2016 SOFC Workshop - Yueh-Lin Lee - Ab initio Modeling …...

1
Research & Innovation Center Science & Engineering To Power Our Future Science & Engineering To Power Our Future Ab initio Modeling of Cation Diffusion in La 1-x Sr x MnO 3 ± δ for Solid Oxide Cell Electrodes Applications Yueh-Lin Lee a , Yuhua Duan a , Dane Morgan a,b , Dan Sorescu a , and Harry Abernathy a,c a National Energy Technology Laboratory, U.S. Department of Energy; b University of Wisconsin-Madison, Madison, WI; c AECOM, Morgantown, WV 13.5 13 12.5 12 11.5 11 10.5 10 9.5 5 4 3 2 1 0 1 Log(D/cm 2 sec 1 ) Log(PO 2 /bar) Slop 1 Slop  0.5 T=1473 K Concentration of defect complexes involved in cation diffusion in LSM is calculated based on the DFT interaction energies e.g., for V A ’’’ V B ’’’ defect complex in LSM,: V A ’’’ +  V B ’’’ V A ’’’ V B ’’’ ΔG association ≈ ΔE association ( +0.4 eV from DFT) → [V A ’’’ V B ’’’ ] = [V A ’’’ ]·[V B ’’’ ]·exp(ΔE association k b T ), where [V A ’’’ ]=[V B ’’’ ] from LSM point defect mode Motivation Equilibrium Defect Chemistry Acknowledgement This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. Diffusion Model (Random Walk Diffusion) T k ) E ( k S a Z complex def D b migration b migration Self Mn exp exp 6 ] [ 0 2 0 Carrier concentration of defects (clusters) vs. P(O 2 ) and T: Point defect equilibrium model Defect interactions for defect clusters Fitting parameters: ν 0 and ∆S migration Migration barriers of the cation diffusion pathways obtained from DFT NEB calculations Summary Puchala, Lee, and Morgan, JES 2012 LaMnO 3±δ T=873K, 973K, 1073K, 1173K, 1273K, 1473K La 0.8 Sr 0.2 MnO 3±δ T=873K, 973K, 1073K, 1173K, 1273K Lee and Morgan PCCP 2012 Lee and Morgan PCCP 2012 7 4 5 3 2 0 1 2 3 4 5 6 7 8 9 10 0 0.5 1 1.5 2 2.5 0 2 4 6 8 10 12 14 eV Reaction Coord. 0 6 8 9 10 Pathway 1 (V A V B ) Palcut, PCCP 2008 Miyoshi ,PCCP 2009 Harvey, EES 2012 0 1 2 3 4 5 6 7 8 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 2 4 6 8 eV Reaction Coord. Pathway. 4 (V o V B ) This work 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 0 2 4 6 8 eV Reaction Coord. Pathway 3 (2 nd NN V B ) De Souza J Mater Chem 1999 (Classical MD) Pathway 2 (Curved V B ) De Souza J Mater Chem 1999 (Classical MD) Bsite Cation Diffusion Pathways Asite Cation Diffusion Pathways Cation diffusion can directly or indirectly influence degradation of LSM/YSZ Diffusion of cations from the interfaces to surfaces under current load. May increase the number of TPB and improve the performance in a short time Leads to increase of the interface resistance in the longterm operation due to morphological and compositional evolution near the LSM/YSZ interfaces Set ΔS migration = 4.5k b and attempt frequency ν 0 = 10 13 Hz Develop quantitative theoretical models based on ab initio energetics to assess cation diffusivity in bulk LSM vs T and P(O 2 ) Miyoshi SSI 2002 The interface degradation was identified as: 1. loss of LSM coverage 2. loss of threephaseboundary (TPB) length. Backhaus SSI 2008 Cation interdiffison of LSM/YSZ interfaces. Property assessment of diffuse interfaces LMO morphological instability upon annealing Annealing at 1273 K for 300 h PO 2 =10 4 atm PO 2 = 1 atm PO 2 =10 2 atm Cation Selfdiffusion Coefficients vs. T and P (O 2 ) This work 2 4 5 7 9 1 0 1 2 3 4 5 0 2 4 6 8 eV Reaction Coord. 