.6–1.3

Li2.1–

2.7Zr<.16

Nom

inal

comp.

31081

USA

AA

8091

.3.5

1.8–2.2

.5–1.2

Li2.4–

2.8Zr<.16

Nom

inal

comp.

UK

AA

8091

.3.5

1.8–2.2

.5–1.2

Li2.4–

2.8Zr<.16

Nom

inal

comp.

Appendix 6: Metal Alloy Comparison Tables 599

Page 43: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Alloy equivalents—Aluminium alloys (cast)

Composition (max. unless otherwise stated) Others

Country Designation Si Fe Cu Mn Mg Cr Zn Ti Each Total Almin.

Notes

32001 USA AA 295.0 (UNSA02950)

.7–1.5 1.0 4.0–5.0 .35 .03 – – .35 .25 .05 .15 –

32002 USA AA B295.0 2.0–3.0 1.2 4.0–5.0 .35 .05 – .35 .5 .25 – .35 –

UK AA 295.0 .7–1.5 1.0 4.0–5.0 .35 .03 – – .35 .25 .05 .15 –

UK BS LM 11 .25 .25 4.0–5.0 .1 .1 – .1 .1 .3 – – Sn .05 Pb .05

UK BS L154; BS L155 1.0–1.5 .25 3.8–4.5 .1 .1 – .1 .1 .05–.25 .05 .15 Sn .05 Pb .05

F NF A-USG7 .3 .35 4.2–5.0 .1 .15–.33 – .05 .1 .3 – – Pb .05

G DIN 1725 Al Cu4 Ti Mg. Wk. 3.1371

.18 .2 4.2–4.9 .05 .15–.3 – – .07 .15–.3 .03 .1 –

32003 USA AA 319.0 (UNSA03190)

5.5–6.3 1.0 3.0–4.0 .5 .1 – .35 1.0 .25 – .5 –

32004 USA AAA319.0 5.5–6.5 1.0 3.0–4.0 .3 .1 – .35 3.0 .25 – .5 –

UK AA 319.0 5.5–6.3 1.0 3.0–4.0 .5 .1 – .35 1.0 .25 – .5 –

UK BS LM4 4.0–6.0 .8 2.0–4.0 .2–.6 .2 – .3 .5 .2 – – Sn .1 Pb .1

UK BS LM22 4.0–6.0 .7 2.8–3.8 .3–.6 .05 – .15 .15 .2 – – Sn .05 Pb .1

F NF A-S5U; NF A-S5U3

5.0 3.2 Nominal comp.

G DIN 1725 Al Si 6Cu 4. Wk. 3.2151

5.0–7.5 1.0 3.0–5.0 .1–.3 .1–.3 – .3 2.0 .15 .03 .15 –

ISO ISO AI-Si5Cu3

32005 USA AA 333.0 (UNSA03330)

8.0–10.0 1.0 3.0–4.0 .5 05–.5 – .5 1.0 .25 – .5 –

32006 USA AA A333.0 8.0–10.0 1.0 3.0–4.0 .5 .05–.3 – .5 3.0 .25 – .5 –

UK AA 333.0 8.0–10.0 1.0 3.0–4.0 .5 05–.5 – .5 1.0 .25 – .5 –

UK BS LM24 7.5–9.5 1.3 3.0–4.0 .5 .1 – .5 3.0 .2 – – Sn .2 Pb .3

F A-S9U3Y4 8.2 3.5 Nominal comp.

F A-S10U4 9.0–11.0 1.3 3.0–4.0 .3 .5 – .5 .8 .2 – – Sn .1Fe + Zn− +Mg + Ni + Sn2.5

G DIN 1725 Al Si 8 Cu3. Wk. 3.2161

7.5–9.5 .8 2.0–3.5 .2–.5 .3 – .3 1.2 .15 .05 .15 Sn .1

ISO ISO AI-Si8Cu3Fe

32007 USA AA 355.0 (UNSA03550)

4.5–5.5 .6 1.0–1.5 .5 .4–.6 .25 – .35 .25 .05 .15 –

32008 USA AA C355.0 (UNSA33550)

4.5–5.5 .2 1.0–1.5 .1 .4–.6 – – .1 .2 .05 .15 –

UK BS LM16 4.5–5.5 .6 1.0–1.5 .5 .4–.6 – .25 .1 .2 – – Sn .1 Pb .1

UK AA 355.0 4.5–5.5 .6 1.0–1.5 .5 .4–.6 .25 – .35 .25 .05 .15 –

F A-S4UG

G Alloy No. 234 5.0–6.0 .7 1.0–1.5 .5 .3–.6 – .3 .5 .15 .05 .15 Sn .1 Pb .2 *320

ISO ISO Al-Si5Cu1 Mg

32009 USA AA 356.0 (UNSA03560)

6.5–7.5 .6 .25 .35 .2–.4 – – .35 .25 .05 .15 –

32010 USA AA A356.0 6.5–7.5 .2 .2 .1 .2–.4 – – .1 .2 .05 .15 –

UK BS LM25 6.5–7.5 .5 .1 .3 .2–.45 – .1 .1 .05–.2 – – Sn .05 Pb .1

UK BS 2L99 6.5–7.5 .2 .1 .1 .2–.45 – .1 .1 .2 – – Sn .05 Pb .05

UK BS L173; BS L174 6.5–7.5 .2 .2 .1 .25–.45 – – .1 .04–.25 – – Be .07 max.

UK AA 356.0 6.5–7.5 .6 .25 .35 .2–.4 – – .35 .25 .05 .15 –

F NF A-S7G

G DIN 1725 Al Si7 Mg Wk. 3.2371

6.5–7.5 .18 .05 .05 .2–.4 – – .07 .15 .03 .1 –

ISO ISO AI-Si7 Mg(continued)

600 Appendix 6: Metal Alloy Comparison Tables

Page 44: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

Composition (max. unless otherwise stated) Others

Country Designation Si Fe Cu Mn Mg Cr Zn Ti Each Total Almin.

Notes

32011 USA AA 357.0 (UNSA03570)

6.5–7.5 .15 .05 .03 .45–.6 – – .05 .2 .05 .15 –

UK AA 357.0 6.5–7.5 .15 .05 .03 .45–.6 – – .05 .2 .05 .15 –

UK BS L169 6.5–7.5 .2 .1 .1 .5–.75 – .05 .1 .1–.2 .05 .15 Pb .05 Sn .05 Be.07

F A-S7G 7.0 .3 Nominal comp.

G DIN 1725 Al Si7 Mg Wk. 3.2371

6.5–7.5 .18 .05 .05 2–.4 – – .07 .15 .03 .1 –

32012 USA AA B358.0 (Tens50)

7.6–8.6 .3 .2 .2 .4–.6 .2 – .2 .1–.2 .05 .15 Be .1–.3

32013 USA AA 359.0 (UNSA03590)

8.5–9.5 .2 .2 .1 .5–.7 – – .1 .2 .05 .15 –

32014 USA AA 380.0 (UNSA03800)

7.5–9.5 2.0 3.0–4.0 .5 .1 – .5 3.0 – – .5 Sn .35

32015 USA AA A380.0 7.5–9.5 1.3 3.0–4.0 .5 .1 – .5 3.0 – – .5 Sn .35

UK BS LM24 7.5–9.5 1.3 3.0–4.0 .5 .1 – .5 3.0 .2 – – Sn .2 Pb .35

F A-S9U3Y4 8.2 3.5 Nominal comp.

F A-S10U4 9.0–11.0 1.3 3.0–4.0 .3 .5 – .5 .8 .2 – – Sn .1 Fe+Zn-+Mg+Ni+Sn 2.5

G DIN 1725 Al Si 8 Cu3. Wk. 3.2161

7.5–9.5 .8 2.0–3.5 .2–.5 .3 – .3 1.2 .15 .05 .15 Sn .1

ISO ISO Al-Si8Cu3Fe

32016 USA AA 514.0 (UNSA05140)

.35 .5 .15 .35 3.5–4.5 – – .15 .25 .05 .15 –

UK AA 514.0 .35 .5 . .15 .35 3.5–4.5 – – .15 .25 .05 .15 –

UK BS LM5 .3 .6 .1 .3–.7 3.0–6.0 – .1 .1 .2 – – Sn .05 Pb .05

F NF A-G3T .4 .5 .1 .5 2.5–3.5 .15 .05 .2 .2 – – Sn .05 Pb .05

F NF A-G6 .4 4.5 Nominal comp.

G DIN 1725 Al Mg 3 1.3 .6 .3 .6 2.0–4.0 – – .3 .2 .05 .15 –

G DIN 1725 Al Mg 5 1.0 .2 5.0 Nominal comp.

ISO ISO AI-Mg5Si1; ISOAl-Mg6

32017 USA AA 518.0 (UNSA05180)

.35 1.8 .25 .35 7.5–8.5 – .15 .15 – – .25 Sn .15

UK AA 518.0 .35 1.8 .25 .35 7.5–8.5 – .15 .15 – – .25 Sn .15

G DIN 1725 Al Mg 9Wk. 3.3292

.5 .05 .2–.5 7.0–10.0 .1 .15 .05 .15 Nominal comp.

32018 USA AA 520.0 (UNSA05200)

.25 .3 .25 .15 9.5–10.6 – – .15 .25 .05 .15 –

UK AA 520.0 .25 .3 .25 .15 9.5–10.6 – – .15 .25 .05 .15 –

UK BS LM10; Hid 90 .25 .35 .1 .1 9.5–11.0 – .1 .1 .2 – – Sn .05 Pb .05

F NF A-G10 .5 1.3 .2 .6 8.5–11.0 – .1 .4 .2 – 2.0 Sn .1

F NF A-G10Y4 10.2 Nominal comp.

G DIN 1725 Al Mg 10Wk. 3.3591

.3 .3 .05 .3 9.0–11.0 – .1 – .15 .05 .15 Sn .05 Pb .05

32019 USA AA 535.0 (UNSA05350)

.15 .15 .05 .1–25 6.2–7.5 – – – .1 –.25 .05 .15 Be .003–.007 B.002

UK AA 535.0 15 .15 .05 .1–.25 6.2–7.5 – – – .1–25 .05 .15 Be .003–.007 B.002

UK DTD 5018A .25 .35 .2 1–.3 7.4–7.9 – .1 .9–1.4 .25 – Sn .05 Pb .05

G DIN 1725 Al Mg 9Wk. 3.3292

.5 .05 .2–5 7.0–10.0 .1 .15 .05 .15 Nominal comp.

32020 USA AA 707.0 (UNSA07070)

.2 .8 .2 .4–.6 1.8–2.4 .2–.4 – 4.0–4.5 .25 .05 .15 –

UK AA 707.0 .2 .8 .2 .4–.6 1.8–2.4 .2–.4 – 4.0–4.5 .25 .05 .15 –

(continued)

Appendix 6: Metal Alloy Comparison Tables 601

Page 45: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

Composition (max. unless otherwise stated) Others

Country Designation Si Fe Cu Mn Mg Cr Zn Ti Each Total Almin.

Notes

32021 USA AAA712.0 (UNSA07120)

.15 .5 .35–65 .05 .6–.8 – – 6.0–7.0 .25 .05 .15 –

32022 USA AAC712.0 .3 .7–1.4

.35–65 .05 .25–.45 – – 6.0–7.0 .2 .05 .15 –

UK AA 712.0 .15 .5 .35–.65 .05 .6–.8 – – 6.0–7.0 .25 .05 .15 –

UK BS LM31; DTD5008B

.25 .5 .1 .1 .5–.75 .4–.6 .1 4.8–5.7 .05–.25 .05 .15 Sn .05 Pb .05

F A-Z5G .3 .8 .15–.35 .4 .4–.65 .15–.35 .05 4.5–5.5 .15–.25 – – Sn .05 Pb .05

F NF A-Z5G .6 .5 5.2 Nominal comp.

Notes for wrought and cast aluminium alloys*31: .0008 max. Be for welding electrodes and filler wire*32: .03 max. Ga*33: Cu + Si + Fe + Mn + Zr .2 max*34: Cu + Si + Fe + Mn + Zr 1.0 max*35: Cu + Si + Fe + Mn + Zr 0.5 max*36: .05 B max*37: .2–.6 Bi; .2–.6 Pb*38: .2–.7 Pb; .05 max. Sn; .2–.7 Bi; .05 max. Sb*39: .2–.6 Pb; .2–.6 Bi*310: .2 max. Zr + Ti*311: .05–.15V; .1–.25 Zr*312: .1 max Ni; .05 max. Sn; .05 max. Pb*313: .5–1.3 Ni*314: .05 max. Sn; .05 max. Pb; .7–1.3 Ni*315: 45–65 % of Mg*316: .05 max Sn; .05 max Pb; .05 max Sb*317: Cr + Mn + Ti + V .03 max*318: .4–.7 Bi; .4–.7 Pb*319: Not closely equivalent, Mg lower than AA 7079*320: Fe + Mn 1.1 max*321: .1–.25 Zr; .05–.15V*322: .9–1.2 Ni*323: .11–.17 Zr*324: Ti + Zr .08–.25, Zr .08–.2*325: .8–1.4 Ni + .25 Zr

602 Appendix 6: Metal Alloy Comparison Tables

Page 46: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

European CEN Specifications forAluminium Alloys

European EN specifications for metal alloys are currentlybeing generated and adopted. These will progressivelysupersede the various national standards for aluminiumalloys, as with other materials. However, it will be someyears before this process is completed and fully imple-mented. EN designations specific to particular alloys, formsand conditions have been included in the above alloy tables(many of these are still at the provisional stage). However,there are several EN specifications which cover the basiccharacteristics of aluminium alloys:

• Chemical composition specifications for wrought alu-minium alloys are now contained in a single CEN spec-ification: EN 573—Aluminium and aluminium alloys—Chemical composition and form of wrought products.

• Temper designations for wrought aluminium alloys arealso contained in a single CEN specification: EN 515—Aluminium and aluminium alloys—Wrought productstemper designations.

• In addition EN 485 now contains conditions for delivery,properties and tolerances for wrought aluminium alloyproducts.

Similar specifications will be issued in the future to covercast aluminium alloys.

Alloy equivalents—Copper Alloys

Composition

Country Designation Zn Sn Pb Be Fe Al Other

41001 USA CDA 110 (UNS C11000) – – – – – – Cu + Ag > 99.9

UK C101 (CW 003A) – – <.005 – – – Cu + Ag > 99.9

F NF Cu a1 A53-100 – – – – – – Cu 99.9 oxygen free. Nominal comp.

G DIN 1708 E-Cu57 Wk.2.0060

– – – – – – Cu 99.95, Ag 0.03, O .005–.040 nominal comp.

41002 USA CDA 170 (UNS C17000) – – – 1.6–1.79 – – Cu > 99.5 Co + Ni > .2 Co + Fe + Ni < .6

UK CB101 (CW101C) – – – 1.7–1 9 – – Ni + Co .05–.4 Other < .5

G CuBe1.7Wk. 2.1245

41003 USA CDA 172 (UNS C17200) – – – 1.8–2.0 – – Cu > 99.5 Co + Ni > .2 Co + Fe + Ni < .6

G Cu Co Be Wk. 2.1285 Co + Fe + Ni < .6

41004 USA CDA194 (UNS C19400)ASTM B465

.05–.2 – <.03 – 2.1–2.6 – P .015–.15 Cu 97.0–97.8 others < .15

41005 USA CDA 195 (UNS C19500) <2 .1–1.0 <.02 – 1.0–2.0 <.02 P .01–.35 Co .3–1.3

41006 USA CDA 230 (UNS C23000) Balance – <.05 – <.03 – Cu 84.0–86.0

ASTM B36: B43: B111:B134: B135:

B359: B395: B543: B587

UK CZ102 (CW502L) Balance – <.l – <.1 – Cu 84.0–86.0 other < .4

G DIN 17660 DIN 17670Wk. 2.0240

Balance <.05 <.05 – <.05 <.02 Cu 84.0–86.0 Mn < .05 Ni < .2 Sb < .01 other .05total other (except Ni) .3

F NFU-Z15 15 Nominal comp.

41007 USA CDA 260 (UNS C26000) Balance – <.07 – <.05 – Cu 68.5–71.5

UK CZ106 (CW505L) Balance – <.05 – <.05 – Cu 68.5–71.5 other < .3

F UZ-30

G DIN 17660 Cu Zu 30 Wk.2.0265

Balance <.05 <.05 – <.05 <.02 Cu 69.0–71.0 Ni < .2 Sb < .01 other .05 total other(except Ni) .3

41008 USA CDA 353 (UNS C35300) Balance – 1.3–2.3 – <1 – Cu 59.0–64.5

UK CZ119 (CW601 N) Balance – 1.0–2.5 – – – Cu 61.0–64.0

G DIN 17660 CuZu 36 Pb1.5 Wk. 2.0331

Balance <.1 .7–2.5 – <.2 <.05 Cu 62.0 –64.0 Mn < .1 Ni < .3 5b < .01 others total .1.Any other except Ni < .5

41009 USA CDA 422 (UNS C42200)ASTM B591

Balance .8–1.4 <.05 – <.05 – Cu 86.0–89.0 P < .35

41010 USA CDA 443 (UNS C44300) Balance .9–1.2 <.07 – <.06 – Cu 70.0–73.0 As .01–.1

ASTM B111: B171:B359: B395:

B432: B543(continued)

Appendix 6: Metal Alloy Comparison Tables 603

Page 47: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

Composition

Country Designation Zn Sn Pb Be Fe Al Other

G DIN 17660 CuZn 28 SnWk. 2.0470

.9–1.3 <.07 – <.07 – Cu 70.0–72.5 As .02–.035 Mn < .1 Ni < .1 P < .01As + P < .035 other total < .1

41011 USA CDA 510 (UNS C51000) <.3 4.2–5.8 <.05 – <1 – Cu + Sn + P > 99.5 P 03–.35

ASTM B100: B103:BI39: BI59

UK PB102 (CW451 K) – 4.5–6.0 <.02 – – – P .02–.4 others < .2

F NF U-E5P – – – – – – –

G DIN 17662 CuSn 6 Wk.2.1020

<.3 5.5–7.5 <.05 – <.1 – P .01–.4 Ni < .3 other < .2

Alloy equivalents—Copper Alloys

Composition

Country Designation Zn Sn Pb Be Fe Al Other

41012 USA CDA 521 (UNS C52100) ASTM139:159

<.2 7.0–9.0 <.05 – <1 – Cu + Sn + P > 99.5 P 03–.35

UK PB103 (CW452 K) – 6.0–7.5 <.02 – – – P .02–.4 others < .2

UK PB104 (CW459 K) – 7.5–9.0 <.02 – – – P .02–.4 others < .2

F NF U-E7P

G DIN 17662 Cu Sn 8 Wk. 2.1030 <.3 7.5–9.0 <.05 – <.1 – P .01–.4 Ni < .3 other together < .2

41013 USA CDA 619 (UNS C61900) <.8 <.6 <.02 – 3.0–4.5 8.5–10.0 Cu + Ag 83.6–88.5Cu + Fe + AI > 99.5

ASTM B129: B150: B283

UK CA103 <.4 <1 <.05 – Fe + Ni < 4.0 8.8–10.0 Mn < .5 Mg < .05 total impuritiesnot Mn < .5

F NF U-A8

G DIN 17665 Cu Al 8 Wk. 2.0920 <.5 – <.02 – <.5 7.0–9.0 Mn < .8 Ni < .8 Si < .2 othertotal < .3

41014 USA CDA 687 (UNS C68700) Balance – <.07 – <.06 1.8–2.5 Cu + Ag 76.0–79.0 As .02–.06

ASTM B111: SB359: SB395:SB543

UK CZ110 (CW702R) Balance – <.07 – <.06 1.8–2.3 Cu 76.0–78.0 As .02–.06

G DIN 17660 Cu Zn 20 Al Wk. 2.0460 Balance – <.07 – <.07 1.8–2.3 Cu 76.0–79.0 As .02–.035 Mn < .1Ni < .1 P < .01 As + P < .035 othertogether < .1

41015 USA CDA688 (UNS C68800) ASTMB592

21.3–24.1 – <.05 – <.05 3.0–3.8 Co .25–.55

41016 USA CDA 706 (UNS C70600) <1.0 – <.05 – 1.0–1.8 – Ni 9.0–11.0 Mn < 1.0Cu + Ag > 86.5Cu + Fe + Ni > 99.5

ASTM B111: B122: B151: B171:B359: B395: B402:B432: B466:B467: B543: B552

UK CN102 (CW352H) – – <.01 – 1.0–2.0 – Ni 10.0–11.0 Mn .5 1.0 S < .05total impurities < .3 C < .05

F NF Cu Ni 10 Fe Mn – – – – * – Ni 10.0 + Fe + Mn, nominal comp.

G DIN 17664 Cu Ni 10 Fe Wk. 2.0872 <.5 – <.03 – 1.0–1.8 – Ni 9.0–11.0 Mn 0.5–1.0 S < .05total other < .1

41017 USA CDA 725 (UNS C72500) <.5 1.8–2.8 <.05 – <.6 – Ni 8.5–10.5 Mn < .2Cu + Ni + Sn + Co > 99.8

41018 USA CDA 762 (UNS C76200) ASTMB122

Balance – <.1 – <.25 – Ni 11.0–13.5 Mn < .5 Cu 57.0–61.0

UK NS104 (CW403 J) Balance – <.04 – <.25 – Ni 11.0–13.0 Mn .05–.3 Cu 60.0-65.0 total Impurities < .5

G DIN 17663 Cn Ni 12Zn 24 Balance <.2 <.05 – <.3 – Ni 11.0 13.0 Mn < .5 Cu 63.0–66.0other together < .1

(continued)

604 Appendix 6: Metal Alloy Comparison Tables

Page 48: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

Composition

Country Designation Zn Sn Pb Be Fe Al Other

41019 USA CDA 766 (UNS C76600) FEDQQ-C-585

Balance – <.1 – <.25 – Ni 11.0–13.5 Mn < .5 Cu 55.0–58.0

41020 USA CDA 770 (UNS C77000) Balance – <.l – <.25 – Ni 16.5–19.5 Mn < .5 Cn 53.5–56.5

ASTM B122: B151: B206

UK NS107 (CW410 J) Balance – <.03 – <.3 – Ni 17.0–19.0 Mn .05–.35 Cu54.0–56.0

G DIN 17663 Cu Ni 18 Zn 27 Wk.2.0740

Balance <.2 <.03 – <.3 – Ni 17.0–19.0 Mn < .7 Cu 60.0–63.0

41021 USA CDA 782 (UNS C78200) Balance – 1.5–2.5 – <.35 – Ni 7.0–9.0 Mn < .5 Cu 63.0–67.0

UK NS101 (CW402 J) Balance – 1.0–2.5 – <.4 – Ni 9.0–11.0 Mn .2–.5 Cu 44.0–47.0

G DIN 17663 Cu Ni 10Zn 42 Pb Balance <.3 .5–2.0 – <.5 – Ni 9.0–11.0 Mn < .5 Cu 45.0–48.0others total < .1

Alloy equivalents—Magnesium Alloys

Composition

Country Designation Al Zn Mn Other

61001 USA M1A ASTM B107, B275; SAE 51, 522, 533(UNS M15100)

– – >1.2 Si < .1 Cu < .05 Ni < .01 Ca < .3other < .3

UK 1428:7378 – – – –

G W3501 DIN 1729 Wk. 3.5200 <.05 <.03 1.2–2.0 Si < 1 Cu < 05 Fe < .005 others < .1

61002 USA LA141 ASTM B270; MIL SPEC M-46130(UNS M14142)

<.05 – 1.5 Cu < .05 Fe < .005 Li 12.0–15.0Ni < .005 Si .5–.6 Na < .005

61003 USA AZ31B ASTM B107, B273; FED QQ-M-31,M-40, M44, WW-T-825 (UNS M11311)

2.3–3.5 .6–1.4 >.2 Si < .1 Cu < .03 Ni < .005 Fe < .003Ca < .04 other < .3

UK BS 3370-MAG-S-111; BS 3373-MAG-E-111;DTD 742

2.5–3.5 .6–1.4 .15–.7 Ca < .3 Si < .3 Cu .05 Ni < .005Fe < .005

G DIN 1729 Mg Al 3 Zn Wk. 3.5312 2.5–3.5 .5–1.5 .15–.4 Si < .1 Cu < .1 Fe < .003 Ni < .005Ca < .04 other < .1

61004 USA ZK60A ASTM B91, B107, B275; FED QQ-M-31, M-40, WW-T-825 (UNS M16600)

– 4.8–6.2 – Zr > .45 others < .3

USA ZK61A ASTM B403 6.0 Zr .8 nominal comp.

UK BS 3373-MAG-E-161 5.0 Zr .6 nominal comp.

UK DTD 5041A 5.5 Zr .7 nominal comp.

F G-Z 5 Zr <.02 3.5–5.5 <.15 Zr .4–1.0 Cu < .03 Si < .01Fe < .01 N < 001

G Dl N 1729 Mg Zn 6Zr Wk. 3.5161 4.8–6.2 Zr .45–.8 others < .3

61005 USA AZ61A ASTM B91, B107, B275; FED QQ-M-31, M40, WW-T-825 (UNS M11610)

5.8–7.2 .4–1.5 .15 Si < .1 Cu < .05 Ni < .005 Fe < .005other < .3

UK DTD 259A 5.5–8.5 <1.5 .2–.4 Si < .1 Cu < .1 Ni < .005 Fe < .03

F G-A 7 Z1 6.5–8.5 .5–1.5 >.12 Si < .3 Cu < .05 Ni < .005 Fe < .007others < .3

G DIN 1729 Mg AI6Zn Wk. 3.5612 5.5–7.0 .5–1.5 .15–.4 Si < .1 Cu < .1 Ni < .005 Fe < .03others < .1

61006 USA AZ80A ASTM B91, B107, B275; FED.QQ-M-31, M-40 (UNS M11800)

7.8–9.2 .2–.8 >.12 Si < .1 Cu < .05 Ni < .005 Fe < .005other < .3

UK BS 2L121; BS 2L122 7.5–9.0 .3–1.0 .15–.4 Si < .3 Cu < .15 Ni < .01 Fe < .05Sn < .1 Cu + Si + Fe + Ni < .4

F G-A 7 Z1 SeeAZ61A

G DIN 1729 Mg Al 8 Zn Wk. 3.5812 7.8–9.2 .2–.8 .12–.3 Si < .1 Cu < .05 Ni < .003 other < .3

61007 USA LAZ933—Ballette Mem. Institute 3.0 3.0 – Li 9.0, nominal comp.

61008 USA ZK21A 2.3 Zr .45 nominal comp.

UK BS 3373-MAG-E-151, BS 3374-MAG-P-151,ZW3

3.0 Zr .6 nominal comp.

61009 UK RZ5—Magnesium Elektron 4.0 Zr .7 rare earth 1.2 nominal comp.

Appendix 6: Metal Alloy Comparison Tables 605

Page 49: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

References for Alloy Equivalents

BSI Catalogue 1995/96.British Standards Institution

‘Iron and Steel Specifications’, 8th Edition.British Iron and Steel Producers Association, December1994.

‘Unified Numbering System’, 4th Edition.SAE/ASTM 1986

Stahlschüssel, 1977.‘Properties of Aluminium and its Alloys’Aluminium Federation, 2002

‘Buyers Guide to progress on European Standards’Aluminium Federation, UK. February 1996

AFNOR Catalogue, 1996ICS: 77—Métallurgie

ICS: 49—Aéronautique et Espace

‘Work Programme 1995’CEN—European Committee for Standardization, Brussels.ISBN: 92-9097-432-X

MIL-HDBK-5 J: Metallic Materials and Elements forAerospace Vehicle Structures, Vols. 1 and 2.Department of Defense, USA. 2003

‘Metallic Materials Specification Handbook’, 4th EditionRobert B. RossChapman & Hall, 1992, ISBN: 0-412-36940-0

‘Smithells Metals Reference Book’, 8th Edition.2002, Butterworth-Heinemann

ECSS Q-ST-70-71: Data for the Selection of SpaceMaterials.

Alloy equivalents—Miscellaneous Alloys

Country Designation Composition

71001 USA Beryllium S-100C QMV Grade. BrushBeryllium Corp.

BeO 1.2, Be 98.5

71002 USA Beryllium S-200C QMV Grade. BrushBeryllium Corp.

BeO 2.0, Be 98.0

Beryllium SR-200 QMV Grade. BrushBeryllium Corp.

BeO 2.0, Be 98.0 Hot rolled sheet

71003 USA Beryllium S-300C QMV Grade. BrushBeryllium Corp.

BeO 3.0, Be 97.4

71004 USA MP35N Multiphase (UNS R30035) C < .025, Cr 19–21.0, Mo 9–10.5, Ni 33–37, Fe < 1.0, Mn < .15, P < .015, S < .01, Si < .15,Ti < 1.0, Co balance

71005 USA HS25; L-605; Haynes 25 C .05–.15, Cr 19.0–21.0, Ni 9.0–11.0, W 14.0–16.0, Fe < 3.0, Co balance

UK BS 3531/1-4 C .1, Cr 20, Ni 10, W 15, Co balance. Nominal comp.

G Co Cr20 W 15 Ni Wk. 2.4967 C .05–.13, Cr 19.0–21.0, Ni 9.0–11.0, W 14.0–16.0, Fe < 3.0, Si < 1.0, Mn 1.0–2.0, P < .045,S < .03, Co balance

71006 USA HS188—Haynes Alloy (UNS R30188) C .05–.15, Cr 20–24, Ni 20–24, W 13–16, Fe < 3.0, Mn < 1.25, La .03–.15, Si .2–.5, Cobalance.

606 Appendix 6: Metal Alloy Comparison Tables

Page 50: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Alloy equivalents—Titanium Alloys

Composition

Country Designation Al V Cr Other

51001 USA CP Ti (UNS R52250) ASTM B265 C 0.1: H 0.01: Fe 0.2, Commercialpurity Titanium

UK BS TA1: IMI 115: Ti 115: H 0.012: Fe 0.2, Commercial purityTitanium

F AFNOR T35

G Wk. 3.7024

51002 USA 3AI-2.5V (UNS R56320) 2.5–3.5 2.0–3.0 – C < .05: H < .013: Fe < .25: N < .02O < .12 Ti BalanceAMS 4943.4944 ASTM B337

51003 USA 6AI-4V (UNS R56401) 5.5–6.75 3.5–4.5 – C < .1: H < .015: Fe < .4: N < .05O < .2 Ti Balance

AMS 4906: 4911: 4934, 4935:4954:4965:4967ASTM B265, B348: B367: B381:AWS A5-16MIL. SPEC. F83142: T9046: T9047:T81556: T81915

UK BS TA56: 2TA10: 2TA13: 2TA28: 5.5–6.75 3.5–4.5 – H < .025: Fe < .3: O + N < .25 TiBalance

IMI318: Ti 318A

UK DTD5163: 5173: 5303: 5313: 5323 6.1 4.0 – H < .012 nominal comp.

F TA6V 6.0 4.0 – Nominal comp.

G Ti Al 6V 4 Wk. 3.7164 6.0 4.0 – Nominal comp.

AECMA TI-P63

CEN EN 2517PR (TI-P63 alloy: annealed—sheet, strip and plate, a ≤ 100 mm—provisional spec.)

EN 2530PR (TI-P63 alloy: annealed—900 MPa ≤ RM ≤ 1160 MPa—bars, d ≤ 100 mm—provisional spec.)

EN 2531 PR (TI-P63 alloy: annealed—900 MPa ≤ RM ≤ 1160 MPa—forgings, d ≤ 100 mm—provisional spec.)

EN 3310PR (TI-P63 alloy: not heat treated—reference heat treatment—annealed—grade 2 forging stocks, d ≤ 360 mm—provisional spec.)

EN 3311 PR (TI-P63 alloy: annealed—900 MPa ≤ RM ≤ 1160 MPa—bar for machining, d ≤ 150 mm—provisionalspec.)

EN 3312PR (TI-P63 alloy: annealed—900 MPa ≤ RM ≤ 1160 MPa—forgings, d ≤ 150 mm—provisional spec.)

EN 3313PR (TI-P63 alloy: not heat treated- reference heat treatment—solution treated and aged—grade 2 forgingstocks, d ≤ 360 mm—provisional spec.)

EN 3314PR (TI-P63 alloy: solution treated and aged—RM > = 1070 MPa—bar for machining, d ≤ 50 mm—provisionalspec.)

EN 3315PR (TI-P63 alloy: solution treated and aged—RM > = 1070 MPa—forgings, d < = 50 mm—provisional spec.)

EN 3456PR (TI-P63 alloy: annealed—920 MPa ≤ RM ≤ 1180 MPa—sheet and strip, a ≤ 6 mm—provisional spec.)

EN 3457PR (TI-P63 alloy: not heat treated—reference heat treatment—solution treated and aged—grade 2 forgingstock for fasteners, d ≤ 25 mm—provisional spec.)

EN 3458PR (TI-P63 alloy: annealed—900 MPa ≤ RM ≤ 1160 MPa—bar and wire for machined fasteners, d ≤ 25 mm—provisional spec.)

EN 3464PR (TI-P63 alloy: annealed—900 MPa ≤ RM ≤ 1160 MPa—plate, 6 mm ≤ a ≤ 100 mm—provisional spec.)

51004 USA 13V-11Cr-3AI (UNS R58010)AMS4917:4959

2.5–4.0 12.5–14.5 10–12 Fe < 0.35: C 0.05–0.1

AWS A5 MIL SPEC. F-83142: T-9046: T-9047: T-81588

51005 UK IMI 685 6.0 Zr 5.0: Mo 0.5: Si 0.5, nominal comp.

51006 UK IMI 829 5.5 Sn 3.5: Zr 3.0: Nb 1.0: Mo 0.3: Si0.3, nominal comp.

Appendix 6: Metal Alloy Comparison Tables 607

Page 51: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

UNS No. Table No.

