Αλυσίδες Markov 1

download Αλυσίδες Markov 1

of 6

Transcript of Αλυσίδες Markov 1

  • 8/20/2019 Αλυσίδες Markov 1

    1/12

    Markov

    {X (t)} (Ω, F , P ). t

    t, X (t) : Ω → R X (t)− 1(B ) ∈ F Borel B ∈ B (R )

    t n t n = 0 , 1, . . . , {X n }n ≥ 0

    t t ∈ R , t ≥ 0, {X (t)}t ≥ 0

    {X n } {X (t)}

    (Ω, F , P ).

    Markov Markov

    • {X n }n ≥ 0 {X (t)}t ≥ 0 S

    X n = s j X (t) = s j s j ∈ S, X n X (t) s j

    n t

    • Markov

    {X n }n ≥ 0 Markov

    (i {X n }n ≥ 0 S.

    (ii n = 0 , 1, . . . , si , s i 0 , s i 1 , . . . , s i n − 1 , s j ∈ S, Markov

    P (X n +1 = s j | X n = s i , X n − 1 = s i n − 1 , . . . , X 1 = s i 1 , X 0 = s i 0 ) = P (X n +1 = s j | X n = s i ).

    {X (t)}t ≥ 0 Markov

    (i {X (t)}t ≥ 0 S.

  • 8/20/2019 Αλυσίδες Markov 1

    2/12

    (ii 0 ≤ t0 < t 1 < . . . < t n si , s i 0 , s i 1 , . . . , s i n − 1 , s j ∈ S, Markov

    P (X t n = s j | X t n − 1 = s i , X t n − 2 = s i n − 1 , . . . , X t 0 = s i 0 ) = P (X t n = s j | X t n − 1 = s i ).

    Markov Markov S = {1, 2, . . .}, S = {1, 2, . . . , |S |} , |S | < ∞ ,

    S |S | = ∞ , S

    Markov {X n }n ≥ 0 S = {1, 2, . . .} n ≥ 1 i, j ∈ S

    P (X n +1 = j | X n = i) = P (X 1 = j | X 0 = i).

    Markov

    Markov {X n }n ≥ 0 S = {1, 2, . . .}. P

    P ij = P (X n +1 = j | X n = i), i, j ∈ S n ≥ 0,

    S |S | = k, P k × k, S

    P

    P

    • P P ij ≥ 0 i, j ∈ S.

    • P 1 j∈S P ij = 1 , i ∈ S. m, n ≥ 0 P (m, m + n)

    P ij (m, m + n) = P (X m + n = j | X m = i), i, j ∈ S,

    n n Markov

    P (m, m +1) = P. P (m, m + n) m

    Chapman-Kolmogorov m,n,r ≥ 0

    P ij (m, m + n + r ) =l∈S

    P i l (m, m + n) P lj (m + n, m + n + r ).

  • 8/20/2019 Αλυσίδες Markov 1

    3/12

    P (m, m + n + r ) = P (m, m + n) P (m + n, m + n + r )

    P (m, m + n) = P n , n− P.

    P (n) P (0, n ),

    P ij (n) = P ij (0, n ), i, j ∈ S n ≥ 0,

    Chapman-Kolmogorov

    P (n) = P (0, n ) = P (m, m + n) = P n , n, m = 0 , 1, . . .

    n = 0 , 1, . . . ,

    µ(n )

    = ( µ(n )i : i ∈ S )

    X n µ(n )i = P (X n = i),

    i ∈ S n = 0 , 1, . . . ),

    µ(m + n ) = µ(m )P (n) µ(n ) = µ(0) P n .

    Markov

    {X n }n ≥ 0

    (i

    (ii P (X i ≤ x) =P (X j ≤ x) i, j = 0 , 1, . . . x ∈ R .

    Y 0, Z . {X n }n ≥ 1,

    {− 1, +1 }

    n = 1 , 2, . . . ,

    P (X n = +1) = p, P (X n = − 1) = q,

    p, q ∈ (0, 1), p + q = 1 . {Y n }n ≥ 0,

    Y n +1 = Y n + X n +1 , Y n = Y 0 +n

    i=1

    X i ,

    Z p ∈ (0, 1). p = 12 ,

  • 8/20/2019 Αλυσίδες Markov 1

    4/12

    {Y n }n ≥ 0 Z p ∈ (0, 1) Markov S = Z

    P ij = p, j = i + 1 ,q = 1 − p, j = i − 1,0,

    i, j ∈ Z n = 0 , 1, . . . ,

    P ij (n) = n

    12 (n + j − 1)

    p12 (n + j − 1) q

    12 (n − j +1) , n + j − 1 ≥ 0 ,

    0,

    P ij (n) = P (X n = j | X 0 = i)

    {Y n }n ≥ 0 Z p ∈ (0, 1) i ∈ Z .