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 0 2 4 5 7 9 4 Mn diffusion pathways Mn O V A V B La/Sr V O Developed an ab initiobased cation diffusion model to quantitatively predict cation selfdiffusion coefficients of La 1x Sr x MnO δ vs. a wide range of T and P(O 2 ) Good agreement with experimental LaMnO δ D Mn * T and P(O 2 ) dependences Results support the Mn B V A V B model as the dominant Mn diffusion pathway at high P(O 2 ) Predict to have a crossover of D Mn * (V A V B )  vs. D Mn * (V B V O ]) at intermediate/low PO 2 LaMnO 3 D Mn * [V A V B ] is 2~3 orders magnitude greater than La 0.75 Sr 0.25 MnO 3 due to higher cation vacancy conc. Predicted apparent activation energies ( ΔE a ’s)  at P(O 2 ) = 0.2 bar D Mn * : 1.5 eV in LaMnO δ; ; between the reported exp. values  0.6 eV (Radioisotope diffusion) D La * : 2.5 eV in LaMnO δ vs. exp. Pr Impurity diffusion in 1.3±0.1 eV (Palcut PCCP 2008) ΔE a of D Mn * vs. Sr doping: 1.5 eV in LaMnO δ vs. 2.2 eV in La 0.75 Sr 0.25 MnO 3 30 25 20 15 10 5 0 20 15 10 5 0 Log (D mn self /cm 2 sec 1 ) Log (PO 2 ) D[V_AV_B] D[V_BV_O] D[V_AV_B] D[V_BV_O] LaMnO 3 La 0.75 Sr 0.25 MnO 3 T=1073 K Future Work Extend to model cation interdiffusion of LSM/YSZ interface The formalism can be applied to other SOFC perovskite systems (e.g. LSCF, LSC, BSCF)  Direct 1 st NN Asite vacancy migration Lower migration barriers of Sr than that of La in La 0.75 Sr 0.25 MnO 3 despite a larger ionic radius SrV A repulsion increases the effective Sr migration energy to be about 3.2 eV, close to the effective La migration energy, at low P(O 2 ) LaMnO 3±δ Exp. data () and the B/W figure from Miyoshi PCCP 2009 D Mn * (LMO), ΔE a =1.5eV D Mn * (LSM ) ΔE a =2.2eV D La * (LMO) ΔE a =2.5eV 16 17 16. Pr 17. Mn P(O 2 )=0.2 bar T dependence at P(O 2 )=0.2 atm P(O 2 ) dependences of D Mn * This work Miyoshi PCCP 2009 Model predictions capture the experimental P(O 2 ) dependences (transition of slopes) P(O 2 ) dependences governed by nonideality of cation vacancies Decrease of D Mn * with decrease of P(O 2 ), due to lower cation vacancy concentration Predict to change from D Mn * (V A V B ) at higher P(O 2 ) to D Mn * (V o V B ) at lower P(O 2 ), due to change of dominant point defect population Exp. ΔE a D Mn * (LMO) Miyoshi PCCP 2009 0.6 eV D Mn * (LMO) Palcut, JPCC, 2007 2.9±0.4 eV D Pr * (LMO) Palcut, SSI, 2008 1.3±0.1 eV Model (This work) ΔE a D Mn * (LMO) 1.5 eV D La * (LMO) 2.5 eV D Mn * (LSM) 2.2 eV 80atom 22a×22a×2a supercell (a: perovskite lattice constant) Calculated DFT migration barrier for La in LaMnO δ : 2.8 eV Impurity diffusion (Y, Zr, Pr, Co, etc. ) in LSM This work Fixed constants