Carbon steels and alloy steelsG10050 11001

G10060 11002

G10080 11003

G10100 11004

G10110 11005

G10120 11006

G10150 11007

G10160 11008

G10170 11009

G10180 11010

G10190 11011

G10200 11012

G10210 11013

G10220 11014

G10230 11015

G10250 11016

G10260 11017

G10290 11018

G10300 11019

G10350 11020

G10370 11021

G10380 11022

G10390 11023

G10400 11024

G10420 11025

G10430 11026

G10450 11027

G10460 11028

G10490 11029

G10500 11030

G10530 11031

G10550 11032

G10600 11033

G10640 11034

G10650 11035

G10690 11036

G10700 11037

G10740 11038

G10750 11039

G10780 11040

G10800 11041

G10840 11042

G10850 11043

G10860 11044

G10900 11045

G10950 11046

G11080 13001

G11090 13002

G11100 13003

G11160 13004(continued)

(continued)

UNS No. Table No.

G11170 13005

G11180 13006

G11190 13007

G11320 13008

G11370 13009

G11390 13010

G11400 13011

G11410 13012

G11440 13013

G11450 13014

G11460 13015

G12134 13016

G12144 13017

G15130 12001

G15180 12002

G15220 12003

G15240 12004

G15250 12005

G15260 12006

G15270 12007

G15360 12008

G15410 12009

G15470 12010

G15480 12011

G15510 12012

G15520 12013

G15610 12014

G15660 12015

G15720 12016

Low alloy steelsG40120 14001

G40230 14002

G40240 14003

G40270 14004

G40280 14005

G40320 14006

G40370 14007

G40420 14008

G40470 14009

G41180 14010

G41300 14011

G41350 14012

G41370 14013

G41400 14014

G41420 14015

G41450 14016

G41470 14017

G41500 14018

G41610 14019

G43200 14020(continued)

608 Appendix 6: Metal Alloy Comparison Tables

Page 52: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

UNS No. Table No.

G43400 14021

G46150 14039

G46170 14040

G46200 14041

G46210 14042

G46260 14043

G47180 14022

G47200 14023

G51150 14044

G51200 14045

G51300 14046

G51320 14047

G51350 14048

G51400 14049

G51450 14050

G51470 14051

G51500 14052

G51550 14053

G51600 14054

G51986 14055

G52986 14056

G61180 14057

G61500 14058

G81150 14024

G86150 14025

G86170 14026

G86200 14027

G86220 14028

G86250 14029

G86270 14030

G86300 14031

G86370 14032

G86400 14033

G86420 14034

G86450 14035

G86500 14036

G86550 14037

G86600 14038

Stainless steelsS20100 15001

S20200 15002

S30100 15003

S30200 15004

S30215 15005

S30300 15006

S30323 15007

S30400 15008

S30403 15009

S30500 15010

S30800 15011(continued)

(continued)

UNS No. Table No.

S30900 15012

S31000 15013

S31008 15014

S31400 15015

S31600 15016

S31603 15017

S31700 15018

S32100 15019

S34700 15020

S34800 15021

S38400 15022

S40300 15023

S40500 15024

S41000 15025

S41400 15026

S41600 15027

S41623 15028

S42000 15029

S42020 15030

S42900 15031

S43000 15032

S43020 15033

S43023 15034

S43100 15035

S43400 15036

S43600 15037

S44002 15038

S44003 15039

S44004 15040

S44200 15041

S44600 15042

S50100 15043

S50200 15044

Named steels

J42015 16002

J92200 16013

K08500 16001

K66286 16004

K92820 16015

K92940 16016

K93160 16017

N08020 16003

S13800 16014

S14800 16009

S15500 16008

S15700 16010

S17700 16011

S21900 16018

S35000 16005

S35500 16006(continued)

Appendix 6: Metal Alloy Comparison Tables 609

Page 53: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

UNS No. Table No.

S36200 16019

S45500 16007

T20811 16012

Nickel alloysN05500 21012

N06002 21002

N06600 21008

N06625 21009

N07001 21016

N07041 21014

N07718 21010

N07750 21011

N08800 21003

N09901 21004

N09902 21013

N10002 21001

N19903 21005

N19907 21006

N19909 21007

Aluminium alloys (wrought)A91050 31001

A91060 31002

A91100 31003

A91145 31004

A91175 31005

A91200 31006

A91230 31007

A91235 31008

A91345 31009

A91350 31010

A92011 31015

A92014 31016

A92017 31017

A92024 31018

A92048 31019

A92124 31023

A92219 31026

A93003 31029

A93004 31030

A93005 31031

A93103 31032

A93105 31033

A94032 31034

A95005 31035

A95050 31036

A95050 31042

A95052 31037

A95056 31038

A95083 31039

A95086 31040(continued)

(continued)

UNS No. Table No.

A95154 31041

A95252 31043

A95254 31044

A95356 31045

A95454 31046

A95456 31047

A95457 31048

A95652 31049

A95657 31050

A96003 31051

A96005 31052

A96053 31053

A96061 31054

A96063 31055

A96066 31056

A96070 31057

A96082 31059

A96101 31060

A96151 31061

A96162 31062

A96201 31063

A96253 31064

A96262 31065

A96351 31066

A96463 31067

A96951 31068

A97001 31069

A97009 31070

A97039 31073

A97049 31074

A97050 31075

A97075 31076

A97079 31077

A97175 31078

A97178 31079

Aluminium alloys (cast)A02950 32001

A03190 32003

A03330 32005

A03550 32007

A03560 32009

A03570 32011

A03590 32013

A03800 32014

A05140 32016

A05180 32017

A05200 32018

A05350 32019

A07070 32020

A07120 32021(continued)

610 Appendix 6: Metal Alloy Comparison Tables

Page 54: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

(continued)

UNS No. Table No.

A33550 32008

Copper alloysC11000 41001

C17000 41002

C17200 41003

C19400 41004

C19500 41005

C23000 41006

C26000 41007

C35300 41008

C42200 41009

C44300 41010

C51000 41011

C52100 41012

C61900 41013

C68700 41014

C68800 41015

C70600 41016

C72500 41017(continued)

(continued)

UNS No. Table No.

C76200 41018

C76600 41019

C77000 41020

C78200 41021

Titanium alloysR52250 51001

R56320 51002

R56401 51003

R58010 51004

Magnesium alloysM11311 61003

M11610 61005

M11800 61006

M14142 61002

M15100 61001

M16600 61004

Miscellaneous alloysR30035 71004

R30188 71006

Appendix 6: Metal Alloy Comparison Tables 611

Page 55: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Appendix 7: Variation of Standard Free Energyof Formation of Oxides with Temperature

These are graphs showing how free energy values vary withtemperature. The network is based on work by Ellinghamand Richardson in the 1940s and 1950s and is still veryuseful today (see for instance Ellingham, H.J.T. (1944)J. Soc. Chem. Ind., 63, 125–133). The diagram indicates atany temperature what is thermodynamically possible formetallurgical reactions that are based on either thermalreduction processes or thermal oxidation processes.

At the point of intersection of any two curves the standardfree energy for the chemical reaction is zero and this is thepoint of equilibrium. The diagram can be used to showapproximately whether reduction or oxidation will takeplace.

As an example, below a temperature of about 1600 °C,pure magnesium is expected to reduce aluminium oxide. Attemperatures higher than 1600 °C, when the curve formagnesium oxide is above that of aluminium oxide, onewould expect that pure aluminium would reduce magnesiumoxide to metallic magnesium. The approximate temperatureswhen gases such as carbon monoxide might reduce metaloxides can, in a similar way, be deduced from the variouspoints of graph intersections.

It is possible to determine the partial pressure of oxygenin equilibrium at a given temperature with the couples Fe/FeO, Fe/Fe3O4, Ni/NiO, and the like. The diagrams showsthat up to very high temperatures (>1500 °C) the oxides FeO

and Fe3O4 are more stable than NiO, and that the oxideFe2O4 are more stable than NiO, and that the oxide Fe2O3 isthe least stable of all.

Reduced pressures will enhance most reducing reactionsas will increasing the ratio of hydrogen or carbon monoxidepresent in a gaseous mixture—these effects can also beestimated from intersection points. The techniques aredescribed in books such as Metallurgical Thermochemistry,6th Edition, (1993) by O. Kubaschewski, C. Alcock and P.J. Spencer, (Pergamon, Oxford) and Free Energy of For-mation of Binary Compounds (1971), by T.B. Reed (MITPress, London).

It is important to note that the Ellingham diagrams relateto the equilibrium conditions—they take no account of thekinetics of any oxidation or reduction reaction.

For alloys, it is worth noting that the most easily oxidizedconstituent should be considered when consulting the dia-gram. It is usual to discount elements that have a concen-tration less than about 1 % as they are not able to formcontinuous surface films.

A recent, short but very useful article—Ellingham dia-grams, their Use and Misuse—takes account of several caseexamples where diagrams can be used for trouble shootingduring processes such as heat treatment, brazing and brightannealing (Stratton 2013).

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

613

Page 56: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Based on a diagram supplied by the British Iron and Steel Research Association

614 Appendix 7: Variation of Standard Free Energy of Formation of Oxides with Temperature

Page 57: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Appendix 8: Simplied Procedurefor the Management of Materials, Processesand Mechanical Parts—Possible Guidelinesfor a Cubesat or Small University Spacecraft

Flow Chart for M,P and MP Lists

Company Structure Exists

Responsible for company Product Assurance:

Responsible for Materials and Process, Plus Mechanical Parts (eg Materials Manager):

Responsible for Design and Verification:

Selection

Evaluation:Verification of ProcessesValidation of Materials

Qualification of Mechanical PartsCriticality Analysis

Evaluation Necessary

Verification by Similarity

Evaluation:Test Results

Critical

Accept

Add Material, Process or Mechanical Part to:DML, DPL, DMPL

Declared Material List Declared Process List Declared Mech. Parts List

Accept

Accept

Reject New Test or Request for Deviation

Yes

No

RejectNew Selection

Non - Critical

Yes

No

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

615

Page 58: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Management of Lists (see Flow Chart)

1. List should be initiated and maintained during the life ofthe project by the Material and Processes (M&P)Manager.

2. Inputs mainly from Design Manager (e.g. engineeringdrawings).

3. Lists need to be reviewed at PDR (they will be incom-plete but may identity critical items) and again at CDR.

4. SuitabiIity of the items on the 3 Iists should be assessedby an independent material and process specialist.

5. Technical criteria for the selection of material willinclude:

(a) Effect of temperature and thermal cycling(b) Effect of vacuum (outgassing of organic materials and

sublimation of metaIs such as cadmium (forbidden))(c) Effect of radiation (not generally an issue except for

solar cell cover glasses, white paints)(d) Corrosion and galvanic compatibility (i.e. high

strength aIuminium alloys need a chemical conver-sion coating that enabIes resistace to surface corro-sion prior to launch and electrical grounding betweenelectronic boxes and structure).

Note:PDR—preliminary design review (usually an in-depth assessment, by an interdependent team of disciplineexperts and managers, that the design and materials/pro-cesses are realistic); CDR—critical design review (to ensurethe spacecraft's designed hardware is ready for launch).

Lay-Out of Lists (see also Appendices 10and 11 for examples)

(a) These can be formatted prior to PDR and Materials aregrouped according to Table 7.A.1

(b) All lists need issue status for configuration control(c) Columns will provide—Unique Item number

Material designation (e.g. commercial or recognisableidentification)International code, e.g. AISI, AA, CDA, etc. (forinstance as listed in Appendix 6)Manufacturers nameSurface finish

Processing parameter (e.g. heat-treatment for metalsand mix ratio/curing time/temp for organic)Use and end locationAny test date (reference to reports, literature, etc.)Last column is for Approval by M&P specialist andprojeet manager who gives final approval.

(d) All acronyms need to be defined(e) Items with a limited life such as two part adhesives,

paints, etc. must be identified under processingparameter.

Evaluation, Procurement, Inspection,Traceability, and Storage

EvaluationSome materials may need to be evaluated for outgassing.

ProcurementSome materials have long lead times (versus the projectschedule); these need to be identified before PDR.

InspectionInspection is needed at “in-coming” to ensure suitability,check materials are “in-life”, damage to surface, castingsmay need to be x-rayed etc.

TraceabilityWhen possible each material and batch should have aunique reference number.

StorageGood controls needed regarding: humidity, cleanliness,refrigeration for certain items, health and safety (regardingtoxic materials), flammable materials.

Mechanical Parts and Process Controls

• The DPL and DMPL will need to be designed in a similarmanner to the DML.

• Exact requirements for DPL and DMPL should be agreedwith the M and P specialist.

• The DMPL needs to list all mechanisms—each should beassessed by the M and P specialist (e.g. that lubricating

616 Appendix 8: Simplified Procedure for the Management of Materials, Processes and Mechanical Parts …

Page 59: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

greases and oils to not outgas and contaminate opticalsystems, that rotating parts in vacuum do not cold-weldetc.).

• The DPL should also be reviewed and possibly com-piled by the M and P specialist to ascertain if eachprocess can be considered “non- critical” or “critical”based on previous usage, reliability, inspect ability,possibility to re-work in case of human or materialerrors (Table 7.A.1).

Processes—Controls and PossibleAssessment for Quality

It would be beneficial to review all spacecraft systems andsub-systems with a mind to check if suitable controls arebeing made, and whether some minimal verification ofunusual processes should be Verified:

– Structure, mechanical assembly or welding process,simple corrosion protection

– Black boxes, manufacture, painting, grounding– Harness, crimping to ECSS standard?, wire type (silver

or tin-plated?)– General welding (are materials suitable), bonding,

painting– Pcb assembly methods, repair, controls (ECSS standard?)– Make an attempt to list processes and critical ones may

need laboratory testing on in-line samples.

Need for Access to Space MaterialsLaboratory to Assess Qualityand Suitability for Use in Vacuum

– Microsectioning of welded and crimped joints*– Tensile testing of welds and crimps*– NDT occasionally for welds*– Outgassing tests to ECSS standard (can be done at ded-

icated European labs), needed for a few organic materials(glues, paints, etc.) in vicinity of optical systems (line ofsight to consider condensation). Some laboratoriesoffering testing for outgassing are mentioned on page 40.

*Note—could use local university or industry

Table 7.A.1 Material group numbers

Groupnumber

Description

1 Aluminium and aluminium alloys

2 Copper and copper alloys

3 Nickel and nickel alloys

4 Titanium and titanium alloys

5 Steels

6 Stainless steels

7 Filler metals: welding, brazing soldering

8 Miscellaneous metallic materials

9 Optical materials

10 Adhesives, coatings, vamishes

11 Adhesives tapes

12 Paints an inks

13 Lubricants

14 Potting compounds, sealants, foams

15 Reinforced plastics (including PCBs)

16 Rubbers and elastomers

17 Thermoplastics [e.g non-adhesive tapes and folls(MLI)]

18 Thermoset plastics (including PCBs)

19 Materials aspects of wires and cables

20 Miscellaneous non-metallic materials, e.g ceramics

From ECSS Q-ST-70B

Appendix 8: Simplified Procedure for the Management of Materials, Processes and Mechanical Parts … 617

Page 60: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Appendix 9: Materials and Processes StandardsRelated to Space (Released by ECSS, JAXA andNASA) as of 2015

ECSS-Q-ST-10-04C Critical-item controlECSS-Q-ST-10-09C Nonconformance control systemECSS-Q-ST-20C Rev.1 Quality assuranceECSS-Q-ST-20- Quality and safety assurance for space testcentresECSS-Q-ST-20-08C Storage, handling and transportationof spacecraft hardwareECSS-Q-ST-20-10C Off-the-shelf items utilization in spacesystemsECSS-Q-ST-30 C DependabilityECSS-Q-ST-30-02C Failure modes, effects (and criticality)analysis (FMEA/FMECA)ECSS-Q-ST-30-09C Availability analysisECSS-Q-ST-30-11C Rev.1 Derating—EEE componentsECSS-Q-ST-40C SafetyECSS-Q-ST-40-02C Hazard analysisECSS-Q-ST-40-12C Fault tree analysis—Adoption noticeECSS/IEC 61025ECSS-Q-ST-60 C Rev.2 Electrical, electronic and elec-tromechanical (EEE) componentsECSS-Q-ST-60-02C ASIC and FPGA developmentECSS-Q-ST-60-05C Rev.1 Generic procurement require-ments for hybridsECSS-Q-ST-60-12C Design, selection, procurement anduse of die form monolithic microwave integrated circuits(MMICs)ECSS-Q-ST-60-13C Commercial electrical, electronic andelectromechanical (EEE) componentsECSS-Q-ST-60-14C Re-lifing procedure—EEEcomponentsECSS-Q-ST-60-15C Radiation hardness assurance—EEEcomponentsECSS-Q-ST-70C Rev.1 Materials, mechanical parts andprocessesECSS-Q-ST-70-01C Cleanliness and contamination control

ECSS-Q-ST-70-02C Thermal vacuum outgassing test forthe screening of space materialsECSS-Q-ST-70-03C Black-anodizing of metals with inor-ganic dyesECSS-Q-ST-70-04C Thermal testing for the evaluation ofspace materials, processes, mechanical parts and assembliesECSS-Q-ST-70-05C Detection of organic contaminationsurfaces by infrared spectroscopyECSS-Q-ST-70-06C Particle and UV radiation testing forspace materialsECSS-Q-ST-70-07C Verification and approval of automaticmachine wave solderingECSS-Q-ST-70-08C Manual soldering of high-reliabilityelectrical connectionsECSS-Q-ST-70-09C Measurements of thermo-opticalproperties of thermal control materialsECSS-Q-ST-70-10C Qualification of printed circuit boardsECSS-Q-ST-70-11C Procurement of printed circuit boardsECSS-Q-ST-70-12C Design rules for printed circuit boardsECSS-Q-ST-70-13C Rev.1 Measurements of the peel andpull-off strength of coatings and finishes using pressure-sensitive tapesECSS-Q-ST-70-18C Preparation, assembly and mountingof RF coaxial cablesECSS-Q-ST-70-20C Determination of the susceptibility ofsilver-plated copper wire and cable to "red-plague"corrosionECSS-Q-ST-70-21C Flammability testing for the screeningof space materialsECSS-Q-ST-70-22C Control of limited shelf-life materialsECSS-Q-ST-70-26C Crimping of high-reliability electricalconnectionsECSS-Q-ST-70-28C Repair and modification of printedcircuit board assemblies for space useECSS-Q-ST-70-29C Determination of offgassing productsfrom materials and assembled articles to be used in amanned space vehicle crew compartment

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

619

Page 61: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

ECSS-Q-ST-70-30C Wire wrapping of high-reliabilityelectrical connectionsECSS-Q-ST-70-31C Application of paints and coatings onspace hardwareECSS-Q-ST-70-36C Material selection for controllingstress-corrosion crackingECSS-Q-ST-70-37C Determination of the susceptibility ofmetals to stress-corrosion crackingECSS-Q-ST-70-38C High-reliability soldering for surface-mount and mixed technologyECSS-Q-ST-70-45C Mechanical testing of metallicmaterialsECSS-Q-ST-70-46C Rev.1 Requirements for manufacturingand procurement of threaded fastenersECSS-Q-ST-70-50C Particles contamination monitoring forspacecraft systems and cleanroomsECSS-Q-ST-70-53C Materials and hardware compatibilitytests for sterilization processesECSS-Q-ST-70-55C Microbial examination of flight hard-ware and cleanroomsECSS-Q-ST-70-56C Vapour phase bioburden reduction forflight hardwareECSS-Q-ST-70-57C Dry heat bioburden reduction for flighthardwareECSS-Q-ST-70-58C Bioburden control of cleanroomsECSS-Q-ST-70-71C Materials, processes and their dataselectionECSS-Q-ST-80C Software product assuranceISO 24113: Space systems—Space debris mitigationrequirementsJAXA-QTS-2120 Wire, Electric, Fluorine Resin/PolyimideInsulatedJAXA-QTS-2140 Printed Wiring Boards, Rigid-FlexibleNASA-HDBK-5010 FRACTURE CONTROL IMPLE-MENTATION HANDBOOK FOR PAYLOADS,EXPERIMENTS, AND SIMILAR HARDWARENASA-HDBK-6024 Spacecraft polymers atomic oxygendurability handbookNASA-HDBK-6025 Guidelines for the specification andcertification of titanium alloys for NASA flight applicationsNASA-HDBK-8719.14 Handbook for limiting orbitaldebris

NASA-HDBK-8739.23 NASA complex electronics hand-book for assurance professionalsNASA-STD-4003 ELECTRICAL BONDING FOR NASALAUNCH VEHICLES, SPACECRAFT, PAYLOADS,AND FLIGHT EQUIPMENTNASA-STD-5001 structural design and test factors of safetyfor spaceflight hardwareNASA-STD-5002 Load analyses of spacecraft and payloadsNASA-STD-5005 Standard for the design and fabrication ofground support equipmentNASA-STD-5006 General fusion welding requirements foraerospace materials used in flight hardwareNASA-STD-5008 Protective coating of carbon steel, stain-less steel, and aluminum on launch structures, facilities, andground support equipmentNASA-STD-5009 Nondestructive evaluation requirementsfor fracture critical metallic componentsNASA-STD-5019 Fracture control requirements for space-flight hardwareNASA-STD-5020 Requirements for threaded fasteningsystems in spaceflight hardwareNASA-STD-6001 Flammability, offgassing, and compati-bility requirements and test proceduresNASA-STD-6008 NASA Fastener procurement, receivinginspection, and storage practices for spaceflight hardwareNASA-STD-6012 Corrosion protection for space flighthardwareNASA-STD-6016 Standard materials and processesrequirements for spacecraftNASA-STD-8719.14 Process for limiting orbital debrisNASA-STD-8719.9 Standard for lifting devices andequipmentNASA-STD-8739.1 Workmanship standard for polymericapplication on electronic assembliesNASA-STD-8739.4 Crimping, interconnecting cables, har-nesses, and wiringNASA-STD-8739.5 Fiber optic terminations, cable assem-blies, and installationNASA-STD-8739.6 Implementation requirements for nasaworkmanship standards (includes requirements for solderedelectrical and electronic assemblies per IPC J-STD-001ES)

620 Appendix 9: Materials and Processes Standards Related to Space (Released by ECSS, JAXA and NASA) as of 2015

Page 62: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Appendix 10: Examples of DeclaredProcess Lists (DPL)

The Processes selected and used on any spacecraft will needto be approved by the end customer. They are compiled bythe “Prime Contractor”. Critical processes are usually eval-uated by Testing “technology samples” for which laboratory

reports are generated: on critical processes are “verificationtested”.1

Common practice is to tabulate all processes according tothe following “Group Numbers”:

Groupnumber

Description

1 Adhesive bonding

2 Composite manufacture

3 Encapsulation/moulding

4 Painting/coating

5 Cleaning

6 Welding/brazing

7 Crimping/stripping/wire wrapping

8 Soldering

9 Surface treatments

10 Plating

11 Machining

12 Forming

13 Heat treatment

14 Special fabrication: processes developedspecifically for the programme

15 Marking

16 Miscellaneous processes

17 Inspection procedures

1Critical processes are often specified by the end customer and willdepend on the service life and operational condition of individualspacecraft (e.g. “manned space vehicles” may have more criticalprocesses). Often the process is considered critical if there are majordifficulties or uncertainties in the manufacturing, assembly, inspectionand testing. The process will also be considered critical if it has provento be difficult to perform by trained operators, and if it has raisedproblems in the past that have not been resolved.

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

621

Page 63: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

App

endix10

.A.1

Outerspacecompany

Declaredprocesslist

DOC.NO.:DPL

/PIT/3401/OSC

Issue:

3Date:

10/04/14

Page:16

Spacecraft:PITCAIRNSA

T1

Subsystem:

Equipment:

Group

1adhesive

bonding

Item

Process

Specificatio

nR E V

Descriptio

n/Identifi

catio

nUse

Locationcode

User

code

Assoc.

DML

Item

s

C R I T

Approval

Customer

commentsand

approval

Status

C

1.07.00

PON

Preparationof

VESP

ELand

DELRIN

surfaces

priorto

bond

PON

H-

A011

8Bonding

processes

LLMKTRA

IOLACADM

18.018.00

NPS

U:

ROSE

TTA

A

1.018.00

ZTN

Bonding

byconductiv

eresins

with

EPO

TEX

H20

EHR-012.IN

T1

CURE:15

min

at120°C

Shieldingof

SSPA

structure

LLMKHPA

10.013.00

NPS

U:

METRO

6A

1.019.00

ZTN

Screw

lockingwith

SOLITHANE113

Screw

locking

HR-013/INT

1CURE:48

hat

RTor

3hat

65°C

LLMKHPA

10.009.00

NPS

U:

METRO

6A

1.021.01

ZTN

Bonding

with

SOLITHANE

113

HR-411/INT

1CURE:48

hat

RTor

3hat

65°C

Com

ponents

bonding

KSP

A10.009.00

NPS

U:

METRO

6A

1.025.00

ZTN

Bonding

with

ECCOSIL

4952

HR-410/INT

2CURE:18

hat

RTor

3hat

65°C

RFAbsorber

bonding

LLMKHPA

10.069.03

NPS

U:

METRO

6A

12.012.00

16.006.02

1.026.00

ON

Bonding

with

EA9321

PLUS

EA

9210

PRIM

ER

SP4413

SP4414

TC

LLMCHRM

APS

APA

IOLACHRM

10.002.03

A

1.030.00

ON

Preparationof

BSL312

SP8841

CURE:1Hrat

120°C

Insertsand

bondingof

honeycom

b

LLMCHRM

IOLACHRM

10.015.05

A M

1.031.00

CAT

Bonding

with

FOAM

410-1

M-O

-993

8CURE:0

.5hat120°C

+1h

180°C

Splicing

honeycom

bpart

STR

LLMCADM

IOLACADM

10.027.01

NPS

U:

HELIO

SISO

ARIA

NE5

A

1.094.00

PIN

Locking

ofnutsandscrews

PIV/20/2014

3Perm

enentandnon-

perm

anentlocking

ofscrews

andnuts

APS

IAPC

NA

622 Appendix 10: Examples of Declared Process Lists (DPL)

Page 64: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

App

endix10

.A.2

Outerspacecompany

Declaredprocesslist

DOC.NO.:DPL

/PIT/340

1/OSC

Issue:

3Date:

10/04/14

Page:61

Spacecraft:PITCAIRNSA

T1

Subsystem:

Equ

ipment:

Group

6welding

/brazing

Item

number

contractor

Process

Specificatio

nR E V

Descriptio

n/identifi

catio

nUse

Location

code

User

code

Assoc.

DML

items

C R I T

App

roval

Customer

comments

and

approv

al

Status

C

6.01

8.00

PNT

Vacuu

mbrazing

PPCPIC

101

1Joiningmetal/or

metallised

ceramic

compo

nents

Thruster

IPPE

IT7.03

8.00

20.051

.03

3.01

1.03

6.00

1.36

6.01

3.15

3.03

6.00

CAwaitin

gvacuum

herm

eticity

testingand

DPA

O O

6.02

0.00

TOT

Filling

tube

welding

SPECWELD

491

Laser

welding

Tub

eon

topDOME

PWSB

TA

3.01

5.01

3.01

5.03

NRPT

OSC

4448

A N

6.02

1.00

TOT

Cellclosure

welding

M.T.U.

1199

7TIG

Welding

Terminal

toDOME

PWSB

TA

3.00

1.01

3.00

1.02

21.017

.01

NRPT

OSC

4521

A N

6.02

2.00

FOB

Brazing

with

VH

950

TBD

Hardbazing

ofCu-

wireof

2.00

40/ano

descrew

1.49

44

IPPE

IT6.00

8.03

7.03

6.02

NO N

6.02

3.00

FOB

Microwelding

FOP

99-22/13

Plasmajet

microwelding

ofHF-RF-CABLE/Cu

wire

IPPE

IT2.00

1.32

19.019

.03

NA N

Appendix 10: Examples of Declared Process Lists (DPL) 623

Page 65: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

App

endix10

.A.3

Outerspacecompany

Declaredprocesslist

DOC.NO.:DPL

/PIT/3401/OSC

Issue:

3Date:

10/04/14

Page:99

Spacecraft:PITCAIRNSA

T1

Subsystem:

Equipment:

Group

9spaceconversion

treatm

ent

Item

number

contractor

Process

identifi

catio

nSp

ecificatio

nR E V

Descriptio

n/identifi

catio

nUse

Locationcode

User

code

Assoc.

DML

Item

s

C R I T

Approval

Customer

commentsand

approval

Status

C

9.012.00

XYZ

Anodising

ofTA6V

titanium

alloy

33448/22/4

AProtectio

nRCPR

OMD

FREPF

KOF

FREPF

KTF

RREPR

KPD

FREPF

KIF

FREPF

BOF

RREPR

KIF

4.001.43

21.004.19

21.007.30

21.008.51

NRPT

:XYZ/BOT/FT.236

PSU:TDF

8TVSA

T8

TLC

8

A

POS

Anodising

ofTA6V

titanium

alloy

33448/22/4

AProtectio

nFR

EPF

KLA

FREPF

ISC

FREPA

IT

FREPF

ICA

FREPR

SIR

4.001.43

21.004.19

21.007.30

21.008.51

NPS

U:ECSIN

TE-V

1GIO

TTO

ERS-1

A N

9.013.00

XYZ

Surfacepassivation

62410/99/1

Passivationof

silver

Protectio

nRCPR

OMD

FREPF

KOF

FREPF

KIF

RREPR

KPD

FREPF

KIF

FREPF

BOF

RREPR

KIF

1.029.03

3.005.18

4.007.01

NRPT

:BAB/QT/

81.044

PSU:TVSA

T2

SPLAB

TLC

8

A

POS

Surfacepassivation

44291/20/1

Passivationof

silver

Protectio

nFR

EPF

KLA

FREPF

ISC

FREPF

ICA

FREPR

SIR

3.002.11

1.029.02

1.029.03

1.040.00

1.029.04

NRPT

:BAB/QT/

81.044

PSU:IN

TE.V1

ERS-1

EURECA

EUTE.2

AN

9.014.00

MOM

Anodising

DTD

942

Surfacetreatm

enton

Ti

alloys

Surface

protectio

non

fixings

FREPF

CFK

21.004.21

NMARS-2

AN

9.015.00

LIN

Anodising

ofalum

inium

ALLOY

LIN

.914.2.

rev.1

ASu

pportand

coolingplate

RREPR

ICA

RREPR

IKC

RREPR

KPA

1.017.04

NCLUST

-2AN

9.018.00

POS

Hardanodising

49326/20/1

BTreatmentof

alum

inium

andalum

inium

alloy

Insulatio

nFR

EPF

KLA

FREPF

ISC

FREPF

ICA

FREPR

SIR

1.002.34

1.007.15

1.029.05

NPS

U:IN

TE.V1

GIO

TTO

EURECA

TLC2

AN

9.020.00

POS

Chrom

ate

conversion

coating

40441/20/2

BTreatmentof

alum

inium

andalum

inium

alloy

Protectio

nFR

EPF

KLA

FREPF

ICA

1.002.35

1.002.38

1.007.16

1.007.19

1.029.06

1.040.02

NRPT

:R:

XYZ/BOT/FT

PSU:ECS

INTE.V1

ISSTDF8

FREPF

ISC

FREPR

SIR

FREPA

IT

624 Appendix 10: Examples of Declared Process Lists (DPL)

Page 66: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Appendix 11: Examples of DeclaredMaterials Lists (DMLs)

The materials selected and used on any spacecraft will needto be approved by the end customer. They are compiled bythe “Prime Contractor”.

Critical materials are tested and “Validated”. Dependentupon the criticality of the spacecraft, tests may include:outgassing-under-vacuum, stress corrosion testing,

flammability, etc. The Material Group numbers have beendetailed in Appendix 8.

The contents of the DMLs will depend on the end cus-tomer’s requirements, these may follow ECSS-Q-ST-70 orcan be relaxed in view of the specific contractual require-ments. Further description is given in Sect. 4.2.1.

