12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

15
12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI Vertical Structure of the Atmosphere Saturday, September 17, 2011

Transcript of 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Page 1: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

12.003Atmosphere, Ocean and Climate Dynamics

Lecture VIVertical Structure of the Atmosphere

Saturday, September 17, 2011

Page 2: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Lecture VI Outline

1. Physical properties of dry air2. Vertical distribution of temperature3. Hydrostatic balance4. Vertical distribution of pressure and density

Saturday, September 17, 2011

Page 3: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Physical properties of dry air (p,ρ,T)• Ideal gas law

ρ(z) = ρ0 e−z/H (1)ρ0 = 1.35 kg/m3 (2)H = 6.8 km (3)

Ω =vr

=2πR/day

R=

2πday

= 7.27×10−5s−1 (4)

Ve =

2GM/R (5)

Vm =

2kT/m (6)

p V = n Rg T =Mm

Rg T (7)

p = ρRg

mT = ρ RT (8)

Rg = 8.314 JK−1mol−1 (9)

R =Rg

ma= 287 Jkg−1K−1 (10)

p = ∑i

ρiRg

miT = 78%ρ

Rg

mN2

T +21%ρRg

mO2

T + · · · = ρRg

maT (11)

e = ρv Rv T (12)pd = ρd Rd T (13)p = pd + e≈ pd (14)

es = A eβT (15)

1

ρ(z) = ρ0 e−z/H (1)ρ0 = 1.35 kg/m3 (2)H = 6.8 km (3)

Ω =vr

=2πR/day

R=

2πday

= 7.27×10−5s−1 (4)

Ve =

2GM/R (5)

Vm =

2kT/m (6)

p V = n Rg T =Mm

Rg T (7)

p = ρRg

mT = ρ RT (8)

Rg = 8.314 JK−1mol−1 (9)

R =Rg

ma= 287 Jkg−1K−1 (10)

p = ∑i

ρiRg

miT = 78%ρ

Rg

mN2

T +21%ρRg

mO2

T + · · · = ρRg

maT (11)

e = ρv Rv T (12)pd = ρd Rd T (13)p = pd + e≈ pd (14)

es = A eβT (15)

1

ρ(z) = ρ0 e−z/H (1)ρ0 = 1.35 kg/m3 (2)H = 6.8 km (3)

Ω =vr

=2πR/day

R=

2πday

= 7.27×10−5s−1 (4)

Ve =

2GM/R (5)

Vm =

2kT/m (6)

p V = n Rg T =Mm

Rg T (7)

p = ρRg

mT = ρ RT (8)

Rg = 8.314 JK−1mol−1 (9)

R =Rg

ma= 287 Jkg−1K−1 (10)

p = ∑i

ρiRg

miT = 78%ρ

Rg

mN2

T +21%ρRg

mO2

T + · · · = ρRg

maT (11)

e = ρv Rv T (12)pd = ρd Rd T (13)p = pd + e≈ pd (14)

es = A eβT (15)

1

ρ(z) = ρ0 e−z/H (1)ρ0 = 1.35 kg/m3 (2)H = 6.8 km (3)

Ω =vr

=2πR/day

R=

2πday

= 7.27×10−5s−1 (4)

Ve =

2GM/R (5)

Vm =

2kT/m (6)

p V = n Rg T =Mm

Rg T (7)

p = ρRg

mT = ρ RT (8)

Rg = 8.314 JK−1mol−1 (9)

R =Rg

ma= 287 Jkg−1K−1 (10)

p = Rg78%ρmN2

T +Rg21%ρmO2

T + · · · = ρRg

maT (11)

p V = ∑i

ni Rg T = ∑i

Mi

miRg T (12)

e = ρv Rv T (13)pd = ρd Rd T (14)p = pd + e≈ pd (15)

es = A eβT (16)

1

ρ(z) = ρ0 e−z/H (1)ρ0 = 1.35 kg/m3 (2)H = 6.8 km (3)

Ω =vr

=2πR/day

R=

2πday

= 7.27×10−5s−1 (4)

Ve =

2GM/R (5)

Vm =

2kT/m (6)

p V = n Rg T =Mm

Rg T (7)

p = ρRg

mT = ρ RT (8)

Rg = 8.314 JK−1mol−1 (9)

R =Rg

ma= 287 Jkg−1K−1 (10)

p = Rg78%ρmN2

T +Rg21%ρmO2

T + · · · = ρRg

maT (11)

p V = ∑i

ni Rg T = ∑i

Mi

miRg T (12)

e = ρv Rv T (13)pd = ρd Rd T (14)p = pd + e≈ pd (15)

es = A eβT (16)