Transcript of 2016 SOFC Workshop - Yueh-Lin Lee - Ab initio Modeling …...

Research amp Innovation Center

Science amp Engineering To Power Our FutureScience amp Engineering To Power Our Future

Ab in i t io Model ing of Cat ion Di f fus ion in La 1-xSr xMnO 3plusmnδ for Sol id Oxide Cel l E lect rodes Appl icat ionsYueh-Lin Leea Yuhua Duana Dane Morganab Dan Sorescua and Harry Abernathyac

a National Energy Technology Laboratory US Department of Energy b University of Wisconsin-Madison Madison WI c AECOM Morgantown WV

‐135‐13

‐125‐12

‐115‐11

‐105‐10‐95

‐5 ‐4 ‐3 ‐2 ‐1 0 1

Log(Dcm

2 sec

‐1)

Log(PO2bar)

Slop 1

Slop 05

T=1473 K

Concentration of defect complexes involved in

cation diffusion in LSM is calculated based on the

DFT interaction energies

eg for VArsquorsquorsquo‐VBrsquorsquorsquo defect complex in LSM

VArsquorsquorsquo + VBrsquorsquorsquo VArsquorsquorsquo‐VB

rsquorsquorsquo

ΔGassociation asymp ΔEassociation( +04 eV from DFT)

rarr [VArsquorsquorsquo‐VBrsquorsquorsquo ] = [VArsquorsquorsquo][VB

rsquorsquorsquo]exp(‐ΔEassociationkbT) where

[VArsquorsquorsquo]=[VBrsquorsquorsquo] from LSM point defect mode

Motivation

Equilibrium Defect Chemistry

Acknowledgement

This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program sponsored by the US Department of Energy and administered by the Oak Ridge Institute for Science and Education

Diffusion Model (Random Walk Diffusion)

Tk)E(

kS

aZcomplexdefDb

migration

b

migrationSelfMn

expexp

6][ 0

20

Carrier concentration of defects (clusters) vs P(O2) and Tbull Point defect equilibrium model bull Defect interactions for defect clusters

Fitting parametersν0 and ∆Smigration

Migration barriers of the cation diffusion pathways obtained from DFT NEB calculations

Summary

Puchala Lee and Morgan JES 2012

LaMnO3plusmnδT=873K 973K 1073K 1173K 1273K 1473K

La08Sr02MnO3plusmnδT=873K 973K 1073K 1173K 1273K

Lee and Morgan PCCP 2012

Lee and Morgan PCCP 2012

7

4

53

2

01 2

34

56

7

8

9

100

05

1

15

2

25

0 2 4 6 8 10 12 14

eV

Reaction Coord

0

6

8

9

10

Pathway 1 (VA‐VB)

Palcut PCCP 2008Miyoshi PCCP 2009Harvey EES 2012

01

2

34

5

67

80051

152

253

354

45

0 2 4 6 8

eV

Reaction Coord

Pathway 4 (Vo‐VB)

This work

6

5

432

1

00123456789

0 2 4 6 8

eV

Reaction Coord

Pathway 3 (2nd NN VB)

De Souza J Mater Chem 1999 (Classical MD)

Pathway 2 (Curved VB)

De Souza J Mater Chem 1999 (Classical MD)

B‐site Cation Diffusion Pathways

A‐site Cation Diffusion Pathways

Cation diffusion can directly or indirectly influence degradation of LSMYSZbull Diffusion of cations from the interfaces to surfaces under current load bull May increase the number of TPB and improve the performance in a short time bull Leads to increase of the interface resistance in the long‐term operation due to

morphological and compositional evolution near the LSMYSZ interfaces

Set ΔSmigration = 45kb and attempt frequency ν0 = 1013 Hz

Develop quantitative theoretical models based on ab initio energetics to assess cation

diffusivity in bulk LSM vs T and P(O2)

Miyoshi SSI 2002

The interface degradation was identified as1 loss of LSM coverage 2 loss of three‐phase‐boundary (TPB) length