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

625

Page 67: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

App

endix11

.A.1

Outerspacecompany

Declaredmateriallist

DOC.NO.:DML/PIT/3466/OSC

Issue:

3Date:

10/04/14

Page:49

Spacecraft:PITCAIRNSA

T1

Subsystem:

Equipment:

Group

2copper

andcopper

alloys

Item

Com

mercial

identifi

catio

nChemical

nature

and

type

ofproductfor

appliedcondition

Procurem

ent

inform

ation

supplies

specificatio

n

Summaryof

processing

parameters

Use

andlocatio

ncode

ENVIR.

code

Size

Approval

Customers

comments

andapproval

Use

Code

RA

TStatus

C

2.021.01

FOK

Brass

40Zn

Cu60/Zn40

QQ-B-626

TIN

plating8A

B00526

AAAA

Mechanicalparts

RREPR

KIC

FREPF

IKC

FREPF

KIC

RCPF

RGU

GS

V3 4

V1

PSU:BSA

TD

Nopure

tinperm

itted

2.022.00

FOK

Brass

38zn

2Pb

CuZn38,2P

bVAR.TUN.SCREW

NRS

VAR.TERMIN

AL

NRS

734.662.E

Goldplating4µm

Copperunderplatin

g5µm

770-82608-AASG

Mechanicalparts:

bondingstud

term

inal,screw

lock

RREPR

KIC

FREPF

IKC

FREPF

KIC

RCPF

RGU

GS

V3 4

V0

PSU:ECSBSA

TEUR

A

2.022.01

MOM

Brass

CZ121

Cu58,

ZN38-39,

Pb3-4

ROD

Aluminium

suppliesBS2874

Silver

plating

Solder

CDP7.10E

CDP7.03

Centerconductor

Low

pass

filter

Probeandtube

FREPF

CFK

FREPS

DIP

PREPR

INF

GS

V3 4

W1

PSU:SP

OT

A N

2.022.02

FOK

Brass

38Zn

2Pb

CuZn38,2P

bVAR.TN.SCREW

NRS

VAR.TERMIN

AL

NRS

734.662.E

SnplatingdeletedAg

plating

8AB

00526AAAA

Mechanicalparts

Bonding

stud,

term

inal,screw

lock

RREPR

KIC

FREPF

IKC

FREPF

KIC

RCPF

RGU

GS

V3 4

V0

PSU:ECSBSA

TEUR

A NTin

nolonger

used

2.023.00

LIN

Copper

CDA

510

CuSn

6ROD

DIN

1756

Pretinning

GZ.1991.209.1

Piece,

Parts

RREPR

KPA

GS

V3 4

W1

PSU:

TELECOM

HISPA

S.IN

T.V11

EUTELS

ECSS

-Q-ST-70-36

A

FREPF

KPA

2.024.00

SINT

Copper

AVIO

METAL

131N

22Electrolytic

surface

coatingSn

andreflow

edMIL-T-107-271

IP5009

Electrical

connectio

nsIPPP

SCU

GS

V3 4

W2

PSU:GIO

TTO

ERS

PINSA

TA M

2.026.00

LIN

Copper

CDA

260

Cu65%

zn35

%TELKRON

CRS-EPT

-6016

Plated

with

Cu

5µm

+Sn

/Pb

EYELET

PCDICU

PCDPK

DU

GS

V3 4

W2

PSU:ISO

AN

2.027.00

FON

Brass

Grommet

with

Spur

Atlantahardware

MS20230

INSE

RT

MLIgrounding

grom

met

plain

IOLAIK

CM

GS

V3

W3

A N

626 Appendix 11: Examples of Declared Materials Lists (DMLs)

Page 68: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

App

endix11

.A.2

Outerspacecompany

Declaredmateriallist

DOC:NO.:DML/PIT/3466/OSC

Issue:

3Date:

10/04/14

Page:88

Spacecraft:PITCAIRNSA

T1

Subsystem:

Equipment:

Group

6stainlesssteels

Item

Com

mercial

identifi

catio

nChemical

nature

andtype

ofproductforappl.condition

Procurem

entinform

ation

suppliesspecificatio

nSu

mmaryof

processing

parameters

Use

andlocatio

ncode

ENVIR.

Code

Size

Approval

Customers

commentsand

approval

Use

Code

RA

TStatus

C

6.034.00

FIN

SS2343-08

TIN

GST

AD

A/S

F9967.1

Lockwire

IPPF

VV

GS

E3 4

W1

A N

6.035.00

SMM

AISI304L

LEEJEVA

09-TSL

Passivated

MIL-S-5002

FLO

restrictor

in107series

valve

IPPP

SME

GS

V3 4

W1

RPT

3991-

02099-DPQ

A N

6.036.00

CPP

AISI348

Stainlesssteelsheet

Various

PPC823-170-95911

PPC823-170-95981

Form

edSp

otwelded

Cathode,main

flange

IPPE

ITGS

V4

SCCI

NASA

NASA

-HDBK-527

10119

A N

6.036.01

CPP

AISI348

Stainlesssteel

ROT

PPC8213-170-95921

Machined

Spot

welded

Structural

parts

IPPE

ITGS

V4

W1

SCCI

NASA

NASA

-HDBK-527

10119

A N

6.037.00

BET

Nitriding

steel

BSS1

06D

Plasmanitride

4hat

555°C

ESP

4443

Gear

SADM

GS

V3

W2

?O N

Moredata

required

4

6.038.00

BET

Maraging

steel

Bar

DTD

5212

Plasmanitride

4hat

485°C

ESP

4443

Pinion

SADM

GS

V3 4

W1

?O N

Moredata

required

6.039.00

BET

Corrosion

resistingsteel

Sheet

BSS5

27Washer

SADM

GS

V3 4

W1

A N

6.040.00

BET

Stainless

steel

BSS8

0PA

SSIV

EPS

2089

SADM

GS

V3 4

W2

A N

6.041.00

XIL

AISI304

X8CrNi19/10

MULTISO

URCE

AMS-5513/AMS5639

USE

ASIS

Ballforsealing

IPPF

CU

GS

V3 4

W1

PSU:

OLYMPU

SHIPPA

RMETEO

A

6.042.00

ON

AISI1017

Nickelplated

5to

20µm

Electical

stop

Tooth

APS

APA

GS

V2 4

W2

A N

Appendix 11: Examples of Declared Materials Lists (DMLs) 627

Page 69: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

App

endix11

.A.3

Outerspacecompany

Declaredmateriallist

DOC.NO.:DML/PIT/3466/OSC

Page:151

Issue:

3Date:

10/04/14

Spacecraft:PITCAIRNSA

T1

Group

10adhesive,coatings,varnishes

Subsystem:

Equipment:

Item

Com

mercial

identifi

catio

nChemical

nature

and

type

ofproductfor

Appl.condition

Procurem

ent

inform

ation

supplies

specificatio

n

Summaryof

processing

parameters

Use

andlocatio

ncode

ENVIR.

Code

Size

Approval

Customers

comments

andapproval

Use

Code

RA

TStatus

C

10.014.03

MOM

EPO

-TEK

H74

EPO

XresinA/B

twocomponent

electric.conductiv

e

Epoxy

technol.

CDP9.39

MIX

:100pp/

3pp

CURE:2hat

100°C

CDP7.08

Bonding

loopsand

supportsinto

housing/

bondingferrites

RREPR

IWF

FREPF

CFK

FREPS

DIP

TTCSB

DN

GS

V3 4

W1

PSU:O

ECS

TTL

NASA

:NASA

RP

1124

A

10.015.03

CAT

REDUX

312L

Epoxy

resinfilm

CIBA

GEIG

Y1+

D-N

-15

1+D-N

-200

CURE:

90min

at120°C

1+D-P-70

Skinsto

core

bonding

LLMKTRA

GS

GL

V1 3

W3

RFA

:RFW

/KANT-01/CAS

ECSS

-Q-ST-70-01

TVS14

W

10.015.04

CAT

REDUX

312U

L+

REDUX

Epoxy

resinfilm

CIBA

GEIG

Y1+

D-N

-15

CURE:

60min

at120°C

1+D-P-70

Skinsto

core

SKDRKANA

STR

GS

GL

V1 3

W2

RFA

RFW

/KANT-01/CAS

ECSS

-Q-ST-70-01

TVS14

WM

10.015.05

ON

REDUX

312L

Epoxy

resinfilm

CIBA

GEIG

YDSN

.0016

Insertplate

LLMCHRM

IOLACHRM

GS

V3

V2

RPT

:LT33

A

10.015.06

CAT

REDUX

312/P1

12Epoxy

adhesive

film

CIBA

GEIG

Y1+

D-N

-15E

1+D-E-159

CURIN

G:

1h/120°C

1+D-P-70

Structural

bondingin

sandwich

manufacturing

IOLACADM

LLMCADM

GS

V3

W3

RPT

:BOTREP.002

PSU:HELIO

S,ISO

ARIA

NE6

TVS14

A N

10.015.07

ON

REDUX

312/5

Epoxy

resinfilm

CIBA

CEIG

YNT16101/AQEN

NT16102/AQEN

Bonding

UPS

GT

GS

E3

V2

RPT

LT33

ECSS

-Q-ST-70-01

TVS14

A

10.015.08

KOF

REDUX

312L

Epoxy

resinfilm

CIBA

CEIG

YTH5.

917/4/5/6

CURE:

90min

at120°C

TH24.3006

Bonding

ofpanels

SAW

GL

V2 4

A4

RPT

ESA

I668

PSU:ARA

IRAS

OLYMPU

SULYSS

ES

TVS14

A N

10.015.09

ON

REDUX312L

/112

Epoxy

resinplus

prim

erfilm

CIBA

CEIG

YDatasheet/G

ENES

0021-1184/1179

CURE:1hat

120°C

Beam

APS

APA

GS

V2 4

W2

RFA

RFW

/GOT-A

PA/01

PSU:EUT

TVS14

W N

628 Appendix 11: Examples of Declared Materials Lists (DMLs)

Page 70: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Glossary

Acicular alpha A product of nucleation and growth frombeta to the lower-temperature allotrope alpha phase. It mayhave a needlelike appearance in a photomicrograph and mayhave needle, lenticular, or flattened bar morphology in threedimensions. Its typical aspect ratio is about 10:1

Activation The changing of a passive surface of a metal to achemically active state. (Contrast with passivation.)

Age hardening Hardening by ageing, usually after rapidcooling or cold working. (See also ageing.)

Ageing A change in the properties of certain metals andalloys that occurs with time at ambient or moderately ele-vated temperatures after working or a heat treatment (naturalor artificial ageing) or after a cold-working operation (strainageing). The change in properties is often, but not always,due to a phase change (precipitation), but it never involves achange in chemical composition of the metal or alloy

Alloy A substance having metallic properties and beingcomposed of two or more chemical elements of which atleast one is a metal

Alpha–beta structure A microstructure containing α and βas the principal phases at a specific temperature

Alpha case The oxygen-, nitrogen-, or carbon-enriched, α-stabilized surface resulting from elevated temperatureexposure

Analysis The determination of the essential qualities, per-formance, and limitations of an item by cognitive or com-putational methods

Anomaly Any deviation from the expected situation

Assurance All the planned and systematic activitiesimplemented, and demonstrated as needed, to provide ade-quate confidence that an entity will fulfil its requirements

Annealing A generic term denoting a treatment, consistingof heating to, and holding at, a suitable temperature followedby cooling at a suitable rate. It is used primarily to softenmetallic materials, but also to simultaneously producedesired changes in other properties or in microstructure. Thepurpose of such changes may be, but is not confined to:improvement of machinability, facilitation of cold work;improvement of mechanical or electrical properties, and/orincrease in stability of dimensions. When the term is usedwithout qualification, full annealing is implied. Whenapplied only for the relief of stress, the process is properlycalled stress relieving or stress-relief annealing

Assembly A functional subdivision of a component, con-sisting of parts or subassemblies that perform functionsnecessary for the operation of the component as a whole.Examples: regulator assembly, power amplifier assembly,gyro assembly, etc

Assurance All the planned and systematic activitiesimplemented, and demonstrated as needed, to provide ade-quate confidence that an entity will fulfil its requirements

Axial lead Lead wire extending from a component ormodule body along its longitudinal axis

AWG American wire gauge

Basketweave Alpha platelets with or without interleaved βplatelets that occur in colonies in a Widmanstätten structure

Batch That quantity of material that was subjected to unitchemical processing or physical mixing, or both, designed toproduce a product of substantially uniform characteristics

Bifurcated (split) terminal A terminal with a slot or splitopening in which conductors are placed before soldering

Billet (1) A solid, semi-finished round or square productthat has been hot-worked by forging, rolling, or extrusion;

The majority of terms have been compiled from documents issued by ESA, IOM, ISO, NASA and TMS.

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

629

Page 71: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

usually smaller than a bloom. (2) A general term for wroughtstarting stock used in making forgings or extrusions

Blister Undesirable rounded elevation of the surface of apolymer, whose boundaries may be more or less sharplydefined

Body-centred cubic lattice structure A unit cell whichconsists of atoms arranged at cube corners with one atom atthe centre of the cube

Brazeability The capacity of a metal to be brazed under thefabrication conditions imposed into a specific suitablydesigned structure and to perform satisfactorily in theintended service

Brazing A group of processes that join solid materialstogether by heating them to a suitable temperature and byusing a filler metal having a liquidus above about 450 °C(840 °F) and below the solidus of the base materials. Thefiller metal is distributed between the closely fitted surfacesof the joint by capillary attraction

Bridging A build-up of solder or conformal coatingbetween parts, components leads, and/or base substrateforming an elevated path (see ‘Fillet’)

Brittle Permitting little or no plastic (permanent) deforma-tion prior to fracture

Brittle fracture Separation of a solid accompanied by littleor no macroscopic plastic deformation. Typically, brittlefracture occurs by rapid crack propagation with lessexpenditure of energy than for ductile fracture

Cable Two or more insulated conductors, solid or stranded,of equal length, contained in a common covering; or two ormore insulated conductors, of equal length, twisted ormoulded together without common covering; or one insu-lated conductor with a metallic covering shield or outerconductor (shielded cable or coaxial cable)

Cast or casting Top fabricate an item by pouring moltenmetal into a shaped cavity and permitting the metal tosolidify. A cast can relate to the item or may be a synonymfor heat, that is an identifiable chemistry lot

Catalyst A substance that changes the rate of a chemicalreaction without undergoing permanent change in its com-position; a substance that markedly speeds up the cure of acompound when added in minor quantity as compared to theamount of primary reactants

Certification The act of verifying and documenting thatpersonnel have completed required training and havedemonstrated specified proficiency and have met otherspecified requirements

Chemical vapour deposition (CVD) The precipitation of ametal from a gaseous compound onto a solid or particulatesubstrate

Coarse grains Grains larger than normal for the particularwrought metal or alloy or of a size that produces a surfaceroughening known as orange peel or alligator skin inwrought alloys

Cold flow Movement of insulation (e.g. Teflon) caused bypressure

Cold solder connection A solder connection exhibitingpoor wetting and a greyish, porous appearance due toinsufficient heat, inadequate cleaning before to soldering, orexcessive impurities in the solder

Cold working Deforming metal plastically under condi-tions of temperature and strain rate that induce strain hard-ening. Usually, but not necessarily, conducted at roomtemperature. (Contrast with hot working.)

Cold-worked structure A microstructure resulting fromplastic deformation of a metal or alloy below its recrystal-lization temperature

Colophony A natural resin obtained as the residue afterremoval of turpentine from the oleoresin of the pine tree,consisting mainly of abietic acid and related resin acids, theremainder being resin acid esters

Component A functional subdivision of a system, generallya self-contained combination of assemblies performing afunction necessary for the system’s operation. Examples:power supply, transmitter, gyro package, etc

Conductor A lead, solid or stranded, or printed wiring pathserving as an electrical connection

Configuration Functional and physical characteristics of aproduct as defined in technical documents and achieved inthe product (ISO 10007:1995)

Conformal coating A thin electrically nonconductive pro-tective coating that conforms to the configuration of thecovered assembly

Contact angle The angle enclosed between half-planes,tangent to a liquid surface and a solid–liquid interface at theirintersection. In particular, the contact angle of liquid solder incontact with a solid metal surface. An approximate value forthis may be determined by shadow projection or other means,by measuring after the solder has solidified. Note that thecontact angle is always the angle inside the liquid

Contaminant An impurity or foreign substance present in amaterial that affects one or more properties of the material.

630 Glossary

Page 72: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

A contaminant may be either ionic or nonionic. An ionic, orpolar, compound forms free ions when dissolved in water,making the water a more conductive path. A nonionic sub-stance does not form free ions, nor increases the water’sconductivity. Ionic contaminants are usually processingresidue such as flux activators, finger prints, and etching orplating salts

Contractor Supplier in a contractual situation (ISO8402:1994)

Corrective action Action taken to eliminate the causes ofan existing nonconformity, defect, or other undesirable sit-uation in order to prevent recurrence (ISO 8402: 1994)

Corrosion The deterioration of a metal by a chemical orelectrochemical reaction with its environment

Corrosion fatigue Cracking produced by the combinedaction of repeated or fluctuating stress and a corrosiveenvironment at lower stress levels or fewer cycles thanwould be required in the absence of a corrosive environment

Creep Time-dependent strain occurring under stress. Thecreep strain occurring at a diminishing rate is called primary,or transient, creep; that occurring at a minimum and almostconstant rate, secondary, or steady-rate creep; that occurringat an accelerating rate, tertiary creep

Crevice corrosion A type of concentration cell corrosion;corrosion caused by the concentration or depletion of dis-solved salts, metal ions, oxygen, or other gases, and such, increvices or pockets remote from the principal fluid stream,with a resultant building up of differential cells that ulti-mately cause deep pitting. Localized corrosion of a metalsurface at, or immediately adjacent to, an area that is shiel-ded from full exposure to the environment because of closeproximity between the metal and the surface of anothermaterial

Critical item Any item that introduces risk which could beunacceptable to the project and requires specific attention orcontrol in addition to that given to items not so categorized

Cure A chemical reaction that hardens and changes thephysical properties of a material

Deformation A change in the form of a body due to stress,thermal change, change in moisture, or other causes. Mea-sured in units of length

Delamination A separation between plies within a basematerial or any planar separation within a multilayer printedcircuit board (PCB)

Design (1) Set of information which defines the essentialcharacteristics of a product. (2) The process used to generate

the set of information describing the essential characteristicsof a product

Dewetting The condition in a soldered area in which theliquid solder has not adhered intimately, but has receded,characterized by an abrupt boundary between solder andconductor, or solder and terminal/termination area leavingirregularly shaped mounds of solder separated by areascovered with a thin-solder film

Diffusion welding (DFW) A high-temperature, solid-statewelding process that permanently joins faying surfaces bythe simultaneous application of pressure and heat. The pro-cess does not involve macroscopic deformation, melting, norrelative motion of parts. A solid filler metal (diffusion aid)may or may not be inserted between the faying surfaces

Disturbed solder joint Unsatisfactory connection resultingfrom relative motion between the conductor and terminationduring solidification of the solder

Dross Oxide and other contaminants that form on the sur-face of molten solder

Ductility The ability of a material to deform plasticallybefore fracturing. Measured by elongation or reduction ofarea in a tension test, by height of cupping in a cupping test,or by the radius or angle of bend in a bend test. (Contrastwith brittleness; see also plastic deformation.)

Electron beam welding (EBW) A welding process whichproduces coalescence of metals with the heat obtained froma concentrated beam composed primarily of high-velocityelectrons impinging upon the surfaces to be joined

Elongated grain A grain with one principal axis signifi-cantly longer than either of the other two

Elongation A term used in mechanical testing to describethe amount of extension of a test-piece when stressed. Intensile testing, the increase in the gauge length, measuredafter fracture of the specimen within the gauge length, usuallyexpressed as a percentage of the original gauge length

Embrittlement The severe loss of ductility and/or tough-ness of a material, usually a metal or alloy

Encapsulating compound An electrically nonconductivecompound used to completely enclose and fill in voidsbetween electrical components or parts

Environment Conditions in which an item exists or isoperated

Equiaxed structure A polygonal or spheroidalmicrostructural feature having approximately equal dimen-sions in all directions. In alpha–beta titanium alloys, such a

Glossary 631

Page 73: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

term commonly refers to a microstructure in which most ofthe minority phase appears spheroidal

Equilibrium A dynamic condition of physical, chemical,mechanical, or atomic balance, where the condition appearsto be one of rest rather than change

Equipment An item designed and built to accomplish aspecified purpose, which can be disassembled and retain itscapabilities after reassembly

Eutectic alloy An alloy of two or more metals that has onedistinct melting point. Eutectic solder is a tin–lead alloycontaining 63 %Sn and 37 %Pb which melts at 183 °C

Excessive solder joint Unsatisfactory solder connectionwherein the solder obscures the configuration of theconnection

Face-centred cubic lattice structure A unit cell whichconsists of atoms arranged at cube corners with one atom atthe centre of each cube face

Failure The termination of the ability of an item to performa required function

Fatigue The phenomenon leading to fracture under repeatedor fluctuating stresses having a maximum value less than thetensile strength of the material. Fatigue fractures are pro-gressive, beginning as minute cracks that grow under theaction of the fluctuating stress

Fatigue failure Failure that occurs when a specimenundergoing fatigue completely fractures into two parts, orhas softened, or been otherwise significantly reduced instiffness by thermal heating or cracking. Fatigue failuregenerally occurs at loads which, if applied statically, wouldproduce little perceptible effect. Fatigue failures are pro-gressive, beginning as minute cracks that grow under theaction of the fluctuating stress

Fault mode The observable effect of the mechanismthrough which the failure occurs, e.g. short, open, fracture,excessive wear

Fillet A smooth concave build-up of material between twosurfaces, e.g. a fillet of solder between a component lead anda solder pad or terminal, or a fillet of conformal coatingmaterial between a component and printed circuit board(PCB)

Filler metal The metal to be added in making a welding,brazed, or soldered joint

Flake Powder of an essentially two-dimensional nature

Flatpack A part with two straight rows of leads that areparallel to the part body

Flux A chemically active compound which, when heated,removes minor surface oxidation

Foil Among many definitions is: a flat-rolled product0.127 mm (0.005 in.), or less, in thickness, regardless ofwidth. (Any flat-rolled product thicker than this dimension isnot considered foil.) Only thickness, not width, is a factor indetermining foil

Forging (1) Plastically deforming metal, usually hot, intodesired shapes with compressive force, with or without dies.(2) Reshaping a billet or ingot by hammering. (3) The processof placing a powder in a container, removing the air from thecontainer, and sealing it. This is followed by conventionalforging of the powder and container to the desired shape

Fracture (1) The irregular surface produced when a pieceof metal is broken. (2) To separate a metal or alloy into twoor more pieces by an applied load

Friction welding A solid-state process in which materialsare welded by the heat obtained from rubbing together sur-faces that are held against each other under pressure

Glass meniscus The glass fillet of a lead seal which occurswhere an external lead leaves the package body

Grounding The connection of two or more areas to thesame potential difference. The space environment can resultin high potential voltage and destructive arcing, most sub-systems are grounded to the structure, but the grounding ofelectronic units is complex and can use a ‘floating ground’concept

Ground segment The hardware and software required tolaunch and control a space vehicle, usually the launcher

Hardness A measure of the resistance of a material tosurface indentation or abrasion; may be thought of as afunction of the stress required to produce some specifiedtype of surface deformation. There is no absolute scale forhardness; therefore, to express hardness quantitatively, eachtype of test has its own scale of arbitrarily defined hardness.Indentation hardness may be measured by Brinell, Knoop,Rockwell, Scleroscope, and Vickers hardness tests

HAZ See heat-affected zone

Heat-affected zone That portion of the base metal whichhas not been melted, but whose mechanical properties ormicrostructure have been altered by the heat of welding,brazing, soldering, or cutting

Heat treatment Heating and cooling a solid metal or alloyin such a way as to obtain desired conditions or properties.Heating for the sole purpose of hot working is excluded fromthe meaning of this definition

632 Glossary

Page 74: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Hermetic seal A seal which protects an enclosed circuitfrom corrosion by preventing the entry of such contaminantsas water vapour

HIP See hot isostatic pressing

Hot isostatic pressing (1) A process for simultaneouslyheating and forming a powder metallurgy compact in whichmetal powder, contained in a sealed flexible mould, is sub-jected to equal pressure from all directions at a temperaturehigh enough for sintering to take place. (2) A process similarto the one explained in (1), but applied to castings in order toclose internal porosity

Hot working Deforming metal plastically at such a tem-perature and strain rate that recrystallization takes placesimultaneously with the deformation, thus avoiding anystrain hardening

HV See Vickers hardness number

Hydride phase For instance, the phase TiHx formed intitanium when the hydrogen content exceeds the solubilitylimit, generally locally due to some special circumstance

Hydrogen embrittlement A condition of low ductility inmetals resulting from the absorption of hydrogen

Immersion cleaning Cleaning where the work is immersedin a liquid solution. Impurities, Undesirable elements orcompounds in a material

Inclusion A particle of foreign material in a metallic matrix.The particle is usually a compound (such as an oxide, sul-phide, or silicate), but may be of any substance that is for-eign to (and essentially insoluble in) the matrix

Ingot A casting of simple shape, suitable for hot working orremelting

Inspection An activity such as measuring, examining,testing, or gauging one or more characteristics of an entityand comparing the results with specified requirements inorder to establish whether conformity is achieved for eachcharacteristic (ISO 8402:1994)

Insufficient solder connection A solder connection char-acterized by incomplete coverage of one or more of themetal surfaces being joined or by incomplete solder fillets

Integrated-circuit component An individually packagedfunctional circuit formed by depositing an active or passiveelectronic element on to a substrate

Intermetallic compound A phase in an alloy system hav-ing a restricted solid solubility range. Nearly all are brittleand of stoichiometric composition

Interstitial element An element with a relatively smallatom which can assume a position in the interstices of a

metal, or metal alloy lattice. Common examples are oxygen,nitrogen, hydrogen, and carbon

Interstitial solid solution A type of solid solution thatsometimes forms in alloy systems having two elements ofwidely different atomic sizes. Elements of small atomic size,such as carbon, hydrogen, oxygen, and nitrogen, often dis-solved in solid metals to form this solid solution. The spacelattice is similar to that of the pure metal, and the atoms ofcarbon, hydrogen, oxygen, and nitrogen occupy the spacesor interstices between the metal atoms

Item Anything which can be individually described andconsidered

Lap joint Joining or fusing of two overlapping metal sur-faces with solder without use of any other mechanicalattachment or support

Liquidus In a constitution or equilibrium diagram, the locusof points representing the temperatures at which the variouscompositions in the system begin to freeze on cooling orfinish melting on heating. (See also solidus.)

Longitudinal direction Usually, the direction parallel tothe direction of working in wrought alloys or the direction ofcrystal growth in directionally solidified or single-crystalcast alloys. Commonly, it corresponds to the direction par-allel to the direction of maximum elongation in a workedmaterial. (See also normal direction and transversedirection.)

Machinability The relative ease of machining a metal

Machining Removing material from a metal part, usuallyusing a cutting tool, and usually using a power-drivenmachine

Macrostructure The structure of metals as revealed bymacroscopic examination of a specimen. The examinationmay be carried out using an as-polished or a polished andetched specimen

Martensite (1) The alpha product resulting from coolingfrom the beta phase region at rates too high to permittransformation by nucleation and growth. Martensite is sat-urated with beta stabilizer. Also called martensitic alpha. (2)A generic term for micro-structures formed by diffusionlessphase transformation in which the parent and product phaseshave a specific crystallographic relationship. Martensite ischaracterized by an acicular pattern in the microstructure inferrous and nonferrous alloys. The amount of high-temper-ature phase that transforms to martensite upon coolingdepends to a large extent on the lowest temperature attained,there being a distinct starting temperature (Ms) and a tem-perature at which the transformation is essentially complete(Mf), which is the martensite finish temperature

Glossary 633

Page 75: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Maintainability The ability of an item under given condi-tions of use, to be retained in, or restored to, a state in whichit can perform a required function, when maintenance isperformed under given conditions and using stated proce-dures and resources (IEC 50:1992)

Material A raw or semi-finished substance or compound, ofspecified characteristics, which is processed to form a part ofa finished product

Matrix The constituent which forms the continuous ordominant phase of a two-phase microstructure

Measling/measles A condition existing in the base laminateof printed-circuit board in the form of discrete white spots or‘crosses’ below the surface of the base laminate, reflecting aseparation of fibres in the glass cloth at the weave intersec-tion. During soldering, may be caused by excessive heat,mechanical stresses, or chemical attack

Mechanical part A piece of hardware which is not elec-trical, electronic, or electromechanical, and which performsa simple (elementary) function or part of a function in such away that it can be evaluated as a whole against expectedperformance requirements and cannot be disassembledwithout destroying this capability

Mechanical properties The properties of a material thatreveal its elastic and inelastic (plastic) behaviour when forceis applied, thereby indicating its suitability for mechanical(load-bearing) applications. Examples are elongation, fatiguelimit, hardness, modulus of elasticity, tensile strength, andyield strength

Melting point The temperature at which a pure metal,compound, or eutectic changes from solid to liquid; thetemperature at which the liquid and the solid are inequilibrium

Mission The specific task, duty, or function defined to beaccomplished by a system

Modulus of elasticity A measure of rigidity or stiffness of ametal; the ratio of stress, below the proportional limit, to thecorresponding strain

Nonconformance Nonfulfilment of a specified requirement(ISO 8402:1994—definition of Nonconformity)

Nonwetting A condition whereby a surface has contactedmolten solder, but the solder has not adhered to all of thesurface; basis metal remains exposed

ODS Oxide dispersion strengthening

Outgassing The release of volatile parts from a substancewhen placed in a vacuum environment

Overageing Ageing under conditions of time and temper-ature greater than those required to obtain maximum changein a certain property. (See ageing.)

Overheated joint An unsatisfactory solder joint, charac-terized by rough solder surface; dull, chalky, grainy, porousor pitted

Oxidation (1) A reaction in which there is an increase invalence resulting from a loss of electrons. (Contrast withreduction.) (2) A corrosion reaction in which the corrodedmetal forms an oxide; usually applied to reaction with a gascontaining elemental oxygen, such as air

Part An element of a component, assembly, or subassemblythat is not normally subjected to further subdivision or dis-assembly without destruction of designed use

Passivation The changing of a chemically active surface ofa metal to a much less reactive state

Performance Those generally quantified aspects of an itemobserved or measured from its operation or function

Pickling Removal of the oxide film on a casting by achemical process; pickling is sometimes used solely to showup defects

Physical properties Properties of a metal or alloy that arerelatively insensitive to structure and can bemeasuredwithoutthe application of force; for example, density, electrical con-ductivity, coefficient of thermal expansion, magnetic perme-ability, heat capacity, and lattice parameter. Does not includechemical reactivity. (Compare with mechanical properties.)

Plastic deformation The permanent (inelastic) distortion ofmetals under applied stresses

Plate A flat-rolled metal product of some minimum thick-ness and width—at times less than 610 mm (24 in). (It isrelatively thick when compared with sheet.)

Plated-through hole A plated-through hole is one formedby a deposition of metal on the inside surface of a throughhole. Also known as a supported hole. The configuration isused to provide additional mechanical strength to the sol-dered termination or to provide an electrical interconnectionon a multilayer PCB

Potting compound An electrically nonconductive com-pound used to partially encapsulate or for a filler betweenparts, conductors, or assemblies

ppm Parts per million

Precipitation (1) Separation of a new phase from solid orliquid solution, usually with changing conditions of time,temperature, and stress. (2) The removing of a metal from a

634 Glossary

Page 76: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

solution caused by the addition of a reagent by displacement.(3) The removal of a metal from a gas by displacement

Precipitation hardening Hardening caused by the precip-itation of a constituent from a supersaturated solid solution

Preform An initially pressed compact to be subjected torepressing or forging

Preheat An early stage in the sintering procedure when, in acontinuous furnace, lubricant or binder burnoff occurswithout atmosphere protection prior to actual sintering in theprotective atmosphere of the high heat chamber

Pressure vessel A container which stores pressurized fluidsand: (a) contains stored energy of 19,310 joules or greater,based on the adiabatic expansion of a perfect gas; or (b)contains a gas or liquid which may result in a hazardousevent if released (c) will experience a design limit pressuregreater than 0.69 MPa.

Printed circuit board (PCB) A product resulting from theprocess of selectively etching unwanted copper from one orboth surfaces of a copper-clad insulating substrate to form adesired circuity pattern which is subsequently solder- orgold-plated. Holes may, or may not, be drilled in the board,depending on the intended technique for attachingcomponents

Procedure Specified way to perform an activity

Process Set of interrelated resources and activities whichtransform inputs into outputs

Product The result of activities or processes and mayinclude service, hardware, processed materials, software, ora combination thereof

Product assurance A discipline devoted to the study,planning, and implementation of activities intended toensure that the design, controls, methods, and techniques ina project result in a satisfactory level of quality in a product

Project A unique set of coordinated activities, with definitestarting and finishing points, undertaken by an individual ororganization to meet specific objectives within definedschedule, cost, and performance parameters (BS 6079)

Qualification The process of determining that the product, asdesigned, is capable of meeting all its specified performancerequirements in its operational environment with marginsappropriate for the technologies used and the intendedapplication

Quality The totality of characteristics of an entity that bearon its ability to satisfy stated and implied needs

Quality assurance All the planned and systematic activitiesimplemented within the quality system and demonstrated asneeded, to provide adequate confidence that an entity willfulfil requirements for quality

Quality control Operational techniques and activities thatare used to fulfil requirements for quality

Quenching Rapid cooling. When applicable, the fol-lowing more specific terms should be used: directquenching, fog quenching, hot quenching, interruptedquenching, selective quenching, spray quenching, andtime quenching

Ram direction he side that points in the direction of thespacecraft’s motion. In low earth orbit, it is the sideimpacting/ramming into the rarefied atmosphere that con-tains reactive atomic oxygen (AO, or ATOX)

Recrystallization (1) Formation of new, strain-free grainstructure from the structure existing in cold-worked metal.(2) A change from one crystal structure to another, such asthat occurring upon heating or cooling through criticaltemperature

Reducing atmosphere A chemically active protectiveatmosphere which at elevated temperature will reduce metaloxides to their metallic state. (Reducing atmosphere is arelative term and such an atmosphere may be reducing toone oxide but not to another oxide.)

