MODERN CLIMATE AND HYDROLOGICAL CYCLE OF MARS. A.V.Rodin, A.A.Fedorova, N.A.Evdokimova,...

Post on 20-Jan-2016

216 views 0 download

Transcript of MODERN CLIMATE AND HYDROLOGICAL CYCLE OF MARS. A.V.Rodin, A.A.Fedorova, N.A.Evdokimova,...

MODERN CLIMATE

AND HYDROLOGICAL CYCLE OF MARS.

A.V.Rodin, A.A.Fedorova, N.A.Evdokimova, A.V.Burlakov, O.I.Korablev 1Moscow Institute of Physics and Technology, Russia; Space Research Institute, Russia .

Contact: Alexander.Rodin@phystech.edu

Seasonal and latitudinal distribution of water vapor

Viking 1,2 MAWD

TES – 20-40 microns

1.38 μm

MY 27 SPICAM IR

Smith 2002-2008

Fedorova et al. 2006 Jakosky, Farmer 1984

Jakosky et al.1984-1995:

Titov, Houben Regolith matters

Clancy et al., 1996: Circulation affected by

Richardson, Wilson, 2003 orbit excentricity &

Montmessin et al., 2004 hemispheircal asymmetry

cloud microphysics matters

TES, PFS, OMEGA, SPICAM, MCS: search for zonal, seasonal and interannual variations

Mars Atmosphere General Circulation Model

•FMS dynamical core•Aerosol –consistent radiation•H2O cloud microphysics•11.5, kz=28

Ls = 270 z=5 km

GCM illustration of Clancy effect: aphelion-perihelion asymmetry

perihelion aphelion

Clancy et al., 1996, Montmessin et al, 2002

50 100 150 200 250 300 350-90

-60

-30

0

30

60

90

Water vapor, pr. m

Solar areocentric longitude

L

atitu

de

5

5

510

10

10

10

15

15

15

15

15

15

15

20

20

20

202

0

2020

25

25

25

25

3030

30

35

35

4045

50 60 65

Seasonal Mars water cycle: GCM results

Water vapor column distributions on Mars

imply significant zonal variations:Viking/MAWD (Fedorova et al., 2004, Pankine et al.,2009)

Ls = 20

Ls = 330Ls = 150

Ls = 90

MGCM simulations

Water vapor annual average:atmosphere-surface interactions

Water vapor column, pr. mExposure (days) of frost layer

exceeding 100 m

Mitrofanov et al., 2002

Antipodal maxima of bound water content

Annual average (contd.)H2O molecules number densityprovided T > 220 K

Cold trap: total time when T>30 Kand T > 200 K, days

Basilevsky et al., 2006, Nelli et al., 2006

Soil hydration: - significant latitudinal variations - no evident connection to the seasonal water cycle

Evdokimova et al., 2010

MGS/TES (Pankine et al.,2009)

MEX/SPICAM: Spatial distribution of water vapor summer in north hemisphere

Ls 95-120: 59 orbits from 72 orbits are presented

Fedorova et al, 2009

0

180

10

20

30

40

50

60

MGCM instant water vapor column: North hemisphere [pr. m]

0

180

0

100

200

Ls = 92

0

180

0

100

200

Ls = 113 Ls = 142

Ls~93-97

OMEGA: Modes 2 and 3 in NPC sublimation marked by 1.25 m water ice band depth

MGCM water column, pr µm

Ls~113-115 Ls~127-136

Ls~94 Ls~114 Ls ~132

The location of maximal wind stress at the NPC coincides with spots of enhanced ice aging

0 5

Near-surface wind according to MGCM (m/s)

Ls = 92 Ls = 113 Ls = 137

+

+

+

+

+

(!) NPC sublimation rate depends on dynamics of the ambient atmosphere, not just heating and relative humidity

Ls = 145 event: switching from mesoscale to global perturbation

Ls = 92 Ls = 137 Ls = 147

Zonal flow meridional shear

Meridional V-component Emerging circumpolar vortex

Wave-3 pattern

-5 5 -10 10-5 5

Decaying circumpolar vortex

Polar vortex barotropic instability: laboratory studies (Barbosa et al., 2010)

Mode 3 in the residual seasonal water ice deposits (left) and MGCM moisture (right)

MEX/OMEGA 1.5 m indexRodin et al., 2010 MGCM

South hemisphere Ls = 225 event: implications to dust cycle

Ls = 220 Ls = 227

Near-surface dust mixing ratio (ppm)

Wave-3 pattern

0 50

Ls = 233

Wave-2 pattern Wave-4 pattern

0 50 0 50

Season of the strongest transient in the South hemisphere coincides with thewindow of dust storm initiation

Conclusions

• The nature of current Mars water cycle is understood; GCMs are able to reproduce observables

• The role of polar caps, regolith, and clouds needs further quantitative assessment

• Water cycle demonstrates a major role of low-wavenumber eddy transport in the Martian atmopsheric circulation