Ultrasound Distance Meter · Ultrasound Distance Meter. Zürcher Fachhochschule 2 Introduction...

Post on 18-Sep-2020

4 views 0 download

Transcript of Ultrasound Distance Meter · Ultrasound Distance Meter. Zürcher Fachhochschule 2 Introduction...

1Zürcher FachhochschuleZürcher Fachhochschule

ETP 2011

Ultrasound Distance Meter

2Zürcher FachhochschuleZürcher Fachhochschule

Introduction Ultrasound

1482

5960

Fresh Water

Steel

1450Fat

331Air (00C)

Velocity of Sound (m/s)Material

f = 20 kHz…20 MHzf

c=λ Example: 40 kHz λλλλ = 8.275 mm

3Zürcher FachhochschuleZürcher Fachhochschule

Introduction Ultrasound

C2731

sm3.331c

0air

ϑ+⋅= with ϑ in degree Celsiusor precisely

331.3 m/s is the 0o speed

Keep in mind: nearly 2 0/00 error per deg

4Zürcher FachhochschuleZürcher Fachhochschule

Introduction Ultrasound

5Zürcher FachhochschuleZürcher Fachhochschule

Introduction Ultrasound

[ ] Decade/dB20dBLoss =In air, for 20…40 kHz:

6Zürcher FachhochschuleZürcher Fachhochschule

Introduction Ultrasound

7Zürcher FachhochschuleZürcher Fachhochschule

Note: 1 Pascal = 10µBar

Transducer Parameters

• High Q-Factor Devices: Q = B/fo = 20...40

• Transmitter: Pressure in dB @ 30 cm

Reference 0 dB = 20 µPa/10 Vrms

• Receiver: Sensitivity in dB

Reference 0 dB = 10 V/Pa respectively 1 V/µBar

8Zürcher FachhochschuleZürcher Fachhochschule

Transducer Parameters

High Q causes slow on/off transitions

Keep in mind: 1 ms error in time causes 33 cm error in distance

9Zürcher FachhochschuleZürcher Fachhochschule

Transducer Parameters

• Radiation Pattern is directive

• Typical Beam Width is 600

10Zürcher FachhochschuleZürcher Fachhochschule

US Measuring Principles & Applications

11Zürcher FachhochschuleZürcher Fachhochschule

Distance measurement by Pulse-Echo method

• TOF = Time of Flight Measurement

• Easy Implementation

• Limited by Pulse Width which has to be approx.

0.5 ms due to high Q of Transducers

12Zürcher FachhochschuleZürcher Fachhochschule

Distance Measuring Application

simplest implementation

13Zürcher FachhochschuleZürcher Fachhochschule

Take strongest receive pulse

14Zürcher FachhochschuleZürcher Fachhochschule

Velocity measurement by Pulse-Doppler method.

• Usage of a long pulse duration leads to famous CW Doppler Radar

• Velocity measurement only, e.g. Traffic Speed or Intrusion Alarm

15Zürcher FachhochschuleZürcher Fachhochschule

LPM (Linear-period modulated)

• The received signal, which includes the reflected echo, is correlated with the LPM signal.

• Cross-correlation operation is the method for effective improvement of the resolution of the TOF.

• The cross-correlation function of the reflected echo (2 continuous LPM signals) and the LPM signal has 2 peaks.

• The first peak of the cross-correlation function shows the Doppler-shifted TOF.

• The second peak shows the length of the LPM signal, which is also Doppler-shifted in proportion to the velocity.

• Therefore, the velocity can be calculated from the Doppler-shifted length.

• Finally from this the corrected TOF can be calculated.

ADC

Distance measurement by Linear Sweep method

16Zürcher FachhochschuleZürcher Fachhochschule

Similar Approach found in FMCW Radar

17Zürcher FachhochschuleZürcher Fachhochschule

Simple Pulse Circuit Example

TX

RX

18Zürcher FachhochschuleZürcher Fachhochschule

Transceiver

19Zürcher FachhochschuleZürcher Fachhochschule

Mode TX: operated in

Series Resonance

(driven by voltage source)

√√√√

Mode RX: operated in

Parallel Resonance

(feeding high ohmic load)

nok

Transducer Operation

40 kHz TX Device:

Z, ∠∠∠∠

Re, Im

Use Transceiver or

dedicated TX and RX decives

20Zürcher FachhochschuleZürcher Fachhochschule

Model Development

Cd = Static Capacity

Cs = Equivalent Capacity

Ls = Equivalent Inductance

Rs = Real Part of Imp @ fs

• Read from Graph: fs @ Zmin, fp @ Zmax

• Read from Graph: Z and ϕ value at fs

• Read: Cd from Datasheet

s

2

s

2

2

s

2

p

f@)cos(

ZRs

Csf4

1Ls

1f

fCdCs

ϕ=

⋅⋅π⋅=

⋅=

PT400: Cd = 2400pF, Z = 850 Ω, ϕ =500

fs = 39.5kHz, fp = 40.5kHz

Rs = 1320 Ω Cs = 122 pF Ls = 132 mH

21Zürcher FachhochschuleZürcher Fachhochschule

Ultrasound Link Budget Calculation

50% air humidity

22Zürcher FachhochschuleZürcher Fachhochschule

Our case with 2d = 16 m:

SPL = 120 dB, S = -60 dB,

Calculate: x1 = 35 dB, x2 = 20 dB, assume: x3 = 10 dB 100uV

Goal: min. Vdet = 100 mV Min. Receiver Gain = 1000

Adjustable/programmable attenuator will be used for smaller gain

Calculating Received Voltage

23Zürcher FachhochschuleZürcher Fachhochschule

Received Voltage for typical 400 PT160

best 0.5 mworst 16 m

24Zürcher FachhochschuleZürcher Fachhochschule

Common Transmitter Circuit

© Design hhrt

25Zürcher FachhochschuleZürcher Fachhochschule

Transmitter Circuit Signals

T

Time (ms)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ITrafo (A)

-2

0

2

T11

0

5

T12

0

5

T13

0

5

T14

0

5

UTrafo (V)

-2.5

0.0

2.5

acoustic pressure

-12

0

12

supply limit (V)

4.5

5.0

transducer (V)

-25

0

25

receive - receive - receive damp - damp - damp - send - send - send - send - send - send - send -

26Zürcher FachhochschuleZürcher Fachhochschule

Example Layout of Transmitter Board