Reduction in area (1) Commonly, the difference, expressedas a percentage of original area, between the original cross-sectional area of a tensile test specimen and the minimumcross-sectional area measured after complete separation. (2)The difference, expressed as a percentage of original area,between original cross-sectional area and that after strainingthe specimen

Reliability The probability that an item can perform arequired function under given conditions for a given timeinterval

Rem Remainder

Repair Operations performed on a nonconforming article toplace it in usable condition. Repair is distinguished fromrework in that alternate processes rather reprocessing areemployed

Residual stress Stress remaining in a structure or memberas a result of thermal or mechanical treatment or both.Stress arises in fusion welding primarily because the weldmetal contracts on cooling from the solidus to roomtemperature

Glossary 635

Page 77: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Resistance brazing Brazing by resistance heating, the jointbeing part of the electrical circuit

Rework The reprocessing of an article or material that willmake it conform to drawings, specifications, and contract

Risk A quantitative measure of the magnitude of a potentialloss and the probability of incurring that loss

Safety A state in which the risk of harm (to persons) ordamage is limited to an acceptable level

Scaling (1) Forming a thick layer of oxidation products onmetals at high temperature. (2) Depositing water-insolubleconstituents on a metal surface, as in cooling tubes and waterboilers

SCC Stress-corrosion cracking

Sheet A flat-rolled metal product of some maximumthickness and minimum width arbitrarily dependent on thetype of metal. It is thinner than plate and has a width-to-thickness ratio greater than about 50

Shield A metallic sheath surrounding one or more wires,cables, cable assemblies, or a combination of wires andcables that is used to prevent or reduce the transmission ofelectromagnetic energy to or from the enclosed conductors.The shield also includes an insulating jacket that may coverthe metallic sheath

Solder A nonferrous, fusible metallic alloy used to joinmetallic surfaces

Solderability The property of a surface that allows it to bewetted by a molten solder

Solder connection An electrical/mechanical connectionthat employs solder for the joining of two or more metalsurfaces

Solder mask Coating material used to mask or protectselected areas of a pattern from the action of an etchant,solder, or plating

Solder spike A cone-shaped peak or sharp point of solderusually formed by the premature cooling and solidificationof solder on removal of the heat source

Solidification The change in state from liquid to solid oncooling through the melting temperature or melting range

Solid solution A solid crystalline phase containing two ormore chemical species in concentrations that may varybetween limits imposed by phase equilibrium

Solid solution strengthening A mechanism for strength-ening the alloy by dissolved elements in solid solution

Solidus In a constitution or equilibrium diagram, the locusof points representing the temperatures at which various

compositions finish freezing on cooling or begin to melt onheating. (See also liquidus.)

Solution heat treatment A heat treatment in which an alloyis heated to a suitable temperature, held at that temperaturelong enough to cause one or more constituents to enter intosolid solution, then cooled rapidly enough to hold theseconstituents in solution

Specification Document stating requirements

Spot welding Welding of lapped parts in which fusion isconfined to a relatively small circular area. It is generallyresistance welding, but may also be gas tungsten-arc, gasmetal-arc, or submerged-arc welding

Stress The intensity of the internally distributed forces orcomponents of forces that resist a change in the volume orshape of a material that is or has been subjected to externalforces. Stress is expressed in force per unit area and is cal-culated on the basis of the original dimensions of the cross-section of the specimen. Stress can be either direct (tensionor compression) or shear. Usually expressed in megapascals(MPa)

Stress-corrosion cracking Failure of metals by crackingunder combined action of corrosion and stress, residual orapplied. In brazing, the term applies to the cracking ofstressed base metal due to the presence of a liquid filler metal

Stress relief Related to electronic assemblies: the formedportion of a conductor that provides sufficient length tominimize stress between terminations

Stress-relief heat treatment Uniform heating of a structureor a portion thereof to a sufficient temperature to relieve themajor portion of the residual stresses, followed by uniformcooling

Stress relieving Heating to a suitable temperature, holdinglong enough to reduce residual stress, and then cooling slowlyenough to minimize the development of new residual stresses

Striation A fatigue fracture feature often observed in elec-tron micrographs that indicates the position of the crack frontafter each succeeding cycle of stress. The distance betweenstriations indicates the advance of the crack front across thatcrystal during one stress cycle, and a line normal to thestriation indicates the direction of local crack propagation

Substrate The layer of metal underlying a coating,regardless of whether the layer is base metal

Subsystem Set of interdependent elements constituted toachieve a given objective by performing a specified function,but which does not, on its own, satisfy the customer’s need

Supplier An organization that provides a product to thecustomer

636 Glossary

Page 78: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Surface hardening A generic term covering several pro-cesses applicable to a suitable ferrous alloy that produces, byquench hardening only, a surface layer that is harder or morewear resistant than the core

Surface mounting The electrical connection of componentsto the surface of a conductive pattern that does not utilizepart holes

Technology Readiness Level (TRL) Levels 1–9 used todefine the maturity of a technical concept, from basic prin-ciple to mission proven

Temper In nonferrous alloys the hardness and strengthproduced by mechanical or thermal treatment, or both, andcharacterized by a certain structure, mechanical properties,or reduction in area during cold working

Tensile strength In tensile testing, the ratio of maximumload to original cross-sectional area. Also called ultimatestrength

Test A formal process of exercising or putting to trial asystem or item by manual or automatic means to identifydifferences between specified, expected, and actual results

Thermal shunt A device with good heat-dissipation char-acteristics used to conduct heat away from an article beingsoldered

Tinning The coating of a surface with a uniform layer ofsolder

Traceability Ability to trace the history, application, orlocation of an entity by means of recorded identifications

Transverse direction Literally ‘across’. Usually signifyinga direction or plane perpendicular to the direction of work-ing. In rolled plate or sheet, the direction across the width isoften called long transverse, and the direction through thethickness, short transverse

Ultimate strength The maximum stress (tensile, compres-sive, or shear) a material can sustain without fracture,determined by dividing maximum load by the original cross-sectional area of the specimen. Also known as nominalstrength or maximum strength

Unaided eye Normal Snellen 20/20 vision, including eyeglasses required to correct defective vision to 20/20 equiv-alent. Does not include microscopes, eye loupes, or anyother magnifying device

Vacuum melting Melting in a vacuum to prevent contam-ination from air, as well as to remove gases already dis-solved in the metal; the solidification may also be carried outin a vacuum or at low pressure

Verification Confirmation by examination and provision ofobjective evidence that specified requirements have beenfulfilled

Vickers hardness number (HV) A number related to theapplied load and the surface area of the permanent impres-sion made by a square-based pyramidal diamond indenterhaving included face angles of 136°

Viscosity A measure of the resistance of a fluid to flow

Waiver Written authorization to use or release a productwhich does not conform to the specified requirements

Wake The side opposite to the Ram side of a spacecraft. Itfaces away from the spacecraft’s motion

Wave soldering A process wherein printed circuit boardsare brought in contact with the surface of continuouslyflowing and circulating solder

Weave exposure A surface condition of a printed-circuit-board laminate in which the unbroken woven-glass cloth isnot uniformly covered by resin

Weldability A specific or relative measure of the ability ofa material to be welded under a given set of conditions.Implicit in this definition is the ability of the completedweldment to fulfil all service designed into the part

Wetting Flow and adhesion of a liquid to a solid surface,characterized by smooth, even edges, and a low dihedralangle

Wicking A flow of molten solder or cleaning solution bycapillary action. Occurs when joining stranded wire; solderis drawn within the strands, but may not be visible on outersurface of strands. Wicking may also occur within the stress-relief bend of a component lead

Widmanstätten structure A structure characterized by ageometrical pattern resulting from the formation of a newphase along certain crystallographic planes of the parentsolid solution. The orientation of the lattice in the newphase is related crystallographically to the orientation ofthe lattice in the parent phase. The structure was origi-nally observed in meteorites, but is readily produced inmany alloys, such as titanium, by appropriate heattreatment

Wire A thin, flexible, continuous length of metal, usually ofcircular cross-section, and usually produced by drawingthrough a die

Workmanship The physical characteristics relating to thelevel of quality introduced by the manufacturing andassembly activities

Glossary 637

Page 79: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Wrought A metal or alloy which has been deformed plas-tically one or more times and which exhibits little or noevidence of cast structure

Yield point The first stress in a material, usually less thanthe maximum attainable stress, at which an increase in strainoccurs without an increase in stress. Only certain metals

exhibit a yield point. If there is a decrease in stress afteryielding, a distinction may be made between upper andlower yield points

Yield strength The stress at which a material exhibits aspecified deviation from proportionality of stress and strain.An offset of 0.2 % is used for many metals

638 Glossary

Page 80: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

References

Adams, D. M. (1994). Failure investigation into HST solar array driveelectronics. ESTEC Metallurgy Report No. 2038 (confidential).

Adile, E., & Dunn, B. D. (1999). Effecto della geometria del raccordodi lega saldante sul comportamento a fatica meccanica di saldaturedi component elettronici a montaggio superficiale. Rivista Italianadella Saldatura,4, 401–412.

Adler, I. (1988). The analysis of extraterrestrial materials. In Chemicalanalysis (Vol. 81). New York: Wiley.

Akinade, K., et al. (1995). Lead-free solder pastes evaluation. Solderingand SMT Journal,20, 50–53.

Allen, J. S., & Jubb, J. E. M. (1991). Dispute resolution—Theincreasing role of the expert. Welding and Metal FabricationJournal, 81–84.

Ambat, R., et al. (2009). Solder flux residues and electrochemicalmigration failures of electronic devices. In Proceedings of Eurocorr2009 (pp. 1–14), paper 8141, Nice, France, September 2009.

AMS 4942C. (1984). Titanium tubing, seamless. Society of Automo-tive Engineers.

AMS International. (1991). Practical applications of residual stresstechnology. In Conference Proceedings, Indianapolis, USA, May15–17.

Anderson, P., & Wiktorowicz, R. (1995). Ozone emissions during arcwelding. Welding and Metal Fabrication Journal, 385–388.

Anderson, M. J., et al. (1995). A post-flight tribological assessment ofthe Hubble Space Telescope solar array mechanism. In Proceedingsof the 6th European Space Mechanisms and Tribology Symposium(pp. 203–210). Zurich, October 4–6 (ESA SP-304).

Anon. (1981). Keys to improved brazing technology. IndustrialHeating Journal, 31.

Anon. (1994). EURECA, the European retrievable carrier, ESA WPP-069.

Anon. (1995). Feasibility study of power generation system with shapememory alloys. New Energy Development Organisation, Tokyo,NEDO-P-9324 (in Japanese).

Anon. (2011). Easy lead—Industry and innovations. Materials World:4–5.

ANS (American National Standard). (1996). Requirements for solderedelectrical and electronic assemblies, J-STD-001B.

Anthony, P. L., & Brown, O. M. (1965). Red plague corrosion.Materials Protection,4(3), 8–18.

Arblaster, J. W. (1996). Thermodynamic properties of the platinummetals. Platinum Metals Review,40, 62–63.

Ashworth, M., & Dunn, B. D. (2015). An investigation into tin whiskergrowth over a 32-year period (to be published).

Asma, C. O., et al. (2010). Infrared thermography measurements onablative thermal protection systems for interplanetary spacevehicles, QIRT Symposium, paper 007, Quebec, Canada, July 27–30.

ASTM D3359. (2010). Standard test methods for measuring adhesionby tape test.

ASTM E595. (2007). Standard test method for total mass loss andCVCM from outgassing in a vacuum environment.

ASTM E835-94A. (1994). Standard method for determining residualstresses by the hole-drilling strain gage method.

ASTM E2089. (2014). Standard practices for ground laboratory atomicoxygen interaction evaluation of materials for space applications.

Athimoolam, M., & Moorthy, T. V. (2012). Polymer nanocompositematerials and shape memory applications—A review. ProcediaEngineering,38, 3399–3408.

Autumn, K., et al. (2000). Adhesive force of a single gecko foot-hair.Nature,405, 681–685.

Babel, H. W., et al. (1994). Understanding and controlling thedegradation of silicone on exposed spacecraft surfaces. In Proceed-ings of the 6th International Symposium on Materials in SpaceEnvironment, ESTEC (pp. 19–26). ESA SP-368.

Bacquias, G. (1982). La formation des ‘whiskers’ en bain d’etain acidebrillant sur un support en maillechort. Oberfläche-Surface,23,194–196.

Ballinger, I. A., & Sims, D. (2003). Development of an EPDMelastomeric material for use in hydrazine propulsion systems. In39th AIAA Propulsion Conference, Huntsville, AL, July 21. AIAA2003-4611.

Banks, B. (2003). Atomic oxygen effects on spacecraft materials,NASA TM-2003-212484.

Banks, D. R., et al. (1990). Sn–Pb–In solder corrosion with watersoluble flux. In ASM 3rd International Electronic Materials andProcessing Conference (pp. 359–364). San Francisco, CA, August20–23.

Banks, S. (1995). Reflow soldering to gold. In Electronic packagingand production (pp. 69–72).

Barber, A. H., Lu, D., & Pugno, N. M. (2015). Extreme strengthobserved in limpet teeth. Journal of the Royal Society Interface,12,20141326.

Barbier, P., & Le Floch, C. (1985). Holography—The NDT ofcomposite structures. In Proceedings of the Third EuropeanSymposium on Spacecraft Materials in Space Environment,Noordwijk, ESA SP-232 (pp. 161–165).

Barbier, C., et al. (1992). ATOX—The ESTEC atomic oxygensimulation facility. Preparing for the Future,2(2), 12–14.

Baumgartner, R. I., & Elvin, J. D. (1995) Lifting body—An innovativeconcept (pp. 95–3531). AIAA publication.

Beal, J. D., et al. (2006). Forming of titanium and titanium alloys (Vol.14B, pp. 656–669). ASM Handbook.

Bergendahl, C. G., & Dunn, B. D. (1984). Evaluation of test equipmentfor the detection of contamination on electronic circuits. ESA STM-234.

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

639

Page 81: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Bernard, D. (2007). A practical guide to X-ray inspection criteria andcommon defect analysis. Nordson-Dage Publication.

Bernard, D., & Blish, R. C. (2005). Considerations for minimizingradiation doses to components during X-ray inspection. In Pro-ceedings ofthe 7th Electronic Packaging Technology Conference(EPIC), Singapore, December 7–9.

Bernard, D., & Golubovic, D. (2012). 3D board level X-ray inspectionvia limited angle computer tomography. In SMTA InternationalConference, Orlando, FL, USA, October 14–28.

Berthoud, L. (1994). Micro-impacts on Eureca solar panels. In 6thInternational Symposium on Materials in a Space Environment,Noordwijk, 239–248 (ESA SP 368).

Bester, M. H. (1968). Metallurgical aspects of soldering to gold.Internepcon (pp. 211–231).

Beurs, J., et al. (1987). TEM-in situ deformation of beryllium singlecrystals. Acta Metallurgical,35(9), 2277–2289.

Billot, M., et al. (1982). Ensuring solderability in electronic compo-nents for space applications. Tin and Its Uses,131, 1–3.

Black, J. R. (1969). Electromigration failure modes. Proceedings of theIEEE,57, 1587–1594.

Blackman, B. R. K., et al. (2012). The fracture behaviour of adhesively-bonded composite joints: Effects of rate of test and mode of loading.International Journal of Solids and Structures,49(13), 1434–1452.

Blawert, C., & Srinivasan, P. B. (2010). Plasma electrolytic oxidationtreatment of magnesium alloys. In H. Dong (Ed.), Surface Engi-neering of Light Alloys. Cambridge, UK: Woodhead Publishing Ltd.

Blech, I. A., et al. (1975). Whisker growth in aluminium thin films.Journal of Crystal Growth,32, 161–169.

Borom, M. C., & Pask, J. A. (1966). Role of adherence oxides in thedevelopment of chemical bonding in glass seals. Journal of theAmerican Ceramic Society,49, 1.

Bosma, S. J., et al. (1978). Evaluation of grounding systems. ESA STM204, ESA STM 212 and ESA STM 213.

Bosma, J. (2009). Powerhouse for Quality. ESA Bulletin, May 3–11.Bouilly, J.-M., et al. (2006). Ablative TPS for entry in Mars

atmosphere. In 4th International Planetary Probe Workshop,Pasadena, CA, USA, June 27–30.

Bouilly, J.-M., et al. (2013). Aerofast: Development of innovativethermal protections. In 7th European Workshop on TPS and HotStructures, Noordwijk, The Netherlands, April 8–10.

Bousfield, B. (1988). A systematic approach to sample preparation.Metals and Materials,4(12), 758–761.

Bousfield, B. (1992). Surface preparation and microscopy of materials.Chichester, UK: Wiley.

Bousfield, B. (1997). The metallography of deformation by materialremoval. Praktische Metallographie,34(1), 2–22.

Boustedt, K., & Hedemalm, P. (1995). The Nordic flip-chip project. InProceedings of the 1995 International Flip Chip, Ball grid, TAB andadvanced packaging Symposium (pp. 294–299), San Jose, Ca., USA.

Boving, H. J., & Hintermann, H. E. (1987). Properties and perfor-mances of chemical-vapour-deposited TiC-coated ball-bearingcomponents. Thin Solid Films,153, 253–266.

Bradley, E. (2007). Lead-free electronics: iNEMI projects lead tosuccessful manufacturing, pub. Hoboken, USA: Wiley.

Brandes, E. A. (1992). Smithells metals reference book (7th ed.).Oxford, UK: Butterworth-Heinemann.

Brewer, D. H. (1970). Solders for thick gold plate. Welding ResearchSup (pp. 465–470).

Briscoe, H. M. (1982). Proceedings of the international symposium onspacecraft materials in space environment (pp. 27–34). ESA SP-178.

Brizuela, M., et al. (2009). Tribolab: An experiment on space tribology,in orbit data at the IIS. In Proceedings of the 13th European SpaceMechanisms and Tribology Symposium (ESMATS 2009). Vienna,Austria, September 23–25.

Brooker, M. J., et al. (2001). Applying FSW to the Ariane 5 main motorthrust frame. ESA SP-468 (pp. 507–511).

Brown, B. F. (1972). Stress-corrosion cracking in high-strength steels,and in titanium and aluminium alloys. U.S: Naval ResearchLaboratory.

Brown, B. F. (1977). Stress corrosion cracking control measures, NBSMonograph 156, Ch. 5 (pp. 35–41).

Bruno, G., Dunn, B. D., et al. (2000). Neutron diffraction measure-ments for the determination of residual stress in Ti6Al4V weldedplates. Material Science Forum,347–349, 674–690.

Bruno, G., & Dunn, B. D. (2004). Surface and bulk residual stress inTi6Al4V welded aerospace tanks. Transactions of the ASME,126,284–292.

Brusciotti, F., et al. (2014). MAGNOLYA: Advanced environmentallyfriendly chemical surface treatments for cast magnesium helicoptertransmission alloys preservation. In Eurocorr 2014, Poster, Pisa,Italy, September 8–12.

Bruzzone, P. (1987). Electrical properties of low MP alloys at 4.2 K.Cryogenics,27, 433–436.

Buckley, D. H. (1981). Surface effects in adhesion, friction, wear andlubrication. Amsterdam: Elsevier.

Buis, A., & Schijve, J. (1992). SCC of Al–Li 2090-T83 in artificialseawater. Corrosion,48(11), 898–909.

Bullettti, A., Dunn, B. D., et al. (2012). Investigation of resistivityvariation of PCB laminates due to aging. IEEE Transactions onComponents, Packaging, and Manufacturing Technology,2, 2001–2012.

Bulwith, R. A. (1986). The rough of grainy solder phenomenon.Printed Circuit Assembly,1(1), 14–23.

Burnette, T., & Koschmeider, T. (2003). Solder joint failure analysis—Dye penetrant technique. Advanced Packaging, 12, 25–27.

Burrell, M. C., & Keane, J. J. (1988). Characterization of copper/enamel interfacial reactions during aging. Surface and InterfaceAnalysis,11, 487–496.

Bushmire, D. W. (1977). Resistance increases in gold aluminiuminterconnects with time and temperature. IEEE Transactions onParts, Hybrids and Packaging,PHP-13(2), 152–156.

Bussu, G. (2009). Stress-corrosion cracking (Ch 12, materials andsafety). In G. E. Musgrave (Ed.), Safety Design for Space Systems.Oxford, UK: Elsevier Ltd.

Bussu, G., & Dunn, B. D. (2002). ESA approach to the prevention ofstress corrosion cracking in spacecraft hardware. In Joint ESA-NASA Space Flight Safety Conference. ESA-Estec, Noordwijk, TheNetherlands.

Buttery, M., et al. (2011). Modern self-lubricating composites for spaceapplications: PGM-HT and Sintimid 15 M. In 14th European SpaceMechanisms and Tribology Symposium (ESMATS 2011). Con-stance, Germany, September 28–30.

Cable, N. (1988). Use of pyrotechnics on spacecraft. ESA Bulletin,54,66–71.

Cahn, R. W., & Haasen, P. (1996). Physical metallurgy. Netherlands:Elsevier Science B.V. (see Chapter 29).

Calle, L. M. (2014). NASA’s corrosion lab at KSC: Anticipating,managing, and preventing corrosion. In International Workshop onEnvironmental and Alternate Energy. Kennedy Space Centre,October 21–24.

Calow, C. A. (1974). Are metal matrix composites viable? Practicalmetallic composites 3. Spring Meeting, Institution of Metallurgists.

Campbell, J. E. (1980). Alloys for structural applications at subzerotemperatures.Metals Handbook (9th ed., Vol. 3, pp. 721–772). ASM.

Capineri, L., Dunn, B. D., et al. (2003). Partial discharge testing ofsolder fillets on PCBs in a partial vacuum: new experimental results.IEEE Transactions on Electronics Packaging Manufacturing,26,294–305.

640 References

Page 82: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Case, R. K., et al. (1984). Beryllium—The lightweight contender.Machine Design, 56, 58–61.

Ceccanti, F., et al. (2010). 3-D printing technology for a Moon outpostexploiting lunar soil. 61st International Astronautical Congress(pp. 1–9). Prague, CZ (IAC-10-D3.3.5).

Chaffin, R. J. (1981). Migration of silver from silver-loaded polyimideadhesive chip bonds. In IEEE Transactions on C.H.M. Technology(Vol. 4, No. 2, pp. 214–216). June.

Chaillot, A., et al. (2014). ENEPIG finish: An alternative solution forprinted circuit boards. In Electronic Materials and ProcessesWorkshop (EMPS-5). Estec, Noordwijk, The Netherlands, May20–24.

Charrier, I., Dunn, B. D., et al. (2003). Moisture pick-up and minimumdrying conditions of epoxy and polyimide-glass printed circuitboards. In Brasage/Soldering, International Conference. Brest,France, October 8–10.

Chelladurai, T., et al. (1995). Acoustic emission response of 18 % Nimaraging steel weldment with inserted cracks of varying depth tothickness ratio. Materials Evaluation,53(6), 742–746.

Chen, Y., et al. (2014). A comprehensive investigation of the galvaniccorrosion induced Ag-Al bond degradation in microelectronicpackaging using argon ion milling, SEM, dual beam FIB-SEM,STEM-EDS and TOF-SIMS. 40th ISTFA, Houston, TX, USA,November 9–13.

Chenard, S. (1990). Space: Dirty and dangerous? Space Markets,5,253–256.

Choi, S. J., et al. (1996). A Nitinol-based solar array deploymentmechanism. In 30th Aerospace Mechanisms Symposium, Hampton,Va. (103–118). NASA Conf. Pub. No. 3328. May.

Chollet, L., et al. (1985). Journal of Mater Energy System,6(4), 293–299.Chudnovsky, B. H. (2002). Degradation of power contacts in industrial

atmospheres: silver corrosion and whiskers. In Proceedings of the48th IEEE Holm Conference on Electrical Contacts, Orlando, USA.

Chuvilin, A., et al. (2014). Using TEM to simulate and understand theformation of defects in graphine. In Microscopy and Analysis,November/December 7–10.

Cleave, J. F., & Morton, J. R. (1989). The effects of impurity levels oflithium on aluminium casting alloys. The Foundryman,82, 549–592.

Clemens, H., & Schretter, P. (1996). Microstructure and properties ofGamma-TiAl based alloys. Practical Metallogarphy Journal,33(1),17–35.

Clements, H., et al. (1996). Intermetallic gamma titanium aluminides—Potential candidates for spacecraft structures. ESA Conference onSpacecraft Structures, Materials and Mechanical Testing, Noord-wijk, March 27–29.

Coelho, A. (2009). Comeback for cork. Materials World, 17, 24.Cohen, A. (1995). Copper and copper alloy wires, cables and

conductors. ASTM Standardization News, 23–27.Cole, L. S., et al. (2004). Some recent trends in corrosion science and

their application to conservation. In Proceedings of Metal (NationalMuseum of Australia, Canberra), October 2–16.

Cole, P. T., & Thomas, N. (1989). Ariane IV Spelda-Flight proving byacoustic emission. In Proceedings of AECM-3 (pp. 144–150). Paris,July 17–21.

Colla, V., et al. (2014). Monitoring concepts for a 3-D printer applied tobuild a human outpost on the Moon. In UKSim-AMSS 16thInternational Conference on Computer Modelling and Simulation(pp. 205–210).

Comiskey, J. M. (1979). Materials that make wire for spacecraft use. InAerospace Corporation,Proceedings of Symposium on Wire Appli-cations in Spacecraft, December.

Cooke, R. W. (2010). Red plague control plan (RPCP), the control ofcuprous/cupric oxide corrosion. http://ntrs.nasa.gov/archive/nasa/-casi.ntrs.nasa.gov/20100009723.pdf.

Coope, T. S., et al. (2014). Repeated self-healing of microvascularcarbon fibre reinforced polymer composites. Smart Materials andStructures, 23(11), 115002.

Corocher, G., et al. (2009). Evaluation of different test techniques toassess the effect of environmental exposure on the assembly ofMCGA packages for printed circuit boards. 11th ISMSE Interna-tional Symposium, Aix-en-Provence, France, September 15–18.

Cornec, L., & Clariou, J.-P. (1994). Carbon–magnesium MMC forlight-weight aerospace structures. In Proceedings of the Interna-tional Symposium on Advanced Materials, ESTEC, Noordwijk(pp. 563–567). ESA WPP-070.

Craig, B. (1994). Lead-free solder: An update. Electronic Production,21–25.

Craven, E. (1993). Solderability—The effect on quality manufacturing.Electronic Production, 33–35.

Damskey, R. G. (1988). A satellite structure—Manager’s look atberyllium. The Beryllium Users’ Symposium,Europe.

Danford, M. D. (1994). The corrosion protection of several aluminiumalloys by chromic acid and sulphuric acid anodizing. NASATechnical Paper 3490.

de Salazar, Gomez, et al. (1988). Diffusion bonding of aluminiumalloys using silver coatings. Practice Metals,25, 532–542.

de Rooij, A. (1985). The degradation of metal surfaces by atomicoxygen. In Proceedings of 3rd European Symposium on SpacecraftMaterials in Space Environment (p. 99). ESA SP-232, October.

de Rooij, A. (1989). Bimetallic compatible couples. ESA Jnl.,13, 199–209.

de Rooij, A. (1989b). An approach to long term prediction of theatomic oxygen effect on materials (to be published).

de Rooij, A. (1995a). Atomic oxygen effects on HST-SA1 metals. InHubble Space Telescope Solar Array Workshop (pp. 341–353),Noordwijk, May.

de Rooij, A. (1995b). Space exposure of HST-SA1 tagboards. HubbleSpace Telescope Solar Array Workshop, ESTEC (pp. 449–462).ESA WPP-77.

de Rooij, A., & Collins, D. C. (1995). SLAM investigations on HST-SA1 solar cell welds. In Hubble Space Telescope Workshop—Results from Post-flight Investigations, ESTEC, Noordwijk, May30–31. ESA WPP-77.

de Rooij, A. (2010). Exposure of silver to atomic oxygen. InEUROCORR 2010, Moscow, Russia, September 13–17.

De Rooij, N., et al. (2009). MEMS for Space. IEEE TransducersConference (pp. 17–24). Denver, CO, USA, June 21–25.

Dauphin, J. (1984). Selection and control of materials for spaceapplications. ESA Journal,8(1), 53.

Dauphin, J. (1986). Space materials in Europe. In Proceedings of theSAMPE Conference (pp. 276–290), Las Vegas.

Dauphin, J. (1987). In J. de Bossu (ed.), Atomic oxygen—A low orbitplague. Looking ahead for materials and processes (pp. 345–367).Amsterdam: Elsevier Science Publishers B.V.

Dauphin, J. (1992). Touchstone for success: The materials andprocesses laboratory, ESA BR-52.

Dauphin, J. (1993). Radiation effects in materials. Radiation Physicsand Chemistry,43, 47–56.

Dauphin, J., Dunn, B. D., Judd, M. D., & Levadou, F. (1991). Materialsfor space application. Metals and Materials, 422–430.

David, L. (1995). Radarsat built to resist debris bumps. Space News.David, L. (1996). Incredible shrinking spacecraft. Aerospace America,

20–24.Davy, J. G., & Skold, R. (1985). Computer-aided solderability testing

for receiving inspection. Circuit World, 34–41.DeBold, T. A., & Kosa, T. (2004). Pasivating stainless stell parts.

NASA Technical Briefs, 51–52.Degisher, H. P., & Simancik, F. (1995). Recyclable foamed aluminium

as an alternative to composites. In H. Warlimont (Ed.),

References 641

Page 83: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Environmental Aspects in Materials Research (pp. 137–140). DGMInformations gesellschaft.

Delahais, M. L. L. (1985). Materials and processes in scientificspacecraft. In Proceedings of the 3rd European Symposium inSpacecraft Materials in Space Environment. ESA SP-232, October5–7.

Deloo, P., et al. (1995). HST Solar Array 1 Dynamic Performance. HSTSolar Array Workshop (pp. 89–100). ESTEC, ESA WPP-77, May30–31.

De Marco, M., et al. (2015a). Introduzione ai modi di frattura edall’analisi fracttografica. Parte 1. Rev. It. Della Saldatura, 1, 95–106.

De Marco, M., et al. (2015b). Introduzione ai modi di frattura edall’analisi fracttografica. Parte 2.Rev. It. Della Saldatura, 2, 229–242.

Dittes, M., et al. (2003). The effect of temperature cycling on tinwhisker formation. In Proceedings of the Electronics PackagingTechnology Conference (pp. 183–188).

Didziulis, S. V. (1994). Detergent cleaning of bearings for spacecraftapplications. In Non-Ozone Depleting Chemical Cleaning andLubrication of Space System Mechanical Components for Multi-Year Operations, EPA Workshop, Denver, Co, September 26–27.

Dohle, G. R., et al. (1996). A new bonding technique for microwavedevices. IEEE Transactions on Components Hybrids and Manu-facturing Technology,19(1), 57–63.

Dorsey, J. T., et al. (2012). An efficient and versatile means forassembling and manufacturing systems in space. In AIAA SpaceConference and Exposition, Pasadena, CA, USA, September 11–13.

Downs, K. S., & Hamstad, M. A. (1995). High sensor density A.E.monitoring of graphite/epoxy pressure vessels. In The AmericanSociety for Nondestructive Testing, Proceedings of AECM-4(pp. 13–22). Sundsvall, July 10–14.

Doyle, D. P., et al. (1963). A rapid method for determining thecorrosivity of the atmosphere at any location. Nature,200(4912),1167–1168.

Doyle, E., & Hubbard, P. (2010). Innovation in nitriding. InternationalHeat Treatment and Surface Engineering,4(1), 33–39.

Dricot, F., et al. (1994). Programme for the evaluation of materials usedin low Earth orbit and manned spacecrafts. In 6th InternationalSymposium on Materials in a Space Environment (pp. 293–297).Noordwijk, (ESA SP-368).

Drolshagen, G. (1994). Eureca meteoroid/debris analysis. In EurecaTechnical Report (pp. 507–512). ESA WPP-069.

Drolshagen, G., et al. (1996). Optical survey of micrometeoroid andspace debris impact features on Eureca. Planetary Space Science,44(4), 317–340.

Drogoul, S. (2005). From the failure to the success—The return toflight of the Ariane 5 ECA launcher. In 56th InternationalAstronautical Congress, Session D2.2, IAC-05-D2.2.08, Fukuoka,Japan.

Dunkerton, S., Dunn, B. D., & Fernie, W. B. (2001). Welding andjoining in a space environment. Revista Italiana della Saldatura,Anno LIII,5, 615–627.

Dunn, B. D. (1973). European team visit TRW Systems to learntechniques for the future. TRW Sentinel (p. 6), November 9.

Dunn, B. D. (1975). The properties of near-eutectic tin/lead solderalloys tested between +70 and −60 °C and the use of such alloys inspacecraft electronics, ESA TM-162, September.

Dunn, B. D. (1977). Metallurgical evaluation of tin–lead finishes onPCBs. Transactions of the Institute of Metal Finishing,55, 86–92.

Dunn, B. D. (1978). Examination of new types of solder-splices. ESATM-210, September.

Dunn, B. D. (1979). The resistance of space quality solder joints tothermal fatigue. Circuit World part 1 5(4), 11–17; part 2 6(1), 16–27.

Dunn, B. D. (1980). The Fusing of tin–lead plating on high qualityprinted circuit boards. Transactions of the Institute of MetalFinishing,58, 26–28.

Dunn, B. D. (1982a). Evaluation of various solar cell-to-interconnectorwelds by means of scanning laser acoustic microscopy andmetallography. ESA STM-225, August.

Dunn, B. D. (1982b). Evaluation of various solar cell to interconnectorwelds by SLAM and metallography. ESA STM-225.

Dunn, B. D. (1984). The corrosion properties of Spacelab structuralalloy aluminium 2219-T851, ESA STR-212.

Dunn, B. D. (1987). A laboratory study of tin whisker growth. ESASTR-223.

Dunn, B. D. (1988). Mechanical and electrical characteristics of tinwhiskers. ESA Journal,11 and 12, 1–17.

Dunn, B. D. (2001). Innovative Materials and Processes. SpaceTechnology Innovation Workshop (pp. 21–134). Copenhagen.ESA WPP-197, September 6–7.