Backhaus SSI 2008

bull Cation interdiffison of LSMYSZ interfaces

bull Property assessment of diffuse interfaces

LMO morphological instability upon annealing

Annealing at 1273 K for 300 hPO2=10‐4 atm

PO2= 1 atmPO2=10‐2 atm

Cation Self‐diffusion Coefficients vs T and P (O2)

This work

2

4 5

79

‐1

0

1

2

3

4

5

0 2 4 6 8

eV

Reaction Coord

0

1

2

34 5

6

7

8

0

1

23

4

5

6

0

2

45 7

9

4 Mn diffusion pathways

Mn

O

VA

VB

LaSr

VO

Developed an ab initio‐based cation diffusion model to quantitatively predict cation self‐diffusion coefficients of La1‐xSrxMnO3plusmnδ vs a wide range of T and P(O2)bull Good agreement with experimental LaMnO3plusmnδ DMn

T and P(O2) dependencesbull Results support the MnB‐VA‐VB model as the dominant Mn diffusion pathway at high P(O2)bull Predict to have a crossover of DMn

(VA‐VB) vs DMn(VB‐VO]) at intermediatelow PO2

bull LaMnO3 DMn [VA‐VB] is 2~3 orders magnitude greater than La075Sr025MnO3 due to higher cation vacancy conc

bull Predicted apparent activation energies ( ΔEarsquos) at P(O2) = 02 bar DMn 15 eV in LaMnO3plusmnδ between the reported exp values 06 eV (Radio‐isotope diffusion) DLa

25 eV in LaMnO3plusmnδ vs exp Pr Impurity diffusion in 13plusmn01 eV (Palcut PCCP 2008) ΔEa of DMn vs Sr doping 15 eV in LaMnO3plusmnδ vs 22 eV in La075Sr025MnO3

‐30

‐25

‐20

‐15

‐10

‐5

0

‐20 ‐15 ‐10 ‐5 0

Log (D

mnse

lf cm

2 sec

‐1)

Log (PO2)

D[V_A‐V_B]D[V_B‐V_O]D[V_A‐V_B]D[V_B‐V_O]

LaMnO3

La075Sr025MnO3

T=1073 K

Future Workbull Extend to model cation interdiffusion of LSMYSZ interfacebull The formalism can be applied to other SOFC perovskite systems (eg LSCF LSC BSCF) bull Direct 1st NN A‐site vacancy migration

bull Lower migration barriers of Sr than that of La in La075Sr025MnO3 despite a larger ionic radius

bull Sr‐VA repulsion increases the effective Srmigration energy to be about 32 eV close to the effective La migration energy

at low P(O2)

LaMnO3plusmnδ

Exp data () and the BW figure from Miyoshi PCCP 2009

DMn (LMO) ΔEa=15eV

DMn (LSM )

ΔEa=22eV

DLa (LMO)

ΔEa=25eV

16

17

16 Pr17 Mn

P(O2)=02 bar

bull T dependence at P(O2)=02 atm

bull P(O2) dependences of DMn

This work

Miyoshi PCCP 2009

bull Model predictions capture the experimental P(O2) dependences (transition of slopes)

P(O2) dependences governed by nonideality of cation vacancies

bull Decrease of DMn with decrease of P(O2) due to

lower cation vacancy concentrationbull Predict to change from DMn

(VA‐VB) at higher P(O2) to DMn

(Vo‐VB) at lower P(O2) due to change of dominant point defect population

Exp ΔEaDMn

(LMO)Miyoshi PCCP 2009

06 eV

DMn(LMO)

Palcut JPCC 2007

29plusmn04 eV

DPr(LMO)

Palcut SSI 200813plusmn01 eV

Model(This work)

ΔEa

DMn(LMO) 15 eV

DLa(LMO) 25 eV

DMn(LSM) 22 eV

80‐atom 2radic2atimes2radic2atimes2a supercell(a perovskite lattice constant)

bull Calculated DFT migration barrier for La in LaMnO3plusmnδ 28 eV

bull Impurity diffusion (Y Zr Pr Co etc ) in LSM

This work

Fixed constants