    (i limn →∞ P ii (n) = 0

    (ii i,

    P ii (m) = 1 − | p − q |, m ≥ 1,

    P ii (n) = P (Y n = i | Y 0 = i) n ≥ 1.

    p = q = 12 ,

    Markov

    Markov {X n }n ≥ 0 S = {1, 2, . . .} P.

    i ∈ S recurrent

    P ii (n) = P (X n = i | X 0 = i) = 1 , n ≥ 1.

    i transient

    {Y n }n ≥ 0 Z p ∈ (0, 1). i ∈ Z p = 12 ,

    Markov

  • 8/20/2019 Αλυσίδες Markov 1

    5/12

    i, j ∈ S n ≥ 1, i n

    j

    f ij (n) = P (X n = j, X n − 1 = j, . . . , X 1 = j | X 0 = i),

    i j

    f ij =∞

    n =1f ij (n).

    i f ii = 1 f ii < 1.

    n,

    P ij (s) =∞

    n =0sn P ij (n), F ij (s) =

    n =0sn f ij (n),

    P ij (n) = P (X n = j | X 0 = i) P ij (0) = δ ij , Kronecker f ij (0) = 0 , i, j ∈ S. |s | < 1

    f ij = F ij (1) .

    i ∈ S

    (i P ii (s) = 1 + F ii (s)P ii (s),

    (ii P ij (s) = F ij (s)P jj (s), j = i.

    i ∈ S

    (i i ∞n =0 P ii (n) = ∞

    (ii i ∞n =0 P ii (n) < ∞ .

    i ∞n =0 P ij (n) < ∞ , j i limn →∞ P ij (n) = 0 , j

    i ∈ S

    (i i

    P (X n = i, n | X 0 = i) = 1 ,

    (ii j

    P (X n = i, n | X 0 = i) = 0 .

  • 8/20/2019 Αλυσίδες Markov 1

    6/12

    i, j ∈ S, j, i,

    T ij = min {n ≥ 1 : X n = j, X 0 = i},

    T ij = ∞ , j.

    τ ij = E [T ij ].

    i = j, τ i = τ ii i.

    i ∈ S

    τ i = ∞n =1 nf ii (n), i ,

    ∞ , i .

    τ i = F

    ii (1) .

    i ∈ S null re-current τ i = ∞ , non-null recurrent

    τ i < ∞ .

    Z

    i ∈ S limn →∞ P ii (n) = 0 . limn →∞ P ji (n) = 0 , j ∈ S.

    S Markov

    A gcd A A

    d( i) i ∈ S

    d( i) = gcd {n ≥ 1 : P ii (n) > 0}.

    i d(i) ≥ 2 d(i) = 1

    i i

    P ii (n) = 0 n d(i)

    Z

    2 p = 12 p = 12

  • 8/20/2019 Αλυσίδες Markov 1

    7/12

    i

    Markov {X n }n ≥ 0 S = {1, 2, . . .} P.

    i, j ∈ S i j n ≥ 1

    P ij (n) = P (X n = j | X 0 = i) > 0.

    i j “i → j ” j i “i ↔ j ” i j

    “↔” S × S S × S S

    i ↔ j

    (i i j

    (ii i j

    (iii i j

    (iv i j

    (v i j d(i) = d( j )

    (vi i j

    C Markov C

    • C P ij = 0 i ∈ C j /∈ C

    • absorbing C

    • irreducible i, j ∈ C i ↔ j i, j ∈ C

    Markov irreducible i, j ∈ S i ↔ j

    reducible

  • 8/20/2019 Αλυσίδες Markov 1

    8/12

    S Markov

    S = T ∪N

    j =1

    C j ,

    T, C 1, . . . , C N T C 1, . . . , C N

    S = {1, 2, 3, 4} Markov

    P =

    14

    14

    14

    14

    0 0 1 00 0 0 11 0 0 0

    .

    1

    1

    f 11 (1) = f 11 (2) = f 11 (3) = f 11 (4) = 1 / 4, f 11 (n) = 0 , n ≥ 5, f 11 =

    ∞n =1 f 11 (n) = 1 1 τ 1 =

    ∞n =1 nf 11 (n) = 1 / 4 + 1 / 2 + 3 / 4 + 1 = 10 / 4 < ∞ 1

    P 11 (1) > 0 1

    S = {1, 2, 3, 4} Markov

    P =

    0 0 1212

    0 1 0 00 0 0 11 0 0 0

    .