Dunn, B. D. (1993). Metallurgical evaluation of steam aged LCCCdevices following solderability testing. Soldering and SMT,15,26–32.

Dunn, B. D. (2008). Workmanship standards and their application onESA projects. Soldering and SMT Journal,20(4), 37–44.

Dunn, B. D. (2008). ESA-approved skills training schools—Electronicassembly techniques, ESA-STR-258, November.

Dunn, B. D. (2012). Guidelines for a creating a lead-free control plan.ESA STM-281, October.

Dunn, B. D., & Bergendahl, C. G. (1987). An evaluation of the solventextraction method for the detection of ionic contamination onsubstrates supporting large surface mounted devices. Brazing andSoldering Journal, 20–27, 32.

Dunn, B. D., & Chandler, C. (1980). The corrosive effect of solderingfluxes and handling on some electronic materials. WeldingJournal,59, 289–307.

Dunn, B. D., & Collins, D. S. (1978). Materials investigation for afailed spacecraft antenna. ESA Journal,2, 223–235.

Dunn, B. D., & Desplat, P. (1994). Evaluation of conformal coatingsfor future spacecraft applications. ESA SP-1173, August.

Dunn, B. D., & Nicholas, D. (1998). Elemental distribution of parts andmaterials making up an electronic box. Circuit World,24(2), 21–23.

Dunn, B. D., & Mozdzen, G. (2014). Tin oxide coverage on tin whiskersurfaces, measurements and implications for electronic circuits.Soldering and SMT Jnl.,26(3), 139–146.

Dunn, B. D., & Papenburg, H. (1986). Material investigation into thedeactivation of catalyst particles for hydrazine decomposition. InProceedings of the Fifteenth Inernational Symposium on SpaceTechnology and Science, Tokyo.

Dunn, B. D., & Stanyon, R. (1997). An Inspection of SpacelabHardware. ESA STR-241, September.

Dunn, B. D., & Steinz, J. A. (1974). Contamination and heating effectsof a hydrazine thruster intended for use on-board the scientificgeostationary satellite. ESRO (ESA) TM-152, April.

Dunn, B. D., et al. (1983). Evaluation of the temperatures attained byelectronic components during various manual soldering operations.Brazing and Soldering Journal,5, 45–53.

Dunn, B. D., et al. (1984). Corrosion of silver plated copper conductors.ESA Journal,8, 307–335.

Durin, C., et al. (1993). System results from FRECOPA. In 3rd PostRetrieval Conference (pp. 1153–1165). Williamsburg, November8–12, NASA Pub. 3275 part 3.

Dzhanibekov, V. A., et al. (1991). Welding equipment for spaceapplications. In Proceedings of the “Welding in Space and theConstruction of Space Vehicles by Welding”, sponsored byAmerican Welding Society, USA and E O Paton Welding Institute,Ukraine, September 1991.

Ecord. G. M. (1972). Apollo Experience report—Pressure vessels.NASA TN-D-6975, September.

ECSS-Q-ST-70. (2014). Materials, mechanical parts and process—Space product assurance requirements.

642 References

Page 84: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Ehmann, D. (1994). Space structures of high precision. Dornier Post,1,15–17.

Elking, M. J., & Hughes, H. E. (1969). Prevention of stress corrosionfailure in semiconductor leads. Bell Telephone Report in: Physics ofFailure in Electronics, 5, 447–495.

Ellis, B. N. (1996). The correlation between short- and long-term SIRtesting. Circuit World,22(2), 49–50.

Ellis, M. B. D. (1996). Fusion welding of aluminium-lithium alloys.Welding and Metal Fabrication Journal. 55–60.

Ellis, M. B. D., & Gittos, M. F. (1995). Tungsten inert gas weldingof titanium and its alloys. Welding and Metal Fabrication Journal,9–12.

Ely, J. K. (1942). Method of making electrical contact members. U.S.patent 2295338 of 8 September.

Engel, L., & Klingele, H. (1981). An Atlas of Metal Damage. London:Carl Hanser Verlag and Wolfe Publishing Ltd.

Engelmaier, W. (1995). Fatigue life of leadless chip carrier solder jointsduring power cycling. In Solder Joint Reliability Workshop Notes,Engelmaier Associates Inc., Mendham, NJ, USA (see also IEEETransactions Components, Hybrids and Manufacturing Technol-ogy6(3), 232–237, 1983).

Engemann, J. (1996). Chancen und moglichkeiten der plasmatechnolo-gie: eine bestandsaufnahme. Vakuum in Forschung und Praxis,1,25–30.

EPA–US Environmental Protection Agency. (1994). Replacing solventcleaning with aqueous cleaning, EPA-600/R-94-131.

Erdman, N., Campbell, R., & Asahina, S. (2006). Argon beam crosssectioning. Advance Materials and Processes, 33–35.

ECSS-E-ST-32-08. (2013). Space engineering: Materials, draft,December.

ECSS-Q-ST selected ECSS standards related to materials and processescan be seen listed in Appendix 9.

ESA PSS-01-401. (1994). EAS fracture control requirements.ESA PSS-01-701. (1994). Data for selection of space materials. Issue 1,

rev. 3.ESA PSS-01-703 A method for black anodising aluminium with

inorganic dyes.ESA PSS-01-708. The manual soldering of high-reliability electronics.ESA PSS-01-721. Application and testing of Cuvertin 306, a black

paint for space use.ESA PSS-01-730. (1981). The wire-wrapping of high-reliability

electrical connections.ESA PSS-01-736. (1981). Material selection for controlling stress-

corrosion cracking of ESA spacecraft and associated equipment, May.ESA PSS-01-737. (1982). Test method for determination of the stress-

corrosion susceptibility of spacecraft structural alloys.ESA PSS-01-738 (Issue 1). (1991). High-reliability soldering for

surface-mount and mixed technology printed.ESA PSS-01-746. (1993). General requirements for threaded fasteners.E. S. K. (1995). Engineered ceramics. Paper from Elektroschmelzwerk

Kempten GmbH, Munich, Germany.Evans, R. (1995). Fume extraction. Electronic Production, 14–16.Eyre, T. S. (1991). Friction and wear control in industry. Metals and

Materials, 143–148.Fang, D., & Berkovits, A. (1995). Fatigue design model based on

damage mechanisms revealed by AE. Trans ASME,117, 200–208.Favre, J.-P., & Raud, C. (1995). Acoustic emission to monitor crack

accumulation in crossply CFRP under mechanical loading or thermalcycling. In The American Society for Nondestructive Testing,Proceedings of AECM-4 (pp. 33–42). Sundsvall, July 10–14.

Feest, A. (1994). Interfacial phenomena in metal-matrix composites.Composites Journal,25(2), 75–86.

Fellas, C. (1982). Anti-static coat for solar arrays. In Proceedings of the3rd European Symposium on Photovoltaic Generators in Space,Bath, UK (p. 305).

Felton, L. E., et al. (1991). Cu-Sn precipitates in solder joints. ScriptaMetallurgica et Materialia,25, 2329–2333.

Feng, W., et al. (2013). Electro-migration model parameters sensitivityanalysis based on Monte Carlo method. Chemical EngineeringTransactions,33, 1093–1098.

Fernie, J. A., & Sturgeon, A. (1992), Joining ceramic materials. Metalsand Materials, 212–217

Fink, M., & Dunn, B. D., et al. (2006). Characterisation of Teflon FEP(Hubble ST and LDEF) following long term exposure to LEO. In 11thInternational Symposium on ISMSE, Collioure, France, June 19–23.

Fink, M., Dunn, B. D., et al. (2008). Measurement of mechanicalproperties of electronic materials down to 4.2K. CryogenicsJournal,48, 497–510.

Fink, M., Semerad, E., & Dunn, B. D., et al. (2009). Electricalresistivity of solders at low temperatures. In 11th InternationalSymposium on ISMSE, Aix-en-Provence, France, September 15–16.

Fink, M., et al. (2009). In Proceedings of the 13th European SpaceMechanisms and Tribology Symposium, Vienna, September 23–25.

Fletcher, P. (1978). Problems encountered with the use of semi-rigidco-axial cable in spacecraft electronics, ESA-STM-209, September.

Flin, E. D. (2005). Soldering in space holds surprises, AerospaceAmerica, 24–25.

Flom, Y. (2005). Brazing in space—Enabling the next frontier. InTheAWS 35th International Brazing and Soldering Symposium,Dallas, TX, USA, April 26.

Flom, Y. (2006). Electron beam brazing of titanium for construction inspace, NASAGSFC. InProceedings of the 3rd International Brazingand Soldering Conference, San Antonio, TX, USA, April 24–26.

Flury, W. (Eds.). (1993). First European conference on space debris.ESA SD-01.

Foster, C. L., et al. (1995). The solar array-induced disturbance of theHST pointing system. NASA Technical Paper3556, May.

Fox, V. C., et al. (1999). The structure of tribologically improvedMoS2—Metal composite coatings and their industrial applications.Surface and Coatings Technology,116–119, 492–497.

Fox, R. M., et al. (2010). Chemistry and technology of lubricants, Ch.13, Liquid lubricants for space applications. Heidelberg: SpringerPublishing.

Frankel, H. E. (1969). Effect of vacuum on materials, ESRO TN-77.Frear, D. R., & Vianco, P. T. (1994). Intermetallic growth rate and

mechanical behaviour of low and high melting temperature solderalloys. Metallurgical and Materials Transactions A,25, 1509–1523.

Frear, D. R., et al. (1993). The mechanics of solder alloy interconnects.New York: Van Nostrand Reinhold.

Gabe, D. R. (1978). Principles of metal surface treatment andprotection. Oxford: Pergamon Press.

Galleo, K. (1995). Assembly with conductive adhesives. IPC TechnicalReview, 20–28.

Galvao, I., et al. (2011). Formation and distribution of brittle structuresin FSW of aluminium and copper: Influence of process parameters.Science and Technology of Welding and Joining,16(8), 681–689.

Gamwell, W. R. (1995). NASA-wide fastener technical interchangemeeting. NASA Conference Publication 3308, July.

Garner, H. R., et al. (1976).Whisker growth from decorative zinc deposits.In Proceedings of the 9th World Congress on Metal Finishing.

Garrison, A., et al. (1995). How much rework is too much. Solderingand SMT Journal,19, 48–51.

George, E., & Pecht, M. (2013). Tin whisker analysis of an automobileengine control unit, microelectronics reliability. http://dx.doi.org/10.1016/j.microrel.2013.07.134.

Gerlach, L. (1995). Co-ordinator. In Proceedings of the Hubble SpaceTelescope Solar Array Workshop, ESA WPP-077.

Ghate, P. B. (1982). Electromigration-induced failures. In IEEE 20thAnnual Proceedings, Reliability Physics (pp. 292–299). San Diego,March–April.

References 643

Page 85: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Ghaffarian, R. (2013). 3D X-ray CT for BGA/CGA workmanship defectdetection. NASA JPL Publication 12-21 12/12.

Ghidini, T., et al. (2008). Stress-corrosion cracking assessment inspacecraft propulsion systems, Technology Evaluation for Envi-ronmental Risk Mitigation (TEERM) Workshop, San Diego, CA,USA, November 18–20.

Gilbrech, J., et al. (2005). Cloud-aerosol LIDAR and IR Pathfindersatellite observation (CALIPSO) spacecraft—Independent technicalassessment, NASA/TM-2005-213231/Version 2.0, March.

Gobbi, S. L., & Zhang, L. (1994). Laser welding for lightweightstructures. In International Symposium on Advanced Materials forLightweight Structures, ESA-ESTEC (pp. 107–113). 22–24 March.ESA WPP-070.

Goddard, D. M. (1984). Report on graphite/magnesium castings. MetalProgress, 49–52.

Golberg, D., et al. (1995). High-temperature shape memory effect.Materials Letters,22, 241–248.

Goldberg, I. B., et al. (1990). Magnetic susceptibility of Inconel alloysat cryogenic temperature. Advances in Cryogenic Engineering(Materials) Journal,36, 755–761.

Goldmann, L. S., et al. (1977). Lead–indium for controlled-collapsechip joining. In Electronic Components Conference (pp. 25–29).

Goldstein, J. I., et al. (1981). Scanning electron microscopy and X-raymicroanalysis. New York: Plenum Press.

Gonnet, L. (1995). Towards an ergonomic design of welding stations.Rivista Italiana della Saldatura,2, 177–183.

Goodhew, P. J. (1988). Modular MSc degrees: A way of keeping upwith materials and techniques. Metals and Materials,4(2), 112.

Grady, M. M., & Wright, I. P. (1996). Space invaders. EuropeanMicroscopy and Analysis Journal 42, June 13–14.

Grande, D. H., et al. (1988). Fibre–matrix bond strength studies.Journal of Materials Science,23, 311–328.

Grant, L. A. (1983) Beryllium sheet materials to satellite structure. In24th Annual AIAA SDM Conference, Lake Tahoe, May.

Greenberg, M. A., et al. (2013). Inhomogenieties of the interfaceproduced by explosive welding. Physics of Metals and Metallog-raphy,113(2), 176–189.

Gregoratti, L., et al. (2013). Large gecko mimetic tapes as new joiningtechnology. In Proceedings of the 12th International Symposium onMaterials in Space Environment, Noordwijk, The Netherlands(ESA SP-705).

Grey, M. W. (1989). Inner layer or post cracking on multilayer printedcircuit boards. Circuit World,15(2), 22–29.

Grilli, R., Dunn, B. D., et al. (2010). Locallised corrosion ofAluminium 2219 alloy exposed to a 3.5 %NaCl solution. CorrosionScience,52, 2855–2866.

Grilli, R., Dunn, B. D., et al. (2010). Localized corrosion on 2219aluminium alloy coated with a titanium based conversion coating.Surface and Interface Analysis Journal,42(6–7), 610–615.

Grinberg, N. M. (1982). The effect of a vacuum on fatigue crackgrowth. International Journal of Fatigue, April 83–95.

Griner, C. S. (1968). Redeposition of vacuum outgassed products.NASA TM X-53 801, MSFC, November.

Gross, J. H. (2011). Mass spectroscopy. Heidelberg: Springer.Gruenbaum, P., & Dursch, H. (1993). Space environment effects on

solar cells: LDEF and other flight test. In 3rd Post RetrievalConference (pp. 1167–1177). Williamsburg, November 8–12,NASA Publication 3275 part 3.

Gruhl, W. (1984). Stress corrosion cracking of high strength aluminiumalloys. Z. Metallkde,75, 819–826.

Gurklis, J. A. (1972). Non-traditional machining of beryllium. Metalsand Ceramics Information Center, Battelle, MCIC, January 3.

Guyenne, T.-D. (1994). Compiler. In 6th International Symposium onMaterials in a Space Environment, ESA SP-368.

Hagge, J. K., & Davis, G. J. (1984). Ageing, solder thickness, andsolder alloy effects on circuit board solderability. IPC TechniqueReview,25(9), 13–23.

Hagge, J. K., & Davis, G. J. (1985). Ageing, solder thickness and soldereffects on circuit board solderability. Circuit World,11(3), 8–15.

Haines, J. E., et al. (1995). HST solar array drive electronics: In-flighthistory and servicing mission activities. In HST Solar ArrayWorkshop, ESTEC, (ESA WPP-77) (pp. 111–118).

Hall, W., & Williams, P. (2007). Processing waste pc boards formaterial recovery. Circuit World,33, 43–50.

Halpin, J. C. (1985). Proceedings of the 31st Annual Technical Meetingof the Meeting of the Institute of Environmental Sciences (pp. 206–218). Las Vegas, April 30–May 2.

Hamacher, H., et al. (1995). Surface erosion in low Earth orbit. InATOXSymposium on Scientific Results on the German SpacelabMission. D-2, Norderney: WPF publication.

Hammesfahr, A. E., et al. (1995). An X-ray mirror assembly based oncarbon fibre technology. Space Technology,14(6), 391–397.

Hamstad, M. A. (1986). A review: Acoustic emission, a tool forcomposite-material studies. Experimental Mechanics, March 7–13.

Hannech, E. B., & Hall, C. R. (1992). Diffusion controlled reactions ingold/solder system. Materials Science and Technology,8, 817–824.

Hansen, M. (1958). Constitution of binary alloys. New York: McGraw-Hill.

Haq Qureshi, A., & Dayton, J. A. (1995). Insulation requirements ofhigh-voltage power systems in future spacecraft. NASA TechnicalPaper No.3520, June.

Harris, P. G., et al. (1992). Stripping and replacement of damagedsolderable coatings. Soldering and SMT Journal,12, 21–26.

Harris, P. G. (1995). Conductive adhesives a critical review of progressto date. Soldering and SMT Journal,20, 19–21.

Haschiguchi, D., et al. (1992). Aluminium–beryllium alloys foraerospace applications. In Proceedings of the International Sympo-sium Advanced Materials for Lightweight Structures (pp. 165–169).ESTEC, March 25–27, ESA SP-336.

Hashemzadeh, M. N. (2005). Study of tin whisker growth and theirmechanical and electrical properties (PhD thesis, LinkopingsUniversitty, Stockholm, 2005), September.

Hashimoto, K., et al. (1991). Flip chip interconnection technology forGLSI packages operated in liquid nitrogen. IEICE Transactions,E74, 2362–2368.

Hassan, J., et al. (2014). Recent advancements in focused ion beamapplications: A review. International Journal of Recent ScientificResearch,5, 123–127.

Hauer, H. (1977). Properties of soft soldered joints on gold plated thinfilm conductors. In International Conference on Thin Film Tech-nology (Vol. 60, pp. 185–190). NTG-Facher.

Haupt, C. W. (1996). Residual stress measurement of titanium weldcertification rings. In 32nd AIAA Joint Propulsion Conference(p. 10). Lake Buena Vista, FL, paper AIAAA-96-2750, July 1–3.

Hawkins, T.W., et al. (2010). Reduced toxicity, high performancemonopropellant at the US air force laboratory. In 4th InternationalAssociation for the Space Safety Conference, Huntsville, AL, May.

Healy, T. J., et al. (1995). Key technologies being developed for RLV(pp. 1995–3608). AIAA paper.

Hegin, B. V. (n.d). Electroplating and black anodisation of aluminium.Galvanische Industrie, Heerde, Holland (trade leaflet).

Hehemann, P. F. (1985). Stress corrosion cracking of stainless steels.Metallurgy Transactions A,16A, 1909–1923.

Heiken, G. H., et al. (1974). Lunar deposits of possible pyroclasticorigin. Geochimica Cosmochimica Acta,38, 1703–1718.

Hemptenmacher, J., et al. (1994). Characteristics of SiC–Fibre/Ti6A14V–Matrix composites by macro-indentation tests. PracticalMetals,31(3), 110–119.

644 References

Page 86: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Hendrich, CH., et al. (2014). Influence of water content in an ADN-based liquid monopropellant on performance characteristics. InSpace propulsion, May 19–22. Germany: Cologne.

Hepp, A. F., et al. (1999). Metal alloy propellants produced from lunarresources. In Symposium Materials in Space—Science, Technologyand Exploration (pp. 39–47). Boston, MA, USA, 29th November–2nd December.

Heltzel, S. (2014). Latent short circuits failure in high-rel pcbs causedby lack of cleanliness of pcb processes and base materials, 5thEMPS Workshop, Estec, Noordwijk, The Netherlands, May 22.

Hinton, Y. L. (1995). Acoustic emission. ASTM Standardization News,36–39.

Hipolite, W. (2015). NASA 3D prints copper rocket engine part. 3DPrinting, April 22.

Heycock, C. T., & Neville, F. H. (1900). Philosophical Transactions ofthe Royal Society, 194A: 201

Hillman, D. D., & Chumbley, L. S. (2006). Characterization of tinoxidation products using sequential electrochemical reductionanalysis (SERA). Soldering and SMT Journal,8(3), 31–41.

Hinch, S. W. (1988). Hand book of surface mount technology. Harlow,England: Longman Scientific and Technical publishers.

Hirnyj, S., & Indacochea, J. E. (2008). Phase transformations inAg70.5Cu26.5Ti3 filler alloy during brazing processes. ChemistryMetals Alloys,1, 323–332.

Holt, T. (1995). New applications in high power laser welding.Weldingand Metal Fabrication Journal, 230–234.

Homes-Siedle, A., & Adams, L. (1993). Handbook of radiation effects.Oxford, UK: Oxford University Press.

Hornbogen, E., & Schemme, K. (1990). Prospects of superlight metalsand their laser surface alloying with ceramic phases. In Proceedingsof the First Thermal Structures Conference (pp. 99–109). Char-lottesville, VA, November 14–16.

Houlberg, K. (1988). Printed circuit boards for surface mounteddevices. Unpublished report.

Hu, S. J., et al. (1995). Gold wire weakening in the thermosonicbonding of the first bond. IEEE Transactions, Components,Hybrids, Manufacturing Technology,18(1), 228–234.

Huang, C.-Y., et al. (2011). Material characterization and failureanalysis for microelectronics assembly processes. Available from:http://www.intechopen.com /books/wide-spectra-of-quality-con-trol/material-characterization-and-failureanalysis-for-microelectron-ics-assembly-processes.

Hummel, R. E. (1994). Electromigration and related IC failuremechanisms. International Materials Review,39, 97–113.

Hunt, C. (2009). Implementation and reliability issues with lead-freesolders. In SMTA International Conference and AIMS Workshop,San Diego, CA, USA, October 4–8.

Hunt, C. (2011). Reliability isues with lead-free, EMPS-2 Workshop,Institut Du Soudure, Paris, France, May 4.

Hunt, C., Dunn, B.D., et al. (2012). Increased shorting in tinwhiskers dueto electric fields and contact pressure. In 6th International Symposiumon Tin Whiskers, Loughborough, UK, November 27–28.

Hutchings, M., & Krawitz, A. D. (1992). Measurements of residual andapplied stress by neutron diffraction. In NATO ASI series E: AppliedScience (Vol. 216). Dordrecht, The Netherlands: Kluwer.

Hutchinson, B., et al. (2004). Whisker growth from tin coatings, IM-2004-708. Stockholm: Swedish Institute for Metal Research.

Hwang, J. S. (2014). Tinwhiskers: capsulization. SMTMagazine, 16–29.Ilyushenko, R. V. (1993). Weldability of commercial aluminium–

lithium alloys. Aluminium-Verlag,69(4), 364–370.Iman, R. L., et al. (1995). Evaluation of low-residue soldering for military

and commercial applicatons: Sandia National Labs Report, June.IEC 60068-2-82. (2007). Environmental testing—Whisker test methods

for electronic and electric components.

Jagt, van der, et al. (1991). Anti-wear/corrosion treatment for austeniticsteel: The Hardcor process. Materials & Design,12(1), 41–46.

IPC-7095A. (2004). Design and assembly process implementation forBGAs, October.

IPC-D-279. (1996). Design guidelines for reliable surface mounttechnology printed board assemblies, July.

IPC-SM-780. (1987). Advanced packaging and interconnection ofelectronic components.

IPC-SM-782. (1992). Surface mount land patterns (configuration anddesign rules).

IPC-TM-650. (2000). Electrochemical migration resistance test.Irving, B. (1992). SCC: Welding’s No. 1 nemesis. Welding Journal,

37–40.Isakowitz, S. J. (1995). International reference guide to space launch

systems (2nd ed.). Waldorf, MD, USA: AIAA publication.Jackson, B. C. (1987). Oxide coatings for bonding multilayer PCBs.

Transactions IMF,65(8), 8–9.Jackson, C. R. (1973). Lead–indium solder alloy won’t embrittle in

gold. Circuit Manufacturing, 40–41.Jacobson, D. M., & Humpston, G. (1992). Diffusion soldering.

Soldering and SMT Journal,10, 27–32.Jacobson, D., & Humpston, G. (1995). Depressing the melting point of

solders and brazes by eutectic alloys. GEC Journal of Research,12(2), 112–121.

Jacobson, D. M., & Sangha, S. (1996). Novel applications of diffusionsoldering. Soldering and SMT Journal,23, 12–15.

Jaggers, C. H. (1993). Exposure of LDEF materials to A.O. In 3rdPost-Retrieval Symposium (pp. 931–941). Williamsburg, November8–12.

Jalbert, M., et al. (1994). Risque saturnin des opérations demicrosoudure en électronique. Archives des maladies profession-nelles et de médecine du travail,55(8), 589–594.

Janu, P., et al. (2009). Electric propulsion pointing hold down andrelease mechanism test results. In Proceedings of the 13th EuropeanSpace Mechanisms and Tribology Symposium (p. 8)., Vienna,Austria, September 23–25

Jaworske, D. A. (2002). Solar selective coating for power application,NASA/TM-2002-211333.

JAXA-QTS selected JAXA standards related to materials and processescan be seen listed in Appendix 9.

Jellison, J. (1986). Evaluation of multilayer printed wiring boards bymetallographic techniques. NASA Reference Publication 1161.

Jenkins, P. P., & Landis, G. A. (1995). A rotating arm using shape-memory alloy. In 29th Aerospace Mechanism Symposium, LeagueCity, Texas (pp. 167–171). May 17–19.

JESD22-A121A. (2008). Measuring whisker growth on tin and tinalloy surface finishes, reaffirmed, May 2014.

Jha, A. K., et al. (1996). Failure of AA 2024 aluminium alloy rivets.Praktische Metallographie,33(5), 264–272.

Jiang, B. L., & Wang, Y. M. (2010). Plasma electronic treatment ofaluminium and titaniumalloys. InH.Dong (Ed.), Surface engineeringof light alloys. Cambridge, UK: Woodhead Publishing Ltd.

Johnson, G. W. (1979). How metallography and SEM analysis can beused in quality control for microelectronics. In Metallography as aQuality Control Tool, Symposium of A.S.M. (pp. 261–278). July 8–9.

Johnson, M.R. (1989). The Galileo High Gain Antenna DeploymentAnomaly. California Institute of Technology, Jet Propulsion Lab-oratory (JPL), Pasadena, CA.

Johnson, R.E., et al. (1966). A case history of titanium stress corrosionin nitrogen tetroxide. American Society Metals

Johnson, R. E. (1973). Apollo experience report—The problem of stresscorrosion cracking. NASA TN D-7111, March.

Johnston, R. L., et al. (1967). Stress corrosion cracking of Ti–6Al–4 Valloy in methanol. NASA TN D-3868, February.

References 645

Page 87: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Kallee, S. W., Nicholes, D., & Thomas W. (2001). Friction stir welding—Invention, innovations and applications. In INALCO 8th Inter-national Conference on Joints in Aluminium, Munich, Germany,March 28–30.

Karavakis, K., & Bertling, S. (2004). Conductive anodic filament(CAF). MEPTEC Report, Quarter 4, 24–27.

Kauffmann, B., & Wolf, D. (2013). Development of low fluorideevolution fluoropolymer wiring materials for aerospace systems. InAerospace Electrical Interconnect Symposium, Tampa, FL, USA,October.

Kelly, M. A., et al. (1984). Using ESCA in failure analysis—Somerecent developments. In Proceedings of ISTFA (pp. 35–39). LosAngeles.

Kephart, A. R., & Hayden, S. Z. (1993). Benefits of thread rollingprocess to the stress corrosion cracking and fatigue resistance ofhigh strength fasteners. In 6th International Symposium on Envi-ronmental Degradation of Materials in Nuclear Power Systems(pp. 1833–1847). San Diego, CA, August 3–5.

Kessowsky, R., et al. (1978). Corrosion of indium based solders. In16th Annual Proceedings, IEEE Reliability Physics (pp. 200–205).

Keusseyan, R. L., & Dilday, J. L. (1993). Electric contact phenomenain conductive adhesive connections. In Proceedings of InternationalSurface Mount Conference and Exposure (pp. 567–571). San Jose,Surface Mount International.

Ki, Young-Won. (1995). Gamma titanium aluminides: their status andfuture. JOM,47(7), 39–41.

Kim, K.-H., et al. (2011). Observation of high resolution microstruc-tures in thermal sprayed coatings and single deposited splats usingion beam milling. Materials Transactions,52(3), 439–446.

King, D. B., et al. (1976). Effects of inclusions on mechanicalproperties of Be. AFML-TR-76-33 Brush Wellman Inc., April.

King, R. L. (1988). Review, opportunities for advanced composites inspacecraft. Advanced Composite Bulletin,2(1), 4–10.

Kingsley, N. (2008). Liquid crystal polymer: Enabling next generationconformal and multilayer electronics. Microwave Journal, 51, 188–200.

Klein, A. J. (1988). Specialty reinforcing fibres. Advanced Compos-ites,3(3), 32–44.

Kleinteich, T., et al. (2015). What’s inside a fishy suction cup?Microscopy and Analysis,17, S8–S10.

Klein Wassink, R. J. (1984). Soldering in electronics. Ayr, Scotland:Electrochemical Publications Ltd.

Klinkrad, H. (2006). Space debris: Models and risk analysis. Heidel-berg, Germany: Springer-Praxis Publishing.

Kocker, H. H., & Stockel, D. (1979). Material transfer of compositecontact materials. In IEEE Transactions on Components, Hybridsand Manufaturing Technoloby (pp. 15–19). CHMT-2.

Kodama, S., et al. (2010). Development of stainless steel weldingwire forgalvanized steel sheet, Rivista Italiana della Saldatura4: 479–486.

Koh, D., et al. (1990). Dermatological hazards in the electronicsindustry. Contact Dermatitis,22, 1–7.

Koh, D., et al. (1994). Skin disorders among hand solders in theelectronics industry. Occupational Medicine,44(1), 24–28.

Kohman, G. T., et al. (1955). Silver migration problem encountered in atelephone exchange. Bell Systems Technology Journal,34, 1115–1147.

Konoza, A., et al. (2012). Analysis of the electronic assembly repairprocess for lead-free parts under combined loading conditions.IEEE Transactions Components Packaging Manufacturing Tech-nology,2(9), 1558–1567.

Koons, H. C., et al. (1980). Spacecraft charging—Results from theSCATHA satellite. Astronautics and Aeronautics,18(11), 44–47.

Korb, G.,&Dunn, B.D. (1996).Assessment of cleaningmethods for spacemechanisms. ESTEC Metallurgy Report No. 2261 (confidential).

Korb, L. J., et al. (1985). A metallurgical analysis of the failure of twoAPU’s of the spacecraft Columbia. In Space Technology Confer-ence Proceedings, Anaheim, USA, September 23–25, 5.1–5.34.

Kostic, A. D. (2011). Lead-free electronics reliability—And update,GEOINT Development Office, Aerospace Corporation, August.

Kleiman, J., Tagawa, M., & Kimoto, Y. (2013). Protection of materialsand structures from the space environment. Heidelberg: Springer.

Kramer, P. A., et al. (1994). The effect of low gold concentrations onthe creep of eutectic tin-lead joints. Metallurgical and MaterialsTransactions A,25, 1249–1257.

Krishnadev, M. R. (1993). The structure and properties of magnesium–

matrix composites. JOM,45(8), 52–54.Krumbein, S. J. (1988). Metallic electromigration phenomena. IEEE

Transactions Components, Hybrids, Manufacturing Technology,CHMT-11, 5–15.

Kuchler, G. (1995). Assessment of flexible substrate integrity. InHubble Space Telescope Solar-Array Workshop, ESTEC, Noord-wijk (pp. 253–256). ESA Pubn WPP-77, May 1995.

Kugel, U., Verain, M., & Zarraga, F. M. (1995). Post-flight investi-gations of the Eureca Mechanisms. In Proceedings of SixthEuropean Space Mechanisms Symposium (pp. 195–201). Zurich,(ESA SP-374).

Labruyère, G., & Urmston, P. (1995). ESA mechanisms requirements.In Proceedings of 6th European Space Mechanism and TribologySymposium, Zurich, (ESA SP-374), October 4–6

Lamouroux, F., et al. (1994). Kinetics and mechanisms of oxidation of2-D woven C/SiC composites: Experimental approach. Journal ofAmerican Ceramic Society,77(8), 2049–2057.

Lansdown, A. R., & Price, A. L. (1986). Materials to resist wear.Oxford: Pergamon Press.

Laporte-Weywada, H. J, et al. (1993). CNES policy about launcherspace debris mitigation—Ariane V application. In Proceedings ofthe First European Conference on Space Debris (pp. 585–589).Darmstadt, Germany, April 5–7, ESA SD-01.

Larsson, A., & Wingborg, N. (2011). Green propellants based onammonium dinitramide (ADN). www.intechopen.com/download/pdf/13473.

Lau, J., & Rice, D. (1985). Solder joint fatigue in SMT: State of the art.Solid State Technology, 91–104.

Le May, I., & Deckker, E. (2009). Reducing the risk of failure by bettertraining and education.EngineeringFailure Analysis,16, 1153–1162.

Lea, C. (1988). Restrictions on the use of chlorofluorocarbons forcleaning soldered PCBs. Circuit World,14(4), 4–12.

Lea, C. (1988). A scientific guide to surface mount technology. Ayr,Scotland: Electrochemical Publications.

Lea, C. (1991). Evidence that visual inspection criteria for solderedjoints are no indication of reliability. Soldering and SMT Journal,9,19–24.

Lee, H. S., et al. (1994). Symptoms in peak expiratory flow rate amongfemale solderers. American Journal of Industrial Medicine,26,613–619.

Lee, S.-B., et al. (2006). Electrochemical migration characteristics ofeutectic SnPb solder alloy in printed circuit board. Thin SolidFilms,504, 294–297.

Lee, Shen, Y. (1990). Thermomechanical properties of polymericmaterials and related stresses. SAMPE Quarterly, 48–51.

Leitao, C. M. A. (2013). Influence of base material plastic propertiesand process parameters on friction stir weldability (Dissertation forPhD, Department of Mechanical Engineering, University of Coim-bra, Portugal, 2013).

Lestrat, D., & Prel, Y. (1994). Evolution et choix technologiques pourles reservoirs des lanceurs Ariane. In Proceedings of the Interna-tional Symposium on Advanced Materials for Lightweight Struc-tures, ESTEC (pp. 441–453). Noordwijk, March (ESA WPP-070).

646 References

Page 88: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Levine, A. S. (Eds.). (1993). Third post-retrieval symposium. NASAConference Publication 3275, Part 3.

Lewis, P. L., Kolody, M., & Curran, J. (2013). Alternative to nitric acidpassivation of stainless steel alloys. NASA Report, casi.nts.02809.

Leyva, I. A., et al. (2011). Space Mission and Design Analysis,Chap. 18—Propulsion Systems, Air Force Research Lab., EdwardsAFB., CA., USA. Report No. AFRL-RZ-ED-BK-2011-057.

Li, H., & Zhang, J. (2014). Preparation of microarc oxidation ceramiclayer on Ti6Al4V titanium alloy and its oxidation resistanceproperty. International Heat Treatment and Surface Engineering,8(2), 51–54.

Li, X., & Dong, H. (2010). Ceramic conversion treatment of titanium-based alloys. In H. Dong (Ed.), Surface engineering of light alloys.Cambridge, UK: Woodhead Publishing Ltd.

Liedke, V., & Dunn, B. D., et al. (2008). Cleaning of siliconecontaminations: development of test methods and assessment ofcleaning efficiency. In 11th ISMSE Symposium, Aix-en-Provence,France, September.

Liejtens, J. (2015). Will the future of hirel components be pure SCOTSor only SCOTTish, IAA-B10-1203. In Deutsches Zentrum fur Luft-und Raumfahrt 10th Symposium, Berlin, Germany, April 20–23.

Lin, C.-C., et al. (2012). High temperature brazing of molybdenum.Advanced Material Research Journal,586, 69–73.

Liu, H., et al. (2014). Laser nanocrystallisation and corrosion behaviorof electroless Ni-W-P coating with high phosphorous content.Transactions IMF,92(4), 212–217.

Liu, J., et al. (1996). Development of flip-chip joining technology.Circuit World,22(2), 19–24.

Liu, X., & Lu, G.-Q. (2003). Effects of solder joint shape and height onthermal fatigue lifetime. IEEE Transactions on Components andPackaging Technologies26(2): 445–465.

Lobley, G. R. (1990). Soldering problems on printed circuit boards.Practice Metals,27, 627–631.

Lucas, J. P., & Zhou, J. (1993) The effects of sorbed moisture on resin–matrix composites. J.O.M., December issue, 37–40.

Lucas, W. (1995). Electromagnetic emission from TIG weldingsystems. Welding and Metal Fabrication,63(7), 261–265.

Luciano, G., & Galet, G. (1995). Space mechanism actuated by a shapememory alloy component. In Proceedings of the 6th EuropeanSpace Mechanical and Tribology Symposium (pp. 221–225).Zurich, October 4–6. ESA SP-374.

Lumsden, J. B., & Allen, A. T. (1988). The stress corrosion crackingbehaviour of AlLi alloy 8090. Corrosion Science-Nace,44(8), 527–532.

Lumsden, J. M., & Whittlesey, A. (1981). Automatic ARC welding ofpropulsion system tubing in close proximity to sensitive electronicdevices. In AIAA/SAE/ASME 17th Joint Propulsion Conference,Colorado Springs, July, (AIAA-81-1569).

Lund, A. (2011). Principals and applications of ESR Spectroscopy.Heidelberg: Springer.

Lupton, D. F. (1990). Heraeus GmbH, private communication.Luzin, V., et al. (2010). Use of neutron diffraction for stress

measurements in thin and thick thermal sprayed coatings. Interna-tional Heat Treatment and Surface Engineering,4(1), 17–24.

Ma, H., et al. (2012). Effects of rework on the accelerated thermalcycling and shock performance of lead-free BGAs. IEEE Transac-tions on Components Packaging Manufacturing Technology,2(11),1824–1830.

Ma, Y., et al. (2012). A large-scale fabrication of flower-lie sub-micrometer-sized tungsten whiskers via metal catalysis. NanoscaleResearch Letters,7(325), 1–7.

Ma, H., & Lee, T.-K. (2013). Effects of board design variations on thereliability of lead-free solder joints. IEEE Transactions on Compo-nents Packaging Manufacturing Technology,3(1), 71–78.

Maciolek, R. B., et al. (1978). Thermal aging characteristics of In–Pbsolder bonds to gold. Honeywell Report.

McCormick, J., & Zakraysek, L. (1979). A metallographic test forglass-to-metal seals. In 17th Annual Proceedings of ReliabilityPhysics, IEEE (pp. 44–50). San Francisco, April.

McCormack, S., & Meschter, S. (2009). Probabilistic assessment ofcomponent lead-to-lead tin whisker bridging. In International Confer-ence on Soldering and Reliability, Toronto, Canada, May 20–22.

McCrone, W. C., & Delly, J. C. (1973). The particle atlas (2nd ed.,Vol. 1–3). Michigan, USA: Ann Arbor Science Publishers.

McCune, T. B., et al. (1970). Heat ageing evaluation of common coatedcopper conductors. In 19th International Wire and Cable Sympo-sium, Atlantic City, N.J., December 2–4.

McDonald, G. E. (1974). Refinement in black chrome for use as a solarselective coating. NASA TMX-3136, December.

McDonnald Schetky, L. (1991). Shape memory alloy applications inspace systems. Materials and Design,12(1), 29–32.

McDowell, M. E. (1993). Tin whiskers—A case study. In 1993 IEEEAerospace Applications Conference (14th) (pp. 207–215). Steam-board Springs, CO, USA, January 31–February 5.

McKay, C. A. (1983). Causes and effects of solder contamination, part2, Electronics: 41–44.

Maillat, M., et al. (1995). Adhesion of materials by impact contacts invacuum. In Proceedings of 6th European Space MechanismsConference, (pp. 431–436). Zurich, Switzerland, (ESA SP-374).

Mair, P. (2005). Assessment of EMF and biological effects in arcwelding applications. In International Institute of Welding Manu-facturing (pp. 1–10). IIW Document XII-1848-05.

Majid, W. A. (1988). Controlling SCC in mechanism components ofground support equipment. In 22nd Aerospace Mechanisms Sym-posium (pp. 163–174). Hampton Virginia, May 4–6 (NASAConference Publication 2506).

Maliutina, I. N., et al. (2014). Structure and microhardness of Cu-Tajoints produced by explosive welding. Rivista Italiana dellaSaldatura5: 839–848.

Malla, R. B., & Ghoshall, A. (1994). Thermally induced vibrations ofstructures in space. Progress in Astronautics and Aeronautics,168,68–89.

Marchaise, M., & Glodowski, K. A. (1991). Real-time microfocusradiography for electronic failure analysis. Materials Evaluation:1481–1485.

Marrocco, T., & Harvey, D. (2012). Cold Standard—The cold sprayprocess. Materials World: 30–31.

Martell, S., & Adams, T. (1996). Virtual cross-sectioning of materials.Materials World,3(7), 323–324.

Martin, J. W. (1976). A new laboratory procedure for determiningcompatibility of positive expulsion elastomers with liquid propel-lants. In Symposium—Compatibility of Plastics (pp. 1–6). IndianHead, Md., USA, paper III-E, April.

Mason, M., & Eng, G. (2007). Understanding tin plasmas: a newapproach to tin whisker plasma risk assessment. In IEEE IRPS,CALCE, University of Maryland, USA, April.

Materassi, M., Dunn, B. D., & Capinari, L. (2000). The influence ofsolder fillet geometry on the occurance of corona discharge duringoperation between 400 and 900 V in partial vacuum. IEEETransactions on Electronics PackagingManufacturing,23, 104–115.

Matloff, G. L. (2013). The speed limit for graphine interstellar solarproton sails. Journal of the British Interplanetary Society,66,377–380.

Maurer, R. H., et al. (2008). Harsh environments: Space radiationenvironment, effects, and mitigation. John Hopkins APL TechnicalDigest,28(1), 17–29.

Mayo, M. J., & Nix, W. D. (1989). Direct observation of superplasticflow mechanism in torsion. Acta Met,37(4), 1121–1134.

References 647

Page 89: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Maxwell, J. L., et al. (2013). High-temperature nano-composites fornuclear thermal propulsion and in-space fabrication by HP-LCVD.JBIS,66, 328–333.

Mc Brien, C. M., & Heltzel, S. (2013). Insulation resistance of dielectricmaterials under environmental testing. In IPC APEX EXPO Confer-ence Proceedings, San Diego, Ca, USA, February 19–21.

Meaker, A. J., et al. (2006). Hydrogen peroxide—From bridesmaid tobride. In 3rd ESA International Conference on Green Propellantsfor Space Propulsion, Poitier, France, September.

Medgyes, B., et al. (2011). In situ optical inspection of electrochemicalmigration during THB tests. The Journal of Materials Science:Materials in Electronics,22, 694–700.

Meltsner, K. J. (1995). Understanding the INTERNET: A guide formaterials scientists and engineers. JOM,47(4), 9–13.

Merstallinger, A., & Semerad, E. (1996). Test method to evaluate cold-welding under static or impact loading. Unpublished ESTECMetallurgy Report 2222

Merstallinger, A., & Semerad, E. (1996). Test method to evaluate thesublimation of metals by weight loss. Unpublished ESTEC Metal-lurgy Report 2242.

Merstallinger, A., et al. (1995). Study on adhesion/cold-welding undercyclic load and high vacuum. In Proceedings of the 6th EuropeanSpace Mechanisms Conference (pp. 293–298). Zurich, Switzerland,(ESA SP-374).

Merstallinger, A., et al. (1995). Wire bend test. Unpublished report.Merstallinger, A., & Dunn, B. D., et al. (2009). Assessment of cold

welding between separable contact surfaces due to impact andfretting under vacuum, ESA STM-279, and, (2015) http://esamul-timedia.esa.int/multimedia/publications/STM-279/.

Mertens, J., & Gessford, D. (1995). Implementation of alternativecleaning solvents. Precision Cleaning Journal,3(2), 45–50.

Mielke, E. W. (2002). Silver filled conductive epoxies, NASA MaterialsEngineering Branch, TIP No. 079, rev. October.

Mikaelian, T. (2001). Spacecraft charging and hazards to electronicsin space, York University publication, May.

MIL-C-13924 Coating, oxide, black, for ferrous metals.MIL-Handbook-697A. (1974). Titanium and titanium alloys, June.Millares, M., & Peraggi, B. (1992). Metallography of gold–indium

couples and electronic components soldered with indium alloys.Praktische Metallographie,29, 555–563.

Miller, N. H. (1906). The amounts of nitrogen as ammonia and nitricacid, and of chlorine in the rainwater collected at Rothamsted.Journal of Agricultural Sciences,1, 280–303.

Minges, M. L. (1989). Electronics materials handbook (Vol. 1). MetalsPark, OH, USA: ASM International.

Mohrbacher, H., et al. (1995). The influence of humidity on the frettingbehaviour of PVD TiN coatings. Wear,180, 43–52.

Moliterni, L. (2010). Il saldatore “manual” utilizzato nella saldatura inelettronica.Rivista Italianadella Saldatura,Lugili/Agosto 4: 455–459.

Moliterni, L. (2012). L’affidabilita degli assemblaggi elettronici. RivistaItalianadella Saldatura, Maggio/Giugno 3: 351–362.

Morilla, D. J., et al. (2015). Tin whisker growth on surface mountdevices: A study using standardized test conditions. In EMPS-6,Wessling, Germany, April 15–16.

Morris, J. W. (1996). The metallurgical control of electromigration.JOM,48, 43–46.

Moser, M. (2002). Calculation of stresses produced in the tin-platedterminations of resistors during thermal cycling. Unpublished EstecMGI report 3496.

Motz, J. M. (1988). Microsegregations—An easily unnoticed influenc-ing variable in the structural description of cast materials. PracticeMetals,25, 285–293.

Mueller, R. P., et al. (2014). Space mining and planetary surfaceconstruction. In ASCE Earth and Space Conference, St. Louis,Missouri, USA, October 27–29.

Mueller, R. P., et al. (2015). Additive construction using basalt regolithfines, NASA KSC, casi.ntrs.nasa.gov/20150000305.pdf [citedaccess June 2015].

Muller-Wiesner, A., et al. (1994). Materials and manufacturingtechnologies for the tank and thruster components of the Ariane 5SCA-system. In Ariane V structures and technologies, Cepadues-Editions. Toulouse: CNES publication.

Munns, I. (1995). Adhesive bond inspection using NDT. MaterialsWorld,3(11), 527–529.

Munson, T. (2006). White residues: are they or aren’t they? CircuitAssembly, page unknown, January.

Nabarro, F. R., & Jackson, P. J. (1958). Growth of crystal whiskers.Growth and perfection of crystals (pp. 11–101). New York: Wiley.

Naisbitt, G. (2015). How clean is clean to be functionally good? EMPS-6 Workshop, DLR, Oberpfaffenhofen, Germany, April 15–16.

Nakasa, K., & Liu, J. (1993). The effect of stress on hydride formationin Ti6A14V alloy. In Titanium (Vol. 92, 1st ed., pp. 619–627).TMS publication.

NASA NAS 5300.4 (3J). (1996a). Workmanship standard for stakingand conformal coating of printed wiring boards and electronicassemblies, May.

NASA NAS 5300.4 (3M). (1996b). Workmanship standard for surfacemount technology, May.

NASA-STD selected NASA standards related to materials andprocesses can be seen listed in Appendix 9.

Nasta, M. A., et al. (1990). Contaminant particles in electronic solderfluxes. Soldering and SMT Journal,4, 6–7.

Nelson, H. G. (1988). Hydrogen and advanced aerospace materials.SAMPE Quarterly,20(1), 20–23.

NEMA. (1972). High temperature insulated wire. Report on CopperCorrosion, NEMA Standards Publication, No. HP 2-1968 (reaf-firmed by NEMA).

Nemoto, N. (2007). Evaluation of tin whisker growth in vacuumthermal cycling condition. In 3rd International Symposium on TinWhiskers, Lyngby, Deenmark, June 23–24.

Newman, R. C. (1990). Stress corrosion cracking: 1965–1990. BritishCorrosion Journal,25, 259–269.

Niefhof, J. (1995). An empirical model for electromigration. Solid-StateElectronics,38, 1817–1827.

Noller, E. W. (1996). Unique application of plastics and compositematerials in the design of magnetometer instruments. In 41stInternational SAMPE Symposium and Exhibition (Vol. 1, pp. 841–846). Anaheim, Ca, March 24–28.

Nordwall, B. D. (1986). Air force links radar problems to growths of tinwhiskers. Aviation Week and Space Technology30: 65–69.

Norwood, L. B. (1985). How beryllium proved successful on the spaceshuttle orbiter. Journal of Spacecraft and Rockets,22, 560–566.

Novikov, I., & Grushko, O. (1995). Hot cracking of Al-Cu-Li alloys.Materials Science and Technology,11, 926–932.

Nuez, D., & Tan, P. (2014). Failure localization of intermittent shortcircuit failures caused by vertical CAF formation. In ISTFAConference Proceedings, Houston, TX, USA, November 9–13.

Nurse, M. (1996). Caution remains on aluminium–lithium alloys. MBM(pp. 42–45). February.

O’Clock, G. D., et al. (1987). Pb-Sn microstructure: potential reliabilityindicator for interconnects. IEEE Transactions Components,Hybrids, Manufacturing Technology,10, 82–88.

Okuyama, F. (1974). Vapor-grown tungsten whiskers induced byvacuum discharges. Journal of Applied Physics,45(10), 4239–4241.

Pantazopoulos, G., & Vazdirvanidis, A. (2008). Characterization of themicrostructural aspects of machinable Alfa Beta phase brass(pp. 13–16). Microscopy and Analysis, September.

Paprocki, S. J. (1988). Metal matrix composites for space applications.In Composite Technology, 5th Annual Conference on MaterialsTechnology (pp. 33–43). Carbondale, IL, April 14–15.

648 References

Page 90: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Parker, D. L. (1977). Special devices fabricated in heat shrinkableplastics. In Proceedings of the Technical Program, Internepcon’77(pp. 133–136). Brighton UK, October 18–20.

Parker, D. S. (1991). Analysis of a failed helicopter main rotor bladegrip. In International Conference on Failure Analysis (pp. 141–145). Montreal, Canada, July 8–11 (published 1992 by ASM).

Parquet, D. T., & Boggs, D. W. (1995). Alternatives to HASL. InElectronic Packaging and Production (pp. 38–42). August.

Pask, J. A. (1948). New techniques in glass-to-metal sealing.Proceedings of the IRE, Waves and Electrons Section,36, 286–289.

Paton, B. E. (2003). Space: Technologies, Materials, Structures. InWelding and allied processes (Vol. 2). Ukraine: E. O. Paton ElectricWelding Institute. Published in English by Taylor and Francis Inc.,New York, USA.

Patterson, R. F., & Mykytiuk, P. D. (1996). Solid-state, vapour phase,and aqueous cleaners for aerospace manufacturing operations.Sampe Journal,32(3), 40–49.

Pearce, R. (1987). Superplasticity—An overview (pp. 1–1 to 1–24).AGARD Lecture Series No. 154, August.

Pecht, M. G., et al. (1999). Moisture ingress into organic laminates.IEEE Transactions on Components and Packaging Technology,22,104–110.

Pedley, M. D. (2009).Materials safety, Ch. 12 in book safety design forspace systems. Amsterdam, The Netherlands: Elsevier Publishing.

Peel, C. J., & McDarmaid, D. S. (1989). The present status of thedevelopment and application of Al-Li alloys 8090 and 8091.Aerospace,16(5), 18–23.

Peng, X., et al. (2014). Conductivity improvement of silver flakes filledECAs via introducing silver-graphine nanocomposites. Journal ofMaterials Science: Materials in Electronics,25, 1149–1155.

Perami, R., et al. (1992). Applications of AE to the study ofmicrofissure damage to composites used in the aeronautics andspace industries. In The American Society for NondestructiveTesting, Proceedings of AECM-4, (pp. 99–108), Seattle, July 27–31.

Pereira, A., Pimenta, G., & Dunn, B. D. (2008). Assessment of chemicalconversion coatings for the protection of aluminium alloys, (Acomparison of Alodine 1200 with Chromium Free ConversionCoatings), ESA-STM-276, February.

Peres, P., Semerad, E., & Dunn, B. D. (1994). Material characteristicsof SiC/MAS-L fibre re-inforced glass composites. In Proceedings of6th International Symposium on Materials in Space Environmental(pp. 309–314). Noordwijk, September 19–23, 1994, (ESA SP-368).

Perez, F., & Eymard, P. (1985). Increasing use of composite structureson Ariane launchers (pp. 239–244). ESA SP-243.

Pergola, P., et al. (2011). Low-thrust missions for expanding foam spacedebris removal. In IEPC-2011-126, 32nd International ElectricPropulsion Conference, Wiesbaden, Germany, September 11–15.

Peters, S. T., & Wesling, N. (1968). Corrosion of silver plated copperconductors. In SAMPE 13th National Symposium.

Pettersson, C., et al. (2007). Corrosion testing of welds, a review ofmethods. Rivista Italiana Saldatura,4, 529–553.

Pettit, R. B., & Sowell, R. R. (1976). Solar absorptance and emittanceproperties of several solar coatings. Journal of Vacuum Science andTechnology, 13(2).

Pinaud, G., et al. (2014). Aerofast: Development of cork TPS materialand a 3D comparative thermal/ablation analysis of an Apollo and abiconic sled shape for an aerocapture mission. http://solarsystem.-nasa.gov/docs/7_aerofast_paper.pdf (2015).

Pippin, H. G. (1995). Analysis of silverized teflon thermal controlmaterial flow on LDEF. NASA Contractor Report 4663, July.

Pippin, H. G., & Bourassa, R. J. (1995). Effects of space exposure onmetals on LDEF. NASA Contractor Report 4662, June.

Pirnnack, S. (2012). Lessons learned to avoid coax cable failure inmoving mechanical mechanisms. In Proceedings of the 41st Aero-space Mechanisms Symposium, NASA JPL, Pasadena, CA, USA.

Piskoty, G., et al. (2009). Structural failures of rope-based systems.Journal of Engineering Failure Analysis,16, 1929–1939.

Plumbridge, W. J. (2011). Tin pest in lead-containing solders.Soldering and SMT Journal,22(1), 56–57.

Poe, R. F., & Ruckner, M. A. (1993). Evaluation of pressurized vesselsfollowing hypervelocity particle impact. In Proceedings of the FirstEuropean Conference on Space Debris (pp. 441–446). Darmstadt,Germany, April 5–7, (ESA SD-01).

Pohl, D. (1996). Advances in scanning electron microscopy. PraktischeMetallographie,33(5), 235–245.

Polat, A., et al. (2008). Properties of alumina coating formed bymicroarc oxidation technique on 6061 aluminium alloy. PraktischeMetallographie,12, 594–606.

Pollack, A. A. (1989). Acoustic emission inspection. In MetalsHandbook (Vol. 17, 9th ed., pp. 278–294). ASM International.

Pops, H. (1985). Copper rod requirements for magnetic wire. InProceedings of the 17th Electrical/Electronics Insulation Confer-ence (pp. 329–337). Boston, USA, September 30–October 3.

Pradier, A. L., & Dosio, D. (1996). Technology development instructures for reusable launch vehicles. In Reaching for the Skies(Vol. 15, p. 7). ESA Publication.

Premat, G. (1977). Astudy of the outgassing of solder splices. ESA TM-158.

Pretsch, E. (2009). Structure determination of organic compounds.Heidelberg: Springer.

Prymak, J. D., & Bergenthal, J. (1995). Capacitance monitoring whileflex testing. IEEE Transactions on CPMT, Part A,18(1), 180–186.

Puig, C. (2006). When space adheres to bonding—An interview.Qualite Espace,43, 57–63. Mars.

Puippe, J-Cl. (1999). Surface treatments on aluminium for spaceapplications. Galvanotechnique,90(10), 3003–3009.

Puttlitz, J. K. (1990). Preparation, structure and fracture modes. IEEETransactions Parts, Hybrids, Packaging,13, 648–655.

Quinn, G. D. (2008). Fractography of brittle materials: Analysisof fractures in ceramics and glasses. Microscopy and Analysis:21–24.

Raiser, G. F., & Amir, D. (2005). Solder joint reliability improvementusing cold ball pull metrology. In Proceedings of InterPACK’05,San Francisco, CA, USA, July 17–22.

Raman, V., & Reiley, T. (1987). Cavitation and cracking ofsuperplastic Pb–Sn eutectic during high-temperature fatigue. Jour-nal of Materials Science Letters,6, 549–551.

Rameriz, P., & Adams, T. (2002). Acoustic imaging and screening ofceramic chip capacitors. Passive Component Industry: 16–20.

Rampini, R., et al. (2009). Dynamic outgassing test: Revisited. In 11thISMSE Symposium, Aix-en-Provence, September 15–18, Poster.

Ratchev, P., et al. (2005). A study of brittle to ductile fracture transitintemperatures in bulk lead-free solders, EMPC, Brugge, Belgium,June 12–15.

Ray, U., et al. (1995). Influence of temperature and humidity on thewettabiality of immersion tin coated pwb’s. IEEE Transactions onCPM Technology Part A,18(1), 153–161.

Raymond, L. (1988). Hydrogen embrittlement: Prevention and control.No: ASTM Special Technical Publication. 962.

Redahan, E. (2014). 3D printing—Material wise to grain size—A reviewof the 3D printing and additive manufacturing industrial applicationssummit (London 2013). In Materials World, January 10–12.

Reed, R. P., & Clark, A. F. (1983). Materials at low temperature.ASM.

Reid, P. (2009). PWB reliability—The next step. Circuit World,33(4),51–59.

Rendu, M., & Tawil, D. (1988). Improved protection of magnesiumalloys against synthetic aviation lubricants at elevated temperatures,paper 880869. In 24th Annual Aerospace/Airline Plating and MetalFinishing Forum, Phoenix, April.

References 649

Page 91: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Reuther, J. (2010). Orion thermal protection system, advanceddevelopment project. In 7th International Planetary Probe Work-shop, NASA Ames Research Centre, June 16.

Richards, B. P., & Footner, P. K. (1990). Failure mechanisms in activesurfacemount components.GEC Journal of Research,7(3), 146–156.

Ries, W. (1996). The combined plasma cleaning facility. ProductFinishing,49(1), 6–8.

Roman, I., et al. (1992). Interfacial shear properties and acousticemission behaviour of model aluminium and titanium matrixcomposites. In The American Society for Nondestructive Testing,Proceedings of AecM-4 (pp. 109–114), Seattle, July 27–31.

Richards, B. P., & Footner, P. K. (1984). Morphological aspects ofelectromigration. GEC Journal of Research,2(3), 157–168.

Ring, K. (2010). Protection of electronic assemblies in condensingatmospheres. EMPS-1, Portsmouth, UK, February 17.

Roach, T. A. (1984). Aerospace high performance fasteners resist stresscorrosion cracking. Material Performance,239, 42–45.

Robertson, I. M., & Teter, D. (1996). Microscopic studies on hydrogeneffects on mechanical properties. JOM,48(11), 55–60.

Rogers, K., et al. (1999). Conductive filament formation in a pcb.Circuit World,25, 6–9.

Ross, C. A., & Evetts, J. E. (1987). A model for electromigration.Scripta Metals,21, 1077–1082.

Ross, R. G. (1989). Magellan/Galileo solder joint failure analysis andrecommendations. NASA-CR-186294, September.

Rothschild, B. F. (1981). Electroplating of solderable coatings. MetalProgress: 25–29.

Rowntree, R. A., & Todd, M. J. (1988). Tribology for spacecraft.Chartered Mechanical Engineer Journal: 28–30.

Rubinstein, M. (1978). High speed electroplating of gold. GoldBulletin,11(1), 3–8.

Russell, C., et al. (2014). Welding technology takes flight with NASA.Welding Journal,93(5), 38–44.

Rustichelli, F., & Dunn, B. D. (1997). Assessment of residual stressesin AA 2219 weldments by neutron diffraction. To be published inMaterials Science and Engineering.

Ryan, R. S., et al. (1995). Development problems and their solutionsfor the Space Shuttle main engine. NASA Technical Paper 3533,May.

Saber-Samandari, S., & Berndt, C. C. (2010). IFTHSE Global 21: Heattreatment and surface engineering in the twenty-first century.International Heat Treatment and Surface Engineering,4(1), 7–13.

Said, A. F., et al. (2012). Automated void detection in solder balls inthe presence of vias and other artifacts. IEEE Transactions on CPMTechnology,2(11), 1890–1901.

Saltzman, M., et al. (2009). Problems encountered during therecertification of a solar array drive actuator. In 13th SpaceMechanisms and tribology Symposium, Vienna, Austria, September23–24.

Sampson, B. (2007). Soldering on—Training focus. In ProfessionalEngineering (p. 48), April.

Sandera, J. (1996). Investigation into the mode of degradation ofcrimped joints due to corrosive effects. Unpublished ESTECMetallurgy Report 2256.

Saunders, C. G. (1988). Ion techniques in surface engineering. Metalsand Materials,4(11), 678–682.

Saxer, W. (1977). Moeglichkeiten funktioneller Edelmetallueberzuegeanhand aktueller Beispiele aus der Praxis. Galvanotechnik, 68(11)(Black inorganic coating developed by Werner Fleuhmann AG,Dueberdorf, Switzerland).

Saxty, P. (1995). Ultrasonic soldering in the electronics industry.Metallurgica: 287.

Scala, E. P. (1996). A brief history of composites in the US. JOM,48(2), 45–48.

Schatz, et al. (1979). Development and flight experience of the Voyagerpropulsion system. In AIAA/SAE 15th Joint Propulsion Conference(pp. 1–13), Las Vegas, June.

Schedler, A. (1988). Fibre composites in satellites. Cryogenics,28,220–223.

Scheel, W. (2004). Electronics assembly handbook (2nd ed.). Port Erin,I.O.M, UK: Electrochemical Publications.

Schelling, P., et al. (2005) Managing heat for electronics. MaterialsToday: 30–35.

Schemme, K., & Wittkamp, I. (1993). Microstructure development andexamination of Mg–Li alloys. Praktische Metallographie,30(7),334–343.

Schlesinger, M. (2010). Electroless deposition of nickel. In M.Schlesinger & M. Paunovic (Eds.), Modern electroplating. Chich-ester, UK: Wiley.

Schliekelmann, R. J. (1972). Holographic interference as a means forquality determination of adhesive bonded metal joints. In 8thCongress of the International Council of the Aeronautical Sciences,Paper No. 72-06.

Schmidt, E. W. (1984). Hydrazine and its derivatives. New York:Wiley.

Schoenbeck, J., & Dunn, B. D. (2004). Evaluation of a process for therepair of area array and other surface mounted packages, ESASTM-272, September.

Schoenthaler, D. (1984). Accelerated ageing for solderability evalua-tions. IPS-TR-464.

Schoyer, H. F. R. (1996). ESA’s new solid propellant based onhydrazinium nitroformate. Preparing for the Future,6(1), 6–7.

Schreib, R., et al. (1979). Flow anomalies in small hydrazine thrusters.In AIAA 15th Joint Propulsion Conference (pp. 1–7), Las Vegas,June.

Schrunk, D., et al. (1999). The Moon—Resources, future developmentand colonization. Chichester, UK: Wiley-Praxis.

Schubert, Th, et al. (2008). Interfacial design of Cu-based compositesprepared by powder metallurgy for heat sink applications. MaterialsScience and Engineering: A,475, 39–44.

Schuerch, H. U. (1968). Certain properties and applications of NitinolNASA CR-1232.

Schweigart, H. (2007). Conformal coating issues: When reliability goesastray. Global SMT and Packaging, 3.

Scott, B. C. (1987). Zinc diffusion in tin coatings on brass. Transac-tions on IMF,65, 90–98.

Scott, P. G. (1985). An investigation of alodine surface finish on threealuminium alloys. EWP No. 1435 (Unpublished).

Sechi, Y., et al. (2009). Composition dependence of titanium in Ag-Cu-Ti alloy braze metals for laser brazing of boron nitride ceramics andcemented carbides. Material Transactions,50(6), 1294–1299.

Seghesio, J. L. (1986). Heurs et malheurs de la corrosion—le tore d’eaud’Ariane. CNES Quality Espace,16(5), 29–32.

Selman, G. L., et al. (1974). Dispersion strengthened platinum.Platinum Metals Review,18(2), 2–13.

Semerad, E., & Dunn, B. D. (1990). Evaluation of black anodisedberyllium (Unpublished report).

Semprimoschnig, C., & Eesbeek, M. (2007). Materials research at Estec—focus on self-healing materials for space applications. In STFCMaterials Workshop, London, October 10.

Sharkov, E. A. (2008). Breaking Ocean Waves - geometry, structureand remote sensing. Heidelberg, Germany: Springer-Praxis.

Sharma, A. K. (1989). Gold plating on aluminium alloys for spaceapplications. Transactions of the Institute of Metal Finishing,67,87–88.

Shashkov, P. (2013). Aluminium nanoceramic substrates for thermalmanagement in electronics. In Electronic Materials and Proceed-ings For Space Workshop, (EMPS-4), Aalborg, Denmark.

650 References

Page 92: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Sheldahl Inc. (2004). Thermal control material and metallised films.General Trade Literature and Specifications, and The Little RedBook.

Shibutani, T. (2009). Effect of grain size on pressure-induced tinwhisker formation. In 3rd International Tin Whisker Symposium,Lyngby, Denmark, June 23–24.

Shiganov, N. V. (1973). Some special features of arc welding with ahollow electrode in vacuum. Welding Production, 20(9), 30–33

Shipley, E. A. (1988). Developments in ultra high tensile wire ropes. InProceedings of Conference on the Hoisting of Men, Materials andMinerals (pp. 1295–1307), Toronto.

Shrestha, S., Merstallinger, A., Sickert D., & and Dunn, B.D. (2003).Some preliminary evaluations of black coating on aluminiumAA2219 alloy produced by plasma electrolytic oxidation (PEO)process for space applications. In Proceedings of 9th InternationalSymposium on Materials in a Space Environment (pp. 57–65), TheNetherlands, June 16-20.

Shrestha, S., et al. (2007). Recent developments in black finish coatingson aluminium by Keronite plasma electrolytic oxidation. Proceed-ings of the Global Power Train Congress, Engine, Transmissionand Propulsion, Berlin,39–42, 207–215.

Shrestha, S., & Dunn, B. D. (2010). Plasma electrolytic oxidation andanodizing of aluminium alloys for spacecraft applications. In H.Dong (Ed.), Surface engineering of light alloys. Cambridge, UK:Woodhead Publishing Ltd.

Shrestha, S., et al. (2015). Silk corrosion and stress corrosion crackingbehavior of Plasma electrolytic oxidized Al-SiC metal matrixcomposite, to be published.

Shumka, A., & Pietry, R. (1975). Migrated-gold resistive shorts inmicrocircuits. In Proceedings of 13th IEEE International ReliabilityPhysics Conference (pp. 93–98), Las Vegas.

Sicking, R. (2005). Brazing of aluminium heat exchangers. Weldingand Cutting Journal,4(3), 150–159.

Silverman, E. M. (1995). Space environmental effects on spacecraft:LEO materials guide. NASA Contractor Report 4661 Part 1,August.