    (i) (ii)

    (i) 2 P 22(1) > 0 {1, 3, 4}

    1, 3 4 d(1) = d(3) = gcd {2, 3, . . .} = 1 d(4) = gcd {3, 5, . . .} = 1 1, 3 4

    (ii)

    f 11 (1) = 0 , f 11 (2) = 1 / 2, f 11 (3) = 1 / 2, f 11(n) = 0 , n ≥ 4,f 22(1) = 1 , f 22(n) = 0 , n ≥ 2,f 33(1) = 0 , f 33(2k) = 0 , k ≥ 1, f 33(2k + 1) = (1 / 2)k , k ≥ 1,f 44(1) = 0 , f 44(2) = 1 / 2, f 44(3) = 1 / 2, f 44(n) = 0 , n ≥ 4.

  • 8/20/2019 Αλυσίδες Markov 1

    9/12

    i τ i = ∞n =1 nf ii (n) τ 1 = 5 / 2, τ 2 = 1 , τ 3 =

    5, τ 4 = 5 / 2

    S = {1, 2, 3, 4, 5, 6} Markov

    P =

    12

    12 0 0 0 0

    14

    34 0 0 0 0

    14

    14

    14

    14 0 0

    14 0

    14

    14 0

    14

    0 0 0 0 1212

    0 0 0 0 1212

    .

    (i) (ii)

    (i) {1, 2} {5, 6}

    3 4 {1, 2} {5, 6} 1 pii (1) > 0, i 3 4

    1 2 5 6

    (ii)

    f 11 (n) = p11 = 12 , n = 1 , p12( p22)n − 2 p21 = 12 (

    34 )

    n − 2 14 , n ≥ 2.

    1 τ 1 = ∞n =1 nf 11 (n) = 19 / 6

    Markov {X n }n ≥ 0 S = {1, 2, . . .} P.

    π = ( π j : j ∈ S ) Markov π

    (i

    π j ≥ 0,

    j ∈ S

    j∈S π j = 1

    (ii πP = π,

    i∈S

    π i P ij = π j , j ∈ S.

    π X n µ(0) = π µ(n ) = πP n = π

    n > 0 π Markov

    i, j ∈ S

  • 8/20/2019 Αλυσίδες Markov 1

    10/12

    (i limn →∞ P ij (n)

    (ii i

    limn →∞

    P ij (n) = π j ,

    π j Markov π j = 0 j ∈ S

    Markov

    π i π(i) > 0

    Markov

    π

    π i = τ − 1i , i ∈ S,

    τ i i

    π = πP

    Markov x x = xP

    k ρi(k) i

    k ρi (k) = E [N i | X 0 = k]

    N i =∞

    n =1I {X n = i}∩{T k ≥ n } ,

    T k k N k = 1 ρk (k) = 1

    ρi (k) =∞

    n =1P (X n = i, T k ≥ n | X 0 = k).

    k

    T k = i∈S N i

    τ k =i∈S

    ρi (k).

    k Markov ρ(k) = ( ρi (k) : i ∈ S ) ρ(k) = ρ(k)P ρi (k) < ∞ i ∈ S

    k τ k < ∞ πi = ρi (k)/τ k

  • 8/20/2019 Αλυσίδες Markov 1

    11/12

    Markov x x = xP

    i∈S xi < ∞ i∈S xi = ∞

    s ∈ S

    (i {y j : j = s} |y j | ≤ 1 j = s

    yi = j : j = s

    P ij y j , i = s,

    (ii {y j : j = s} lim j →∞ y j = ∞ j = s

    yi ≥ j : j = s

    P ij y j , i = s.

    S = {0, 1, 2, . . .}

    P 0,0 = q, P i,i +1 = p, i ≥ 0, P i,i − 1 = q, i ≥ 1,

    p, q ∈ (0, 1), p + q = 1 ρ = p/q

    (i q < p s = 0 y j = 1 − ρ− j (i)

    (ii π = πP π j =ρ j (1 − ρ) q > p

    q > p

    (iii q = p = 12 s = 0 y j = j j ≥ 1 (ii)

    Markov S N P ij (N ) > 0 i, j ∈ S

    limn →∞ P ij (n) = π j i, j ∈ S π j > 0 j ∈ S j∈S π j = 1

    Markov

    Markov

  • 8/20/2019 Αλυσίδες Markov 1

    12/12

    Markov πi

    π i = τ − 1i , i ∈ S.

    Markov

    (i

    (ii

    (iii

    Markov i, j ∈ S

    limn →∞

    P ij (n) = τ − 1 j

    π π j = τ − 1 j j ∈ S

    Markov π j = lim n →∞ P ij (n) = τ − 1 j i, j ∈ S

    Markov