Simpson, P. R., & Bowie, S. H. U. (1970). Quantitative optical andelectron-probe studies of the opaque phases. Science,167, 619–621.

Sinclair, J. D., et al. (1985). Volatile components in rosin flux:characterisation and reliability effects. In 35th IEEE ElectronicComponents Conference (pp. 144–150), Washington DC,May 20–22.

Singh, J., et al. (2005). Welding in Space. Advanced Materials andProcesses Journal: 52–57.

Smith, C. A. (2007). Chemical characterization of materials inelectronic systems using infrared spectroscopy. Circuit World,33(3), 38–47.

Sogame, E., et al. (1990). Recent developments in the hydrazine relatedpropulsion technology in NASDA. In Proceedings of 17th Inter-national Symposium on Space Technology and Science (Vol. 1,pp. 107–112), Tokyo.

Sohn, J. E., & Ray, U. (1995). Weak organic acids and surfaceinsulation resistance. Circuit World,21(4), 22–25.

Solari, G., & Repetto, M. P. (2014). IL comportamento delle structuremetalliche saldate nei confronti delli’azione del vento. RivistaItalianadella Saldatura: 851–859.

Soli, L., & Dunn, B. D., et al. (2015). An electron beam brazing reflowtechnique. Giorate Nazionali di Saldatura, GNS8, Genoa, Italy,May 28–29.

Somiya, I., et al. (2013). Products with special electrical and magneticproperties, Ch. 7. In Handbook of advanced ceramics: Materials,applications, processing and properties. Amsterdam, The Nether-lands: Elsevier Inc.

Sood, B., et al. (2011). Whisker analysis of electronic throttle controls.Circuit World,37(3), 4–9.

Spedding, V., & Hargreaves, P. (1995). Materials on line. MaterialsWorld,3(10), 483–484.

Sriveeraraghavan, S., et al. (1995). Chemical removal of solder andsolder electroplates. Metal Finishing: 34–36.

Stanley, J. K. (1968). Solutions to some stress corrosion crackingproblems in aerospace situations. In Proceedings of 1st Interna-tional Aerospace and Marine Corrosion Technical Seminar,NACE, LA, USA, July.

Stoltz, R. E., & Stulen, R. H. (1979). Slid metal embrittlement of Ti–6A1–6V–2Sn by cadmium, silver and gold. Corrosion-NACE,35(4), 165–169.

Strachan, W. (2000). Processes for manual solder assembly of highheat capacity boards (Unpublished).

Stratton, P. (2013). Ellingham diagrams—Their use and misuse.International Heat Treatment and Surface Engineering Journal,7(2), 70–73.

Sterjovski, Z., et al. (2010). The effect of voltage and metal transfermode on particulate fume size. Rivista Italiana della Saldatura,6,765–780.

Sturgeon, A., & Dunn, B. D. (2006). Cold sprayed coatings for polymercomposite structures. In Proceedings of 10th ISMSE Conference,Collier, France, June 19–23 (ESA SP-616).

Suchentruck, R. (1986). Electroforming of complex parts. TransactionsIMF,64, 19–23.

Sun, J., et al. (2012). Kinetic study of the pyrolysis of waste pcbssubject to conventional and microwave heating. Energies,5, 3295–3306.

Surkov, Y. (1997). Exploration of terrestrial planets from spacecraft(2nd ed.). Chichester, UK: Wiley-Praxis.

Suslov, D. I., et al. (2010). Convective and film cooled nozzleextension for a high pressure rocket subscale combustion chamber,AIAA 2010-1150. In 48th AIAA Aerospace Sciences MeetingIncluding New Horizons Forum, Orlando, FL, USA, January 4–7.

Tak, W, et al. (2009). SMA actuator based satellite separation deviceusing plastic deformation. In 13th European Space Mechnisms andTribology Symposium—ESMATS, Vienna, September 23–25 (ESASP-670).

Tamai, T. (1995). Effects of silicone vapour and humidity on contactreliability. In Proceedings of IEEE Holm Conference (pp. 252–259).

Tamai, T., & Aramata, M. (1993). Safe levels of silicone contaminationfor electrical contact. In Proceedings of IEEE Holm Conference onElectrical Contact Phenomena (pp. 269–273), England

Teare, M. (1994). Manufacture of a multi-horn feed by electroforming.In International Symposium on Advanced Materials for LightweightStructures, ESA-ESTEC (pp. 305–309), March 22–24. ESA WPP-070.

Teer, D. G. (2001). New solid lubricant coatings. Wear,251, 1068–1074.

Tegehall, P.-E. (1991). The impact of crevices beneath smds on thecleaning efficiency. Soldering and SMT Journal,8, 46–52.

Tegehall, P.-E., & Dunn, B. D. (1992). Influence of flux residues andconformal coating on the SIR properties of spacecraft pcb’s. ESAJournal,16(3), 255–274.

Tegehall, P.-E., & Dunn, B. D. (2001). Assessment of the reliability ofsolder joints to ball and column grid array packages for spaceapplications, ESA-STM-266.

Tegehall, P.-E., & Dunn, B. D. (2001a). Evaluation of thermallyconductive adhesives as staking compounds during the assembly ofspacecraft electronics. ESA STM-265, August.

Tegehall, P.-E., & Dunn, B. D. (2003). Impact of cracking beneathsolder pads in PCB laminate on reliability of solder joints made toceramic ball grid array packages. ESA-STM-267.

Tegehall, P.-E., & Dunn, B. D. (2005). Impact of reworking ceramicAGAs on the integrity of PCB laminates. ESA STM-273, June.

References 651

Page 93: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Tegehall, P.-E., & Dunn, B. D. (2006) Evaluation of cleanliness testmethods for spacecraft PCB assemblies. ESA-STM-275.

Tegehall, P.-E., & Wetter, W. (2015). Impact of laminate cracks undersolder pads on the fatigue lives of BGA solder joints, Microelec-tronics Reliability, article in press.

Thiel, C., et al. (1993). Functional activity of plasmid DNA after entryinto the atmosphere of Earth investigated by new biomarkerstability assay for ballistic spaceflight experiments. PLOS One,November 26.

Thiel, M., et al. (2003). The Rosetta Lander Anchoring System. InProceedings of the 10th European Space Mechanisms and Tribol-ogy Symposium (pp. 239–246), San Sebastian, Spain, September24–26.

Thoma, W. (1981). Product liability. In 2nd ESA Product AssuranceSymposium (pp. 31–33), ESA SP-163.

Thomas, G., et al. (1993). The effect of pre- and post-weld heattreatments on the mechanical properties of EB welded Ti6A14V.Journal of Material Science,28, 4892–4899.

Thomas, G., & Dunn, B. D. (1999). Assessment of electricallyconductive adhesives (ECAs) for joining surface mount devices toprinted circuit boards. In 2nd IEEE Symposium on PolymericElectronic Packaging (PEP 99) (pp. 9–13), Gothenburg, Sweden,October 24–28.

Thomas, R. W., & Calabrese, D. W. (1983). Phenomenologicalobservations on electromigration. In 21st Annual Proceedings inReliability Physics (pp. 1–9), Phoenix, Arizona, April 5–7.

Thompson, D. H. (1961). A simple stress corrosion cracking test forcopper alloys. Materials Research and Standards,1(2), 108–111.

Thomson, P., et al. (1995). The use of shape memory alloys for passivestructural damping. Smart. Materials and Structures,4, 36–42.

Tighe, A. et al (2010) Overview of results from the materials exposureand degradation experiment (MEDET) after 18 months in orbit onthe ISS, ESA paper.

Tillmann, W., & Boretius, H. (2008). Properties of nickel-based jointsbetween diamond and steel for diamond grinding tools. Weldingand Cutting,7(4), 228–234.

Toensmeier, P. A. (2009). Shape memory polymers reshape productdesign. In Plastics engineering, April 2.

Towner, J. M., et al. (1984). Grain growth in Al alloy conductors as aresult of rapid annealing. Applied Physics Letters,44, 198–199.

Tondu, T., et al. (2011). Cesium droplet evaporation as contaminationroute by cesium field effect electric propulsion. Journal ofSpacecraft and Rockets,48(3), 513–519.

Troughton, M., et al. (2013). State of the art in welding thermoplasticsand in assessing thermoplastic welded joints. Rivista Italiana dellaSaldatura,6, 887–895.

Tsuda, N. (2000). Electronic conduction in oxides (p. 243). Heidelberg,Germany: Springer.

Tsukada, M., et al. (2012). A new strategy for assessing off-gassingfrom museum materials. AIC News,37(1), 1–7.

Tulsi, S. S. (1986). Properties of electroless nickel. TransactionsIMF,64, 73–76.

Turlach, G. (1985). Improving fatigue strength of aerospace metalfasteners by surface work hardening. Surface Engineering,1(1),17–22.

Turner, I., Dunn, B. D., & Barrnes, C. (2013). A study into the re-processing of pure tin termination finishes into tin-lead. Solderingand SMT Journal,25(4), 218–228.

Turner, R. F. (1995). Chapter 9. In P. Fortescue & J. Stark (Eds.),Spacecraft systems engineering (2nd ed.). Chichester: Wiley.

Turner, T. E., & Parsons, R. D. (1982). A new failure mechanism: A1–Si bond pad whisker growth. IEEE Transaction on Components,Hybrids and Manufacturing Technology,CHMT-5, 431–435.

Tyler, D. (2015) Reliability of ball grid arrays converted from lead-freeto tin-lead by robotic hot solder dipping, EMPS-6, Wessling,Germany, April 15–16.

Vail, J. R., et al. (2011). Polytetrafluoroethylene fiber reinforcedpolyetheretherketone composites. Wear,270, 737–741.

Vander Voort, G. F. (2008) Titanium—specimen preparation,Advanced Material and Processes, February 25–27.

van Eesbeek, M., et al. (1994) Degradation of Teflon FEP due to VUVand atomic oxygen exposure. In Proceedings of 6th InternationalSymposium on Matls in Space Environment, ESTEC (pp. 165–173).ESA SP-368.

Vancso, J, et al. (2009) Whats new in atomic force microscopes forpolymers. Microscopy and Analysis, May 5–11.

Vaughn, R. L. (1985). Space shuttle—A triumph in manufacturing.Dearborn, USA: Society of Manufacturing Engineers.

VEGA. (2006) User’s Manual, Issue 3 rev.0, and ESA-BR-257 (2007).Veit, H. M., et al. (2002). Using mechanical processing in recycling

printed wiring boards. JOM, June 45–50.Verbraak, C. A., TNO Metaalinstituut. Delft: Private Communication.Verderaime, V., & Vaughan, R. (1995) Aluminium U-groove weld

enhancement based on experimental stress analysis. NASA Techni-cal Paper3581.

Verdin, D., & Duck, M. J. (1985). Conductive coatings to minimise theelectrostatic charging of Kapton. 3rd European Symposium onSpacecraft Materials in Space Environment (pp. 125–131). ESASP-232.

Vine, M. K., & Price, W. B. (1992) A literature review of fretting inlaunch, re-entry and space environments. ESTEC Contractor Reportfrom ESTL (TM-106).

Vitt, B. (1987). Black-cobalt coating for solar collectors. PhilipsTechnical Review,43, 244–252.

Voigtlander, B. (2015). Scanning Probe Microscopy. Heidelberg:Springer.

Volkert, C., & Minor, A. M. (2007). Focused ion beam microscopy andmicromachining. MRS Bull,32, 389–395.

Vranish, J. M., & Gorevan, S. (1995). Basic space payload fastener.29th Aerospace Mechanisms Symposium, NASA JSC (pp. 152–157).NASA Conf. Publication 3293.

Wagner, R. (1992). Metallized CFRP technology. Germany: PrivateCommunication, Dornier Space Systems.

Walmsley, M. (2015). Ruggedised solder joint technology for leadlesssemiconductor packages. EMPS-6, Wessling, Germany, April 15–16.

Ward, P. (1994). Effects of bearing wash procedures in performance.Non-Ozone depleting Chemical Cleaning EPA Workshop, Denver,Co, September 26–27.

Ward, P. P. (1996). Plasma cleaning techniques and future applicationsin environmentally conscious manufacturing. SAMPE Journal,32(1), 51–54.

Warwick, M. E., & Muckett, S. J. (1983). Observations on the growthof intermetallics on tin-coated substrates. Circuit World,9(4), 5–11.

Watson, J. A., et al. (2002) A history of astronaut construction for largespace structures at NASA LRC. In IEEE International SpaceStation Conference. Nyact, NY, USA, March 9–16.

Webster, D. (1994). Aluminium–lithium, the next generation.Advanced Materials and Processes,145(5), 18–24.

Wedgewood, A. (1994). Measuring residual stress. Materials World,3(1), 5–7.

Weirick, L. J. (1975). A metallurgical analysis of stress corrosioncracking of Kovar package leads. Solid State Technology,18(3), 25–30.

Wescon. (1965). Session 16B Papers (Western Electronic Show andConvention, California, 1965), July.

652 References

Page 94: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Wetzer, J. M., & Wouters, P. (1993). The effect of insulator charging onbreakdown and conditioning. IEEE Transactions,EI 28(4), 681–691.

Wetzer, J. M., & Wouters, P. (1994). High-voltage design of spacecraftvacuum components. Paper from the High-voltage and EMCGroup, Eindhoven University of Technology, The Netherlands

Whalen, M. V. (1988). The compatibility of dispersion-strengthenedplatinum with propellants. Platinum Metals Rev,32(1), 2–10.

Wickham, M., Hunt., Adams, D., & Dunn, B. D. (1999). Aninvestigation into ball grid array inspection techniques, ESASTM-261.

Wickham, M. et al. (2014). Whisker mitigation measurements using atest vehicle based on a printed circuit assembly. 8th InternationalSymposium on Tin Whiskers. Raleigh, NC, USA, October 29.

Wild, R. N. (1975) Some fatigue properties of solders and solder joints.INTER-NEPCON, Brighton, UK. IBM report No. 74Z000481,October.

Williams, D. N, et al. (1970). Hydrogen segregation in Ti–6A1–4Vweldments made with unalloyed titanium filler material. WeldingJournal Research Supplement, May 207–212.

Wingborg, N., de Flon, J., Johnson, C., & Whitlow, W. (2008) GreenPropellants Based on ADN. Space Propulsion 2008. Heraklion,Crete, Greece. ESA, 3AF, SNPE, May 5–8, 2008.

Winkler, W. (1975). Conductive coating: problem of electrostaticcleanliness. Acta Astronautica,2(7–8), 745–754.

Wolfenden, R. T. (1996). Problems with solvent vapours in arc weldingfabrication environments. Welding and Metal Fabrication,64(4),136–139.

Wolff, R. H. (1963). Corrosion of plated metals after heating invacuum. Plating Journal, 905–910, October.

Wright, C. (1977). The effect of solid-state reactions upon solder lapshear strength. IEEE PHP,13(3), 202–207.

Wu, X. J., et al. (1994). The orientation dependence of fatigue crackgrowth in 8090 A1–Li plate. Metallurgical and Materials Trans-actions A,25, 575–588.

Xu, H., et al. (2009). A re-examination of the mechanism ofthermosonic copper ball bonding on aluminium metallised pads.Scripta Meterialia,61(2), 165–168.

Xu, H., et al. (2010). The role of bonding duration in wire bondformation: a study of footprints of thermosonic gold wire onaluminium pad. Microelectronics International,27(1), 11–16.

Xu, H., et al. (2013). Wafer-level SLID bonding for MEMS encap-sulation. Advances in Manufacturing,1, 226–235.

Yao, W., & Basaran, C. (2014). Damage mechanics of electromigrationand thermomigration in lead-free solder alloys under alternatingcurrent: An experimental study. International Journal of DamageMechanics,23(2), 203–221.

Yao, Y., Zhou, Y., & He, L. (2013). Corrosion behavior of molybdateconversion coating on AZ31 magnesium alloy in NaCl solution.Anti-Corrosion Methods and Materials,60(6), 301–311.

Yext, W. F., et al. (1983). Improved glass-to-metal sealing throughfurnace atmosphere control. IEEE Transactions on Components,Hybrids and Manufacturing Technology CHMT-6 (pp. 455–459),December

Ylikorpi, T., et al. (1995). Development of an actuator for CAPS onspacecraft Cassini. In Proceedings of 6th European Space Mecha-nisms Conference (pp. 97–101). Zurich, Switzerland, (ESA SP-374).

Yoder, D. D., et al. (1993). Technical article on plated through holefatigue life, Part 2. IPC Review,34(5), 20–27.

Yost, F. G. (1976). Indium soldering on gold. In Proceedings ofInternational Microelectronics Symposium (p. 61).

Yost, F. G., et al. (1976). Layer growth in Au-Pb/In solder joints.Metallurgical Transactions A,7A, 1141–1156.

Zhang, W., & Jin, H. (2009). Study of tungsten metallization surfacestates for multilayer ceramics. In IEEE Proceedings of ICEPT-HDP’09 International Conference. Beijing, China, August 10–13.

Zhao, H., et al. (2013). Controlled atmosphere brazing of aluminiumheat exchangers. Welding Journal, February 44–46.

Zimcik, D. G. (1987). Effect of long-term exposure to LEO spaceenvironment on spacecraft materials. Canadian Aeronautics andSpace Journal,33(1), 4–10.

Zirker, L. R., et al. (2007). Weld tests conducted by the Idaho NationalLaboratory, INL/EXT-07-12289.

Zou, L., Dunn, B. D., et al. (1999). An evaluation of the effect of ageingon the cleanability of solder flux residues. Soldering and SMTJournal,11, 27–35.

Zwanenburg, R. (1995) The qualification test programme of the Envisatsolar array mechanism. In Proceedings of 6th European SpaceMechanisms Conference (pp. 65–72), Zurich, Switzerland. ESASP-374..

References 653

Page 95: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Index

0–90.5 N thruster, 2902 m diameter L-band dish antenna after test, 2983D printing (or Additive manufacturing), 12, 3350In50Pb, 45450In50Pb solder joints, 3556061, 17996Sn–4Ag solder alloy, 356

AAA 2017, 253AA 2024-T81 (bar, rod), 539AA 2219, 33, 51, 103, 217, 225, 325, 545AA 2219-T81, 539AA 2618, 183AA 7020, 325AA 8090-T8771, 249Ablation, 46Ablative material, 34, 36, 37, 46, 262, 502, 524. See also Re-entryAblebond 8175A, 415Accredited laboratories, 105Acicular alpha, 126Acoustic emission, 89Acoustic emission sensors, 94Acoustic emission signals, 93Acoustic microscope, 88Acoustic microscopy, 85Active metal process, 402Active systems, 23Additive layer manufacturing, 12Adhesive, 50, 56, 125, 413, 507Adhesive compounds, 533Adhesive filler, 304Adhesive film, 295Adhesive tape, 42, 188, 284Adhesive tape residues, 208Adhesive wear, 26Aeroshell, 46AF-E-332, 43, 290, 294Ag–Cu eutectic, 402Ageing tests, 339Airborne salt, 139AISI 304, 98AISI 440C, 296AISI E52100, 296Al-2195, 274Al-2219, 132, 133, 137, 237

Al-2219 wrought product, 136Alclad products, 134Al–Li alloy plate, 143Al–Li alloys, 103Al–Li cryogenic tank, 232Alodine, 529, 545Alodine 1200, 329Alodine 1200 coating on Al-2024-T3, 135Alodine finishes on common spacecraft aluminium alloys, 134α and ɛ for common spacecraft surfaces, 267α/ɛ for a selection of surfaces and finishes, 267α/ε values, 23Alpha-case embrittlement, 323Alphasat, 8Al–Si brazing filler metal, 181Alternate immersion test, 250Alulight®, 202Aluminides, 535Aluminium alloy, 19Aluminium alloy 2219, 98Aluminium alloy cooling loop, 129Aluminium Alloys Designations, 567Aluminium alloy temper designations, 567Aluminium-Beryllium Alloys, 288Aluminium honeycomb to face-skin, 304Aluminium-lithium alloy, 36, 83, 273Aluminium metallization, 469Aluminium metal matrix composites, 229Aluminium on carbon fibre reinforced PEEK, 224Aluminium-to-gold wire bond, 337Aluminium whisker growth, 470Aluminized FEP Teflon, 322AM-350, 318American Welding Society, 340Ammonium di-nitramide, 328Ammonium perchlorate, 328Amorphous silica, 290Analysis of surfaces, 99Anodized beryllium, 529, 532Anodized film, 308Anodizing, 134Antenna face-skin, 223Apogee-boost motors, 167AQ 60 I, 526Aqueous cleaning systems, 212ARALDIT, 539Araldite AV 138, 42ArallR, 45

Note: Bold page numbers are used for main references. An italic number refers to an illustration on the page.

© Springer International Publishing Switzerland 2016B.D. Dunn, Materials and Processes, Springer Praxis Books,DOI 10.1007/978-3-319-23362-8

655

Page 96: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Area grid array (AGA), 122, 426Area Grid Array packaging, 434Area Grid Array packages, 352Argon ion milling, 70Argweld enclosure, 182Ariane IV, 31Ariane 5, 232, 328Ariane 5 systems where white paint is applied, 238Ariane launchers, 325Ariane V, 32, 33Ariane V ‘half-fairing’, 66Asymptotic heating strategy, 150Atmospheres for Brazing, 404Atomic force microscope, 70Atomic oxygen, 168, 505, 522, 525, 540, 547, 554Atomic oxygen on materials, 517Atomic oxygen protective coatings, 505Atomic oxygen testing, 97Atomic oxygen with selected metals, 524Au2Al, 335AuAl2, 334AU4GN, 30Au80Sn20 braze alloy, 243AuIn2, 348, 365, 366AuSn4, 339, 360, 361Austenitic steels, 318Automatic electrical test equipments, 422Avcoat ablative material, 36AZ31, 129, 306AZ5GU, 30

BBacteria, 68, 72Bacterial and fungal growth, 42Baffle Cover Mechanism, 309Baffle hinge, 311Bake-out times and temperatures for PCBs, 392Balinite, 310Ball bonding, 332Barium-impregnated cathodes, 291Barrier layer, 358Beach marks, 271Beagle 2, 48Bearing friction, 299Bearing lifetimes, 304Bearing materials, 148Bearings coated with titanium carbide, 299Bearings under vacuum, 299Belleview spring fracture surface, 250Belleville spring, 250Benzene-based solvents for cleaning, 210Be-oxide layer, 530BepiColumbo, 25Berylliosis, 281Beryllium, 280, 283, 405Beryllium as a heat shield, 528Beryllium as-received parts, 285Beryllium foil, 286Beryllium foil with resulting mechanical properties and grain

structures, 287Beryllium machining, 281Beryllium S-200C, 20Beryllium sheet, 529Beryllium structures, 259Beryllium thermal protection, 526

BETA cloth, 540Bimetallic contacts, 18Bimetallic corrosion-related failures, 128Bi-stem deployment, 322Bi-stem deployment booms, 322Black anodized aluminium, 267Black anodizing, 270Black arrow, 111Black chromium, 269Black cobalt, 269Black pad, 176, 358, 359Black patina, 360Black-anodized aluminium housing, 317Black-anodized electrical connector, 308Black-anodized finish, 311Black-anodized layer, 311Black-body calibration mechanism, 306, 307Black-nickel plating, 269Blind bolt fasteners, 259Blow-hole, 160, 411Board distortion, 423Borosilicate glass, 35Brass turret terminal, 358Brass turret terminal pins, 359Braycoat, 539Brazeability, 400Braze alloy compositions, 400Braze alloy filler metals, 399Brazed joint, 341Brazing, 51, 239, 245, 329, 399Brazing alloy foil, 180Brazing fluxes and their removal, 403Brazing furnace, 404Brittle fracture, 247, 332Brittle-to-ductile fracture transition temps. in Pb-free and SnPb solders,

457Brominated flame retardants, 109Brush alodined weld zones, 59Brush debris, 506Brush plating at NASA MSFC, 236BS L93 alloy plate, 142Burn-in procedures, 341Butt joint between copper and nickel, 206Butt-welding process, 332

CCable cutter, 28Cadmium, 24, 108, 272, 327Cadmium fumes, 405Cadmium plating, 255Cadmium slivers, 313CAF growth, 396Calomel electrode, 387Capacitor, 352Capillary action, 341Capillary attraction, 399Capillary gaps, 214Capillary management systems, 327Capillary pump, 327Capillary screens, 172Carbon fibres, 36, 45, 164, 166, 168, 172, 247, 518, 532Carbon fibre reinforced polymers, see CFRPCoefficient of expansion, 557Carbon nanotubes (CNT), 44, 46Carbon nanotube structure, 44

656 Index

Page 97: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Carbon–carbon composites, 170, 531Carbon–carbon decelerator, 526Carbon-epoxy, 36Carbon fibre mesh, 44Carbon–silicon carbide composites, 531Cassini, 526, 528Catalyst deactivation, 290Catalyst particles for hydrazine decomposition, 288Catalyst particles, 289, 290Catalytic bed thruster motors, 512Cathode emitter degradation, 291Cathode emitter degraded by sintering of porous tungsten, 298Cathode emitter surface, 293, 296Cavitation at the inclusion-to-matrix interface, 265Ceramic capacitors, 410Ceramic chip capacitor with internal voiding, 88Ceramic matrix composite fasteners, 535Ceramic matrix composites, 534Ceria doped micro-sheets, 28Cesium, 24CFRP, 11, 26, 36, 91, 166, 293, 505CFRP delaminations and fractures, 295CFRP face-skins with an aluminium honeycomb, 293CFRP waveguides, 168Charcoal black finish, 227Chemglaze, 547CHEMGLAZE, 539Chemglaze Z306 black paint, 275Chemical analysis, 71Chemical conversion, 329Chemical conversion coating for magnesium alloys, 129Chemical conversion coatings, 134Chemical (elemental) content of a typical spacecraft electronic box, 112Chemical stripping, 496Chromate conversion coating, 129Chromate conversion coating on cadmium-plated steel, 275Chromate primers, 107Chromium and nickel sublimation, 276Circuit design, 423Circumferential in-place pipe welding, 196Cleaning efficiency, 391Cleaning method, 275Cleaning of flux-contaminated surfaces, 389Cleaning of flux residues, 351Cleaning of individual parts, 210Cleaning of metallurgically joined assemblies, 212Cleaning processes associated with spacecraft mechanical systems, 207Cleaning silicone contaminated surfaces, 219Cleanliness, 216, 218Clean-room practice, 313Cleavage cracks, 248Coatings and conversion coatings, 268Coatings for soldering applications, 357Coaxial cable assembly, 356Coefficient of expansion, 557Coefficient of (linear) thermal expansion, 349, 401, 557Coil spring, 309Coin or tap test, 83Cold-drawn springs, 318Cold pressure weld, 299Cold sprayed coatings, 223Cold-weld, 339, 549Cold weld database summary tables, 307Cold-welded particle, 309Cold welding, 25, 26, 83, 120, 299, 305, 354, 381Cold welding due to cyclic, impact loading, 306

Cold welding of mechanisms, 304Cold welding of stranded wires, 380Colinal, 269Collected volatile condensable material, 40Colophony fumes, 398Column grid array interconnections, 440Column grid arrays, 426Combustion chamber, 33Commercial off-the-shelf components (“COTS”), 63Communication satellite systems, 7Company cleaning plan, 210Comparison Tables (Alloys), 571Compatibility of Liquid and Solid Propellants with Components and

Subsystems, 326Compatibility testing, 210Compatible coupling, 17Component cracking, 424Component part selection, 66Component part selection, and procurement, 61Composite contact rivets, 165Computer tomographic scan, 438Computerized X-ray tomography, 88CONATHANE, 432Condensation of outgassing products, 505Condensation rates, 273Condensed cadmium contaminant on surface of painted shroud, 275Condensed moisture, 129Condensed organic contamination, 259Conductive adhesives, 425Conductive Anodic Filament (CAF), 393, 394Conductive coatings, 238Conductive silicone adhesive, 271Conductor track failure, 428Conformal coating, 393, 428, 432, 540Connector bodies, 313Connector-to-coax assemblies, 356Contact devices, 164Contaminant particles, 309, 549Contamination, 65Contamination of Invar moulding tool, 312Controlled atmosphere brazing, 181Conversion table for mechanical properties, 565Co-planarity problems, 423Copper comb patterns, 392Copper-palladium alloy, 165Copper ribbon column fracture, 440Copper–silver eutectic preforms, 132Copper sulphate test for ferrite, 138, 318Copper–tin intermetallic layer, 149Copper-to-enamel interface, 370Copper-to-silver-plating interface, 358Cork, 37, 46–48, 524Cork TPS tiles, 48Corona, 27, 390, 442, 445, 504Corona discharge, 444Corona effects, 371Corrosion adjacent to dip brazed fillet, 179Corrosion of stored spacecraft electronic components, 40Corrosion potential, 17Corrosion potential of metals, 14Corrosion prevention, 17Corrosion product, 541, 546Corrosion testing, 75Corrosion, 390, 540Corrosion-resistant fastener materials, 253Cosmetic defect, 119, 411

Index 657

Page 98: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Cosmetics of solder fillets, 410Cosmic ray detectors, 451Counterfeit fasteners, 253Cracked barrel, 120Cracked ceramic chip capacitor due to vibration, 421Cracked leads on a thick-film carrier package, 174Cracking of glass-to-metal seals, 410Crack initiation, 349Crack propagation rate, 27Cracks in CFRP, 300Cracks in Inconel heater housing, 278Cranes, 63Crimpability, 370Crimping tools, 339Crimp joint, 337Crimp-termination characteristics, 343Critical design review, 22Critical processes, 621Cross section polisher, 337Cross-section through a solar array, 190Cryocon®, 198Cryofit®, 198, 201Cryogenic bearing, 229Cryogenic propellants, 29Cryogenic temperatures, 369, 455Cryogenic temperature materials, 26, 43, 149, 220, 229, 318, 320, 329,

369, 379, 454, 490Cryostats, 27Crystallographic planes, 98C-SAM, 439Cu2O, 370Cu3Sn, 361, 372, 376, 412Cu6Sn5, 330, 361, 364, 412, 413, 474CuA12, 131CuAl2, 133CubeSat, 11, 45, 63, 615Curie temperature, 318Custom 455, 146CV 1140–0, 431CV 1144-0, 432

DD6AC, 34DC93-500 space grade, 42Debond and fracture of CFRP, 299Debris, 509, 512Declared Materials List (DML), 10, 58, 116, 262, 309, 625Declared Process List (DPL), 58, 419, 621Defective solid rocket motor case, 28Defects in titanium piece-parts, 323De-golding by immersion, 360Delamination, 84, 303, 392Delrin, 505Delta ferrite, 315Dendrites, 395Densimet, 306Deployable nitinol strut, 200Dermatitis, 398Design margins, 11Destructive physical analysis, 57Dewetted area of pad, 152Dewetting of pad, 153Dewetting on areas to be soldered, 150Dewpoint, 405Diamond, 220

Diamond grit metal matrix composite, 222Diamond pyramid hardness impressions, 336Diaphragm, 38, 288Dichloromethane, 211Dicronite, 310Dielectric breakdown, 359Dielectric properties, 392Differential heating, 509Diffusion bonding, 197, 203, 206Diffusion brazing, 399Diffusion of zinc, 359Diffusion soldering/brazing, 408Diffusion soldering process, 409Diffusion welding, 105DIGESIL, 315Dimensional stability, 170Dip brazing of aluminium alloys, 179Dip brazing, 181, 399, 405Dipole connection, 362Disassembly of orbiting space hardware by astronauts, 305Disposable mandrels, 177Dissimilar FSW, 233DNA, 70Dog bone tensile sample, 47DOW 17, 129Dry-heat ageing, 371Ductile dimple fracture, 249Ductile intermetallic compounds, 365Dye penetrant, 442Dye penetrant testing, 58, 139, 208, 255, 323, 408Dye penetrant test method, 439Dynamic outgassing testing, 97

EEarth’s magnetic field, 508EB brazed joints with Au80Sn20, 242Ebonol black, 269EB-welded 2219-T851, 141EB welding machine for reflow brazing, 239ECCOBON, 539ECCOFOAM, 539Eccoshield tape, 196ECM failures, 394ECSS-Q-ST-70-02, 38ECSS-Q-ST-70-38, 353EG8050HC, 415Elastomer type AF-E-332, 288Electrical bonds, 329Electrical conductive adhesives (ECAs), 413Electrical feedthrough, 444Electrical grounding, 17, 223, 235, 329Electrical interconnections, 329Electrical open-circuit, 320Electrical resistance testing at room and cryogenic temperature, 455Electrical resistance weld, 330, 331Electrical resistivity, 339, 458Electrochemical migration (ECM), 359, 360, 392, 393, 393, 462, 540Electrode housing, 240Electrode housing materials, 242Electro-etch cleaning, 237Electro-explosive devices, 264Electroforming processes, 176Electroless nickel deposits, 173Electroless nickel plating, 318Electroless nickel plating of aluminium electronic housings, 175

658 Index

Page 99: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Electromagnetic emission, 196Electromagnetic emission from TIG welding equipment, 195Electromigration, 468, 470Electron beam weld, 132, 184Electron beam welding, 51, 184, 185Electron-beam-welded titanium alloy, 185Electronic box, 62, 88, 110Electronic circuitry, 329Electronic housings, 329Electronic package, 427Electroplated nickel, 174Electrostatic discharge, 418Elemental analysis, 97Ellingham diagrams, 400, 613Emafil Technology, 370Embrittlement of copper, 127Embrittlement of titanium alloys, 255Enamel-coated copper, 370Energy conversion element, 200Energy-dispersive x-ray analyser, 71Engineering drawing, 116Environmental conditions, 20Epotek E2116, 415Epoxy smearing, 159Epoxy top-coat, 394ePTFE, 46ERS-1 spacecraft, 167Etchants, 561Etching of metals, 561Etching solutions for beryllium, 285Ethical issues, 104Eureca, 520European retrievable carrier (EURECA), 503Eutectic tin–lead solder alloy, 341EVA joining/cutting activities, 50Evaluation of solderability, 372Evaporation rates, 272Examination of fracture surfaces, 247Exhaust plume, 328Expendable launch vehicles, 28Explosively welded transition ring, 187Explosive welding, 186

FFailed ABM case, 264Failed ball-bearing, 304Failed component lead, 384Failed rhenium tube from electrothermal thruster, 283Failed spacecraft antenna, 293Failed video camera electronic circuit, 541Failure investigation, 99Failure mechanism associated with surface-mounted devices, 425Failure mode analysis, 57Failure of RF cables connected by SMT, 428Failure review board (FRB), 21, 102Failures due to board flatness problems, 422Faraday shielding, 37Fastener failure due to forging defect, 254Fastener manufacturers, 253Fastener specifications, 255Fasteners, 251, 533Fatigue life, 367Fatigue striations, 248Fatigue tests, 78Ferromagnetic materials, 317

Fibre-reinforced glass ceramics, 170Fibre-reinforced plastic composites, 166Fill and drain nozzle, 198Fingerprint greases, 127Finishes for titanium and its alloys, 310First-aid equipment, 405Five-stage model for whisker growth, 483Flammability, 42, 540Flammability hazard, 370Flat-packs, 351Flatwise tensile tests, 296Flawed primary mirror, 11, 60Flexible circuits, 159Flexible second surface mirrors, 271Flexible waveguide, 121Flight harness materials, 550Floating grains, 349Fluorescent penetrant inspection, 262Fluorides, 405Fluorinated ethylene propylene, 159Fluorine attack, 375Flux residue, 384, 391, 546Flux types for engineering metals, 387Flux-corrosion of silver-plated stranded wires, 383Foamed aluminium for damping, 202Focused ion beam (FIB) microscope, 70Fourier transformation infrared (FT-IR) spectrometers, 100Four-point bending test, 76Fracture at cryogenic temperatures, 454Fracture locations in coating, 237Fracture mechanics testing, 76Fracture surface of a circular metallized (Ti–Pd–Ag) contact pad, 271Fracture toughness, 83Fretting, 83Fretting test, 229Friction, 25Friction stir joining and welding, 12, 34, 36, 52, 189, 231, 234Friction stud welding, 234FTIR, 391FT-IR analysis, 317Fuel lines, 324Fusion welding, 182Futuristic ideas, 11

GGalileo spacecraft, 308Gallium–palladium–silver braze alloy, 403Galvanic compatibility, 388Galvanic copper corrosion, 378Galvanic corrosion, 386, 389Galvanic corrosion of fasteners, 257Gamma-ray detectors, 286Gamma-rays, 83Gamma-TiAl alloys, 196Gapasil brazing alloy, 273Gas-tight joint, 120Gas-tightness, 339, 340Gas-tightness test, 338GCMS, 40Gecko biomimetic adhesive tape, 45Girth weld, 68GlareR, 45Glass to metal seal, 467Glass-rich oxide whiskers, 467Glossary, 629

Index 659

Page 100: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Gold, 110Gold–aluminium system, 332Gold-embrittled solder joint, 363Gold embrittlement, 360Gold embrittlement of solder, 362Gold in solidified solder, 361Gold-plated conductor material, 363Gold-plated dipoles, 361Gold-plated surfaces, 360Gold removal, 348Gold-rich intermetallic phases, 334Gold-tin binary phase diagram, 242Gold wires, 332Grain boundary embrittlement, 127Grain boundary embrittlement in beryllium, 286Grain growth, 332Grain growth and internal cavitation, 280Graphine, 43, 44, 220Graphite fibre thermal strap assemblies, 221Graphite lubricants, 258Graphitization treatment, 166Greases, 311Green chromated, 274Green CuCl corrosion, 133Greener spacecraft, 106Green plague, 375, 386, 542Green propellant, 109, 327, 328Griffith cracks, 324Ground activities, 20Ground handling, 65Ground-handling facilities, 63Guianese Space Centre, 325

HHabitable structure, 12Hairline cracks, 184Hard-anodised layer on AA7075 alloy, 225Hard anodizing of Al-7075 alloy, 225Hard anodizing treatments, 129Hard chromium, 27Hardness testing, 73Harness, 319Health Hazards in the Electronic Assembly Area, 398Heat Affected Zone (HAZ), 126, 184, 185Heat-affected zone of laser welds, 186Heat exchanger, 546Heat shield, 34Heat shield materials, 524, 531Heat transfer in vacuum, 221Heater filament, 90Heater investigation, 277Heater sublimation problem associated with thruster motor, 276Heat-shrinkable sleeves containing solder preforms, 381Hemispherical emittance, εn, of the anodized, 531Hermes spaceplane, 532Hermetically sealed assemblies, 399High-absorption surfaces, 269High-definition radiography, 86High-definition X-radiography, 276High-performance fasteners, 262High-precision bearings, 296High-temperature brazing, 404High-temperature fasteners, 533High temperature rating, 370High voltage interconnections, 442

Hillocks, 469, 470Hi-lok TM fasteners, 34Hinged-tube, 198Hipparcos, 308Holddown and release unit, 308Hold-down button, 554Hold-down points, 229Hole-drilling strain-gauge method, 94Holographic interface bond tester, 294Holographic interface tester, 85Holographic interference inspection of failed antenna, 301Hot-air-levelled coatings, 160Hot-dipped galvanization, 139Hot oil fusing of tin–lead, 148Hot plate method, 161Hot-pressed beryllium, 259hot-pressure mounting of samples, 343HST solar array, 506Hubble Space Telescope, 11, 50, 60, 190, 321, 322, 505Human activities on the Moon, 502Human contaminants, 100Human error, 115Humid environment (moisture), 170Huygens probe, 527Hybrid packages, 415Hydrazine, 327Hydrazine contamination levels, 295Hydrazine (N2H4), 30Hydrazine propulsion tank, 68Hydrazine tank, 288Hydrazine tank diaphragm, 294Hydrazinium nitroformate, 328Hydrogen bake-out, 124Hydrogen embrittlement, 122, 255Hydrogen embrittlement of spring steel, 123Hydrogen embrittlement of steel fasteners, 255Hydrogen embrittlement relief, 176Hydroxylammonium nitrate, 328Hygroscopic contaminants, 394

IIdentification of leak paths, 279Impact crater, 555Impact feature, 520Impact records, 517Impact test facility, 84Impact testing, 310Impact/fretting test equipment, 307Inconel 600, 265Inconel 718, 20, 27, 126, 147, 253, 319INCONEL 718-PH, 539Inconel alloys, 318Indium solder alloys, 363Indium–lead soldered to various gold interfaces, 365Indium–tin oxide, 271Industrial placements, 103Infrared Space Observatory, 27Infrared Space Observatory cryostat, 320Infrared spectroscopy, 101Inorganic glasses, 507Inspection, 434Inspection criteria for brazed joints, 407Inspection criteria, 406Insulation materials, 369Insulation stripper, 337

660 Index

Page 101: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Interference fit, 259, 337Intergranular cracking attributed to stress corrosion, 249Intergranular cracks, 184Intermetallic compounds, 361Intermetallics, 331International Space Station (ISS), 42, 236, 501, 536Invar, 314, 319Ion chromatography, 391Ionic contamination levels, 391IPC J-STD-001, 353Iridium catalyst, 290Iron–nickel–copper alloy, 318ISO 9001, 56Isopropyl alcohol (IPA), 212, 390

JJames Webb Telescope, 229, 509J-leads, 424, 425Joining metals to thermoplastics, 12Jupiter space probe, 285

KKapton, 518, 523, 550Kapton films, 271Kapton thermal blanket, 548Keronite coating, 227Keronite PEO, 225Kevlar, 63, 516Kevlar-49 reinforced plastic, 166, 169Kirkendall voiding, 335Kovar, 132, 174, 330, 363, 357, 423, 467Kovar lead material, 173, 348Kovar leads, 383

LLaboratories, 56Laboratory notebooks, 100Laboratory records, 100Laminar flow bench, 81Laminography, 88Lap welds, 332Large diameter stranded wires, 340Laser annealing, 176Laser beam welding, 185Laser welding, 52Laser-welded spacecraft axle shaft, 186Laser-welded Ti6A14V, 186Launch, 20Launch and operations readiness review, 22Launch site exposure and corrosion, 138Launch vehicle connector, 311Launch vehicle release gear mechanism, 314LDEF, 503, 516, 517, 520Leaching of silica, 291Lead coatings, 505Lead-free control plans, 494Lead-free solder alloys, 341Leadless ceramic chip carriers, 355, 360Leadless chip carrier, 431Leadless surface-mounted devices, 351Leaking battery cell, 194Leaking cartridge, 265Leaking ceramic-to-metal seal, 131

Leaking detector, 286, 288Leaking heaters, 276, 277Leaking kerosene cans, 448Leaking lead glass seals, 468Leaking lower seal joint, 61Leaking tanks, 325Leak tests, 317Liberator TM, 49Lifting gear, 63Lightening, 139Lightning, 37Light pollution, 107Limited shelf life, 56Limpet teeth, 45Limpet tooth material tooth, 47Liquid and gas chromatographic techniques, 97Liquid crystal polymers (LCPs), 48Liquid helium, 312Liquid helium cryostate, 319Liquid helium temperature, 451Liquid metal embrittlement (LME), 139Liquid penetrant tests, 82Liquid phase infiltration, 532Liquid propellants, 326LISA Pathfinder mission, 239Lock-nuts, 261Low Earth Orbit (LEO), 501, 518Low-emissivity surfaces, 268Low-expansion materials, 163Low-temperature magnetic properties, 319Low-voltage applications, 340Lubricants, 42, 503Lubricants suitable for use under high vacuum, 258Lubricating oils with low outgassing properties, 209Lubrication, 21Lunar soil, 13

MMAPSIL 213, 432Macroscopic examination, 67MAGE apogee boost motors, 90MAGE motor, 169Magnesium, 20, 24Magnesium alloys, 129Magnesium–lithium alloys, 273Magnet, 318Magnetic cleanliness, 175Magnetic coercivity, 175Magnetic field generated by a spacecraft, 317magnetic moment, 370Magnetic permeability, 318, 319Magnetic problems, 317Magnetic shield materia, 318Magnetically clean, 62Magnetometers, 317MAGNOLYA chemical surface treatment, 130Mandrel materials for electroforming, 176Manganin wire, 379Manned compartments, 535Manned spacecraft, 432Manned volumes, 538Manual tungsten inert gas (TIG) arc welding, 181Manual welding, 182Manufacturing processes, 116MAPSIL 213, 42, 431

Index 661

Page 102: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Maraging steels, 30Martensitic high-strength alloys, 138Martensitic stress induced transformation, 318Martensitic transformation, 202Material group numbers, 617Material review boards, 408Materials and processes, 58Materials and processes standards related to space, 619Materials engineer, 21Materials laboratory, 64Materials making up soldered joints, 349Materials review board, 102Mean time before failure, 469Mechanical electrical connections, 337Mechanical fastener tool, 50Mechanical finishes, 134Mechanical parts and process controls, 616Mechanical properties

AA 8090 and other Al-Li alloys, 102, 143AA 2219 various heat treatments, 102, 141beryllium, 287BS L93, 142electronic materials at different temperatures, 368, 451, 458fastener materials, 253spring materials, 146tin whiskers, 487

Mechanical properties conversion table, 565Mechanical properties of near-eutectic tin–lead alloys, 451Mechanical shock, 422Mechanical testing, 73Mechanical-type strippers, 338Mechanism and the grounding plane, 305MEDET instruments, 231MEMS, 11Metal alloy comparison tables, 571, 611Metal matrix composites for spacecraft pressure vessels, 172Metal migration, 164Metal oxide precipitation in glass seal., 467Metal oxide whisker, 466Metallic contamination particles, 312Metallic fragment, 314Metallic particle generation, 258Metallic particles, 309Metallographic control, 330Metallographic examination, 343Metallographic presentations, 102Metallography, 97Metallurgical joint, 358Metallurgical laboratory practice, 69Metallurgical reaction, 331Metal-matrix composite, 427, 161Micro-arc oxidation, 224Microcracked electroless nickel, 173Microcracked thin-foil detector windows, 286Microcracking of diode lead surface, 173Microfocus x-radiography, 91Micrographs of tin-plated strands, 375Micrometeoroid, 509, 512, 555Micrometeoroid impact, 506, 518Microscopic examination, 67Microspheres, 36Microstructure of milled and stress-relief-treated beryllium, 284Microstructure of solder alloys, 343Microtome, 70, 292Microtome section of life-tested cathode, 297Micro-VCM test, 97

Micro-VCM test equipment, 41Microwave horn, 176, 177Microwelding, 182Microweldments, 330Migration of silver sulphide tarnish, 269Mir space station, 52, 537MISSE, 503Model philosophy, 21Modern assembly room, 341Modern bearings, 299Modification, 409Moisture ingress, 392Moisture pick-up, 26Molybdenum, 240, 277, 280, 462Molybdenum disulphide, 25, 305, 506, 518Molybdenum–titanium phase diagram, 244Molybdenum whiskers, 462, 464Mo–Mn metallization system, 360Mono-methyl hydrazine (MMH) and nitrogen tetroxide, 327Monopropellant hydrazine thrusters, 276Monopropellants, 328Moon rock, 502Moon-rock analyses, 501Moore’s law, 461Morphology of wear particles generated from sliding contacts, 165MoS2, 217MoSTTM, 257Motor exhaust plume, 514Motor thrust frame, 34, 232Moulding tools, 312Mounting of chip parts, 416MP 35N, 147Multilayer board internal connections, 155Multilayer boards with high heat capacity, 161Multilayer ceramic capacitors, 351Multi-layer insulation blankets, 28Multilayer PCB, 84Multiphase MP35 N, 253Mumetal, 318Mutually soluble in the solid state, 165Mylar films, 271

NNano-ceramic technology, 222Nanocomposites, 414Nano-grained alumina, 220Narloy-Z, 32, 33Natural rosin, 391Neutron diffraction method, 94Neutron radiographs, 92Neutron radiography, 86Nextel ceramic cloth, 516Ni3P, 176Ni3Ta, 332, 333Nichrome heater coil, 278Nickel alloys, 19Nickel coatings on Ti6Al4V, 235Nickel finishes, 370Nickel phosphide (Ni3P), 174Nickel phosphide precipitates, 358Nickel ribbon, 331Nickel sulphide process, 308, 317Nickel–cadmium battery cell, 117, 131Nickel-clad conductive LCP fibres, 49Nickel-plated copper braid, 49

662 Index

Page 103: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Nickel-to-copper brazed joint, 402Nickel-to-nickel electrical resistance microwelds, 332Nickel-to-nickel welded electronic circuits, 330Nickel-to-phosphorus ratio, 175Nickel-to-titanium alloy brazed joint, 403Niobium, 535Nitinol, 197, 200, 201Nitinol-deployed lattice mast, 199Nitrided stainless steel, 138Nitrogen tetroxide (N2O4), 30, 327Nomex cloth, 548Non-captive nut, 356Non-conformance board, 102Non-conformance reports, 544Nonconforming fasteners, 262Noncoplanarity, 423Nondestructive testing, 82Non-metallic materials, 38

OOddy test method, 40Odour, 540Offgassing, 40Open circuit, 358, 390, 431Open-circuit failures, 320Optical fibres, 42Optical materials, 42Optical microscopy, 67Optical properties (α/ɛ ratio) before and after testing, 268Optical solar reflectors (OSR), 270Optical spectroscopy, 97Orbital test satellite (OTS), 7, 28Organic chemistry, 97Organic fastener lubrication systems, 257Organic materials, 503O-ring, 61O-ring seals, 43Orion crew module pressure vessel, 274Orion spacecraft, 36OTS-2, 9Outgassing, 38, 540Outgassing data for flux residues, 390Oven bake-outs, 423Over-ageing, 251Oxyacetylene gas welding, 182Ozone-depleting chemicals, 107

PPaints, 42Parameters for bake out, 393Particle radiation, 23Particle size, 72Particles generated from spacecraft fasteners, 261Particles of beryllium, 262Particulate contamination, 398Parting compound, 314Paschen-like curves, 446, 447Passivation treatment, 138Passive systems, 23Passive thermal control systems, 266Pathfinder mission, 200Payload-support structures, 167Pcb finishes, 148PCB laminates properties, 557

PEEK, 308PEEK composite, 223Peel strength versus ageing time, 368Phase diagram, 25Philips Globule method, 371Phosphorous-rich surface, 359Pinch-off for tube sealing, 317Pinch-off seals, 317Pinhole, 121, 129Pitting and leakage of an aluminium cooling channel, 131Pitting corrosion, 328Plagues, see Green, Purple, Red and White plaguesPlasma cleaning technology, 212Plasma electrolytic oxidation (PEO), 224, 225, 229Plasma electrolytic oxidation treatment, 308Plated finish on copper conductors, 369Plated-through hole, 152, 410Platinum grain growth, 281Platinum group metals, 534Platinum ribbon, 277Platinum ribbon grain boundary, 277Polyacrylonitrile, 166Polybutaidene acrylonitrile, 30Polyglycidylazide, 328Polyvinyl chloride (PVC), 369Polyxylene, 429Porosity during a solderability test, 160Porosity in weld bead, 118Porous gold plating, 269Positive air pressure, 344Post-flight inspection, 190Post-flight materials, 501Post-flight observations, 501Post-flight tribological assessment of the Hubble Space Telescope solar

array mechanisms, 303Potting compounds, 42Power cycling, 352Power (I2R) loss, 370Power system weldments, 189Precipitation hardening, 138, 251, 252Precipitation-hardening stainless steels, 403Preconditioning, 357Preferred materials for short-term evaluation, 539Preliminary design review, 22Pressure vessel steel, 93Primer coating, 274Printed circuit board assemblies, 559Printed circuit boards, 148Printed-circuit-board (PCB) evaluations, 79Problems associated with brazing, 399Process documents, 405Process identification document, 420, 422Process identification documentation, 418Produce assurance applied to brazing operations, 405Product assurance management, 55Project review boards, 21Propellant, 29Propellant Management Device (PMD), 172Propellant motors, 30Propellant tanks for the Ariane-5 launch vehicle., 205Propellant tanks manufactured from Ti6Al4V, 171Properties of fluxes, 396Properties of printed circuit laminates, 559Properties of tin whiskers, 485Protection shields, 515PTFE, 25, 43, 49, 175, 188, 211, 258, 305, 310, 315, 353, 356

Index 663

Page 104: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Pull-off strength of coatings, 238Pulsed laser to repair solar cell interconnection welds, 186Purple Plague, 334–336, 332Pyrel foam, 552Pyrex glass, 319Pyrotechnic, 92Pyrotechnic actuator device, 422Pyrotechnic cutter, 265

QQuad flat packages, 422Qualification review, 22Quality assurance, 55, 66Quality assurance controls for fasteners, 261Quartz optical solar reflector, 271

RRadiation effects, 507Radiation testing, 63Radiation, 25, 62, 547Radiography, 83Random vibration, 420Rapid protyping, 12REACH, 42, 106Re2O7, 278Recovered mass loss, 40Recuperation of unsolderable PCBs and component leads, 413Recycling, 106, 108Recycling electronic waste, 110Red plague, 370, 375, 376, 377, 378Re-entry, 520, 536Re-entry vehicles, 170Reflow of capacitor solder, 158Refractory metals, 534Regolith, 12, 13, 502, 503Reinforced carbon/carbon, 35Release triggers made of Nitinol, 199Reliability and safety, 57, 66Removal of silicone polymers, 314Removal of work-hardened layers, 285Repair, 409, 432Repair and modification of assemblies, 341Reprocessing pure tin terminations, 495Residual fluxes on spacecraft PCBs, 393Residual stress, 93, 98Residual stress measurements, 477Residual Stresses in Weldments, 195Resistance measurements, 329Resistance pressure welding, 330Resistance spot welding, 116, 329Resistance to thermal cycling environment, 432Resistance-welded silver–mesh interconnector, 191Resonance, 422Reusable tanks, 183Rework, 409Rework and repair of AGAs, 441Rework of soldered joints, 408Rework on composition of joint, 412Reworking of spacecraft assemblies, 410Rhenium, 278River patterns, 248Rivet compositions, 253Rocket motor nozzles, 170RoHS, 107, 494

Rosetta, 28Rotary dip method, 153Rotating weld pin during FSW, 232RTV 560, 35, 533RTV 566 silicone, 42Rubber diaphragm, 290Rubbers, 42

SSADM off-load device, 202Salinity maps, 139Salt spray corrosion tests, 308Salt-spray cabinet, 80Sapphire crystals, 245SAX spacecraft, 187Scanning electron microscope (SEM), 68, 71, 247Scanning laser acoustic microscope (SLAM), 85, 87SCC evaluation, 140Scotchcast, 431SCOTCHCAST, 432SCOTCH-WELD, 539Screen out magnetic items, 318Sea coast corrosion, 82Sealing of glass and beryllium windows, 369SEAMS introduced during rolling, 256Second phase precipitates, 251Secondary ion mass spectrometry, 99Selection of materials and processes, 10Selective brush electroplating, 234Selective brush plating, 235Self-healing materials, 45Semi-rigid cables, 341Semi-rigid cable solder joint fracture due to gold embrittlement, 362Semi-rigid RF cables, 428Shape-memory alloys, 197Shape memory polymers, 44Sharp fillets, 444Shell 405 catalyst, 289Shielding gases, 127Shock loading, 458Shock wave, 265Short circuit, 313, 360, 395, 486Shuttle tile, 35, 533Silica glass microspheres, 46SiC fibres embedded in a matrix of Ti6A14V, 162SiC monofilaments in an aluminium matrix, 171SiC monofilaments within an AA 2014 matrix, 164SILGEST, 315Silicide-coated fasteners, 536Silicon carbide fibre reinforced metal matrix composites, 37Silicon carbide fibre reinforced titanium alloy matrix, 39Silicone contaminants, 317Silicone contamination, 219, 310, 505Silicone oil, 311, 418Silicone oil contaminant, 317Silicone products, 219, 311, 505Silver coatings, 360Silver finishes, 370Silver mesh, 525Silver migration, 359Silver wire, 331Silver-coated molybdenum interconnector weld, 193Silver-filled thermosetting epoxy resins, 413Silver-graphine, 414Silver-loaded epoxy, 415

664 Index

Page 105: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Silver-plated conductors, 371Silver-plated solid copper wire, 337Silver-plated steel stiff-nuts, 261Silver-plated wire, 339Silver-plated wire strands after solderability testing, 373Sine vibration, 420Skin effects for RF transmissions, 370Skin-flake, 100Skin secretions, 100Slip rings, 23, 311SMT solder joint failure due to Conformal Coatings, 428SMT verification sample, 430Sodium polysulfide test, 377Solamide 301 foam, 552Solar absorbers, 267Solar absorptance, 270Solar array, 358Solar array deployment/retraction system, 322Solar-Array Drive Mechanism (SADM), 199Solar blankets, 547Solar reflectors, 267Solder assembly facility, 344Solder column, 426, 439, 441Solder copper wire joint failure, 364Solder dipping, 497Solder fillet, 352, 443Solder flux, 540Solder flux vapour, 339Solder joint repair, 540Solder paste, 436Solder Sleeves, 551Solder sphere, 511Solderability, 155, 371, 386Soldered interconnections, 340Soldering, 329, 340Soldering fluxes, 380Soldering parameters, 341Solder-plated lead wire, 330Solders, 108Sold propellants, 328Solid lubricants, 26Solid solution, 25Solid-state diffusion of platinum, 277solid-state interdiffusion, 333Solithane, 509, 510SOLITHANE, 432Solithane 113, 454Solvent resistance, 432Sound absorption coefficient of different foamed aluminium, 203Sources of Failure, 115South Atlantic Anomaly, 508Space-approved greases, 257Spacecraft antennae, 312Spacecraft antenna face-skins, 167Spacecraft charging, 27Spacecraft detectors, 187Spacecraft failures, 61Space environment, 22, 23Space environment effects, 504Spacelab, 27, 42, 339, 501Spacelab post-flight hardware, 542Spacelab processing and integration, 543Spacelab-1 located in the shuttle cargo bay, 544Space launch vehicles, 28Space radiation environment, 507Space Shuttle, 319

Space Shuttle External tanks, 231Space tribology, 305Spalling, 270Specimens made from beryllium, 281Spectroscopic methods, 72SPELDA, 94Spliced wire joints, 551Spot-welding, 179Spring clip, 337Spring materials, 144Stablecore®, 353Staking compounds, 422, 426Standard free energy of formation of oxides with temperature, 613Standard reference electrode, 389Standards for soldering spacecraft electronics, 342Standards related to space, 619Stand-off height, 351, 353, 391Steam ageing, 371Steel alloys, 19Steel alloys generally considered suitable for spring manufacture, 146Steel wires, 320Steel wire-to-nickel tube welding operatio, 320Stress corrosion, 327Stress-corrosion crack in the tank wall, 326Stress-corrosion cracking (SCC), 19, 139, 325, 384, 540Stress-corrosion failure, 249Stress corrosion of component lead material, 383Stress-corrosion tests, 75Stress-induced deformations, 319Stress-raising defect, 254Stress-relaxation by thermal gradients, 319Stress-relief bend, 412Structural panels made from high-temperature titanium alloys, 207Students, 103Sublimation, 24, 272, 283, 508Sublimation of aluminium alloys, 181Sublimation of and condensation of cadmium and zinc, 274Sublimation of klystron cathode-heaters, 276Sublimation of Rhenium, 278Sublimation rate against temperature for Nichrome, 280Sublimation tests, 273Subsurface structures, 283Sulphur hexafluoride (SF6), 317Sun sensor experimental baffle, 230Sun-sensor, 63, 64, 209Superconducting at 4.2 K, 458Superconductive SnPb solders, 457, 458Superplastic forming, 196, 203, 206Surface analysis, 96Surface colourations, 127Surface-corrosion residue, 216Surface-diffusion layers, 323Surface electrical grounding, 329Surface insulation resistance (SIR), 392, 395Surface insulation resistance testing, 391Surface mount technology, 341, 419Surface of an FR-4 PCB board laminate, 392Surface protection treatments for aluminium alloys, 134Surface-tension tanks, 172Sustained stresses, 145SYLGARD 184, 432

TTack-weld, 179Tantalum foil capacitors, 333

Index 665

Page 106: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Tantalum lead wire, 332Tantalum wire lead, 333Tape testing (for coatings), 224, 234, 236, 237Technology Readiness Levels (TRLs), 10Technology samples, 419Teflon FEP, 505Temperature cycling, 509Temperature dependence of specific resistance, 456, 457Temperature gradients, 319Temper conditions of aluminium alloys, 567Tensile testing at 4.2 K, 451Test chamber, 8Textiles, 38Thermal control, 270Thermal control paints and coatings, 268Thermal cracking, 311Thermal cycling on work-hardened beryllium, 284Thermal cycling systems, 74Thermal fatigue, 271Thermal fatigue cracking, 79Thermal fatigue cracking of copper conductor, 429Thermal fatigue cracks, 349Thermal fatigue failures in printed-circuit-board, 78Thermal fatigue on leadless components, 351Thermal fatigue on semi-rigid cable connections, 353Thermal fatigue on solder-assembled leaded components, 344Thermal fatigue programme, 345Thermal history from microstructure, 262Thermal management, 509Thermal management materials, 220Thermal mismatch between SMD and substrate, 425Thermal protection system, 47, 536Thermal straps, 44Thermal strippers, 337Thermal–compression bonding technique, 332Thermal-cycled solder joints, 509Thermally conductive adhesives, 426, 427Thermally induced bending, 321Thermally induced vibrations, 321Thermo-compression, 334Thermoelectric generators, 28Thermomechanical test facility, 218Thermo-optical properties, 529Thermoplastics, 43Thermosetting plastics, 43Thermosetting resins, 319Thermount, 353Thick-film hybrid, 425, 426Threaded fasteners, 252Thread-rolling work-hardening, 252Throw-away modules, 105Thruster chamber, 132Ti–6A1–4V system and schematic representation of microstructures,

264Ti6A14V, 323, 403Ti6Al4V superplastically formed propellant tank, 204TiC coatings on steel, 299TiC-coated 440C steel ball, 305TIG-welded 2219-T851, 141TIG-welded aluminium–lithium alloy plates, 188Tin oxide, 489Tin pest, 448Tin plague, 448Tin whisker growths, 472Tin whiskers, 490Tin–lead coating procedure, 150

Tin-plated conductors, 371Tin-plated copper, 369Tin-plated wire, 339Tin-plated wire strands after solderability testing, 374Titanium, 20Titanium aluminide, 196, 531Titanium aluminides for high-temperature applications, 196Titanium carbide surfaces, 305Titanium filler metal, 125Titanium hydride embrittlement, 324Titanium hydride precipitates, 125Titanium hydrides, 323Titanium MMCs, 37Titanium nitride, 259, 299Titanium nitride coatings, 303Toe, 34, 291, 302, 314Toolboxes, 552Toroidal water tanks, 325Total mass loss, 40Toxicity, 42, 540Traceability, 56, 67, 101, 110, 255, 327, 379, 435, 495, 616Trained operators, 621Training and certification, 341, 415Training, 21, 82, 103, 115, 161, 208, 210, 323Transcrystalline fracture, 247Transistor circuit, 333Transmission electron micrographs of beryllium foils, 289Transmission electron microscope (TEM), 68, 250Travelling wave tubes, 274, 291, 318, 442, 464Trunnion, 27, 549Tube-to-tube TIG welding, 324Tungsten heater elements, 274Tungsten whisker, 464, 466Tungsten-inert-gas (TIG)-welded, 125Type I high modulus fibres, 166Type II high strength fibres, 166

UUltrasonic testing, 83ultrasonic vibration, 332Ultrasonics and other mechanical agitation, 209Ultraviolet (UV) radiation, 505Unequal (asymmetric) solder fillets, 354University, 10, 22, 63, 103, 617University Spacecraft, 615URALANE, 432Urban miners, 110

VVacuum, 22, 40, 49, 135, 258, 272, 380, 508, 551, 617. See also

outgassing and sublimationVacuum test chambers, 274Vapour-deposited aluminium, 259Vapour deposition, 134Vapour phase machines, 435Vapour pressure curves, 272VectranTM, 49Vega, 36Velcro tape, 553Verification programme, 420Verification testing, 419Vespal valve seat, 312Vespel, 28, 43, 229, 307Vibrations caused by thermal distortions, 322

666 Index

Page 107: Appendix 1: Coefcient of (Linear) Thermal Expansion for ...978-3-319-23362...Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of

Video camera electronics, 541Visual criteria, 406Visual inspections, 421VITON B, 540Void formation, 337Voids and blow-holes in solder fillets, 410Volatile organic compounds, 109Volatile oxides, 534VPPA welding, 217Vulcain engine, 33, 318Vulcain-2 engine, 34

WWarp or twist, 423Waspaloy, 534Water tank, 326waveguide–flange assembly, 407Waveguides, 176Waveguide switch, 124Waveguide-to-Flange Joints, 406Wave soldering, 161Wear, 25Wear of ball bearings, 296WEEE, 107Weld bead width and the degree of permitted meander, 119Weld decay, 328Welded battery cells, 193Welded cryogenic tank, 183Welded galvanized steel, 139welded joint, 341Welded lead wire interconnections, 329Welded plate, 98Welded solar arrays, 189Welding, 329

all methods of welding, 181butt, 206, 332‘cold’, see cold weldingdiffusion, 105Diffusion, 105EB, see electron beam weldingelectromagnetic emission, 196explosive, 186friction, see friction stir and stud weldinglaser, 52, 186manual, 181pulsed laser, 186resistance pressure, 330resistance spot, 116, 329thermoplastics, 188

Welding and joining in a space environment, 49Welding in space, 52, 53Welding methods and controls, 181Welding of aluminium–lithium alloys, 187Welding of apogee boost motors, 123Welding of commercially pure titanium, 125Welding of thermoplastics, 188

Welding parameters, 118Welding rods, 126Weld in nickel alloy pressurized housing., 118Weld nugget, 330, 332Weld penetration, 132Weld porosity, 127Weld profiles for tube welds, 119Weld sputter particles, 68Weld strike, 196Wettability of solder, 412Whisker bridging, 499Whisker growths, 461Whisker nucleation and growth, 499Whiskers

aluminium, 468C-ring experiment, 482, 485metal oxide, 466mitigation, 498molybdenum, 462precautions, 491silver sulphide, 463tin, 472–490tungsten, 464, 465

White paints (α/ɛ less than 0.2), 267White plague, 375White residues, 432, 433Wire ropes, 63, 64Wires and cables, 62, 369Wire strands, 339Wire-to-barrel interface, 341Wire-wrapped joints, 338Wire wrapping, 337Wire-wrapping pins, 338Workmanship, 417, 434Workmanship drawings, 339Workmanship standards, 116, 119, 342Workmanship standards for resistance spot welds, 117Workmanship standards related to Area Grid Arrays, 122Worn out cathode pellet, 296

XX-radiation, 185X-ray diffraction, 94X-ray inspection, 436X-ray laminography, 434X-ray radiography, 86X-rays, 83, 185

ZZinc, 24, 272Zinc diffusion, 359, 387Zinc emissions, 405zinc oxide, 359Zinc-plated-steel support structure, 108

Index 667