1

ρ Animation

Universal gas constant

Gas constant of a specific gas

Saturday, September 17, 2011

Page 4: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Physical properties of dry air• Dalton’s law of partial pressures for dry air

ρ(z) = ρ0 e−z/H (1)ρ0 = 1.35 kg/m3 (2)H = 6.8 km (3)

Ω =vr

=2πR/day

R=

2πday

= 7.27×10−5s−1 (4)

Ve =

2GM/R (5)

Vm =

2kT/m (6)

p V = n Rg T =Mm

Rg T (7)

p = ρRg

mT = ρ RT (8)

Rg = 8.314 JK−1mol−1 (9)

R =Rg

ma= 287 Jkg−1K−1 (10)

p = Rg78%ρmN2

T +Rg21%ρmO2

T + · · · = ρRg

maT (11)

p V = ∑i

ni Rg T = ∑i

Mi

miRg T (12)

e = ρv Rv T (13)pd = ρd Rd T (14)p = pd + e≈ pd (15)

es = A eβT (16)

1

ρ(z) = ρ0 e−z/H (1)ρ0 = 1.35 kg/m3 (2)H = 6.8 km (3)

Ω =vr

=2πR/day

R=

2πday

= 7.27×10−5s−1 (4)

Ve =

2GM/R (5)

Vm =

2kT/m (6)

p V = n Rg T =Mm

Rg T (7)

p = ρRg

mT = ρ RT (8)

Rg = 8.314 JK−1mol−1 (9)

R =Rg

ma= 287 Jkg−1K−1 (10)

p = Rg78%ρmN2

T +Rg21%ρmO2

T + · · · = ρRg

maT = ρ R T (11)

p V = ∑i

ni Rg T = ∑i

Mi

miRg T (12)

e = ρv Rv T (13)pd = ρd Rd T (14)p = pd + e≈ pd (15)

es = A eβT (16)

1

ρ(z) = ρ0 e−z/H (1)ρ0 = 1.35 kg/m3 (2)H = 6.8 km (3)

Ω =vr

=2πR/day

R=

2πday

= 7.27×10−5s−1 (4)

Ve =

2GM/R (5)

Vm =

2kT/m (6)

p V = n Rg T =Mm

Rg T (7)

p = ρRg

mT = ρ RT (8)

Rg = 8.314 JK−1mol−1 (9)

R =Rg

ma= 287 Jkg−1K−1 (10)

p = Rg78%ρmN2

T +Rg21%ρmO2

T + · · · = ρRg

maT = ρ R T (11)

p V = ∑i

ni Rg T = ∑i

Mi

miRg T (12)

e = ρv Rv T (13)pd = ρd Rd T (14)p = pd + e≈ pd (15)

es = A eβT (16)

1

!"#$%&#'()!'**)"+),-(

!"#$%&"$&'$%$(&)*+",$-.$/%','$01,",$*1,$(-2,3+2%"$0,&/1*$3%4$5,$3%23+2%*,65#$%66&4/$*1,$0,&/1*$-.$,%31$3-(7-4,4*

!"#$%#&'()*+$,%

Air PressureGreat deals on everything Air Pressurethemed.Yahoo.com

Pressure CalibrationISO/IEC 17025-2005 Accredited PressureCalibrationwww.mametrology.com

Rocky Mt. Window CleanersCommercial and res. power washing. Callus today.www.rockymountainwindowcleaners.com

Mass SpectrometersQuadrupoles for advanced science Gas,Surface, Plasma and Vacuum.www.HidenAnalytical.com

Carpet Cleaning ExpertsSave 15% off all residental and commercialair duct cleaningwww.mycarpetcleaningexpert.com

Design Clear CalculationsStruggling with quantity? Use MS Word formax resultwww.motagg.com

-.')/#0'1203&)/3%%)#4)3)%25%63$1')+%)6.')/3%%)#4)#$')/#0'120')#4)6.36)%25%63$1')3$()+%)'7"&'%%'(+$)6'&/%)#4)6.')/#0'1203&)/3%%)2$+6)2)8'9230)6#):;:<)6.')/3%%)#4)#$')36#/)#4)13&5#$=:<>?)-.'/#0'1203&)/3%%)13$)5')13012036'()3%)6.')%2/)#4)6.')36#/+1)/3%%'%)#4)300)6.')36#/%)#4)3$@)#$'/#0'120'?

8-(7-4,4*'$&4$!"#$9&"

-.')6A#)/#%6)(#/+$3$6)1#/"#$'$6%)+$)(&@)3+&)3&')B7@C'$)3$()D+6&#C'$?)B7@C'$).3%)3$):E)36#/+12$+6)/3%%)3$()D+6&#C'$).3%)3):F)36#/+1)2$+6%)/3%%?)!+$1')5#6.)6.'%')'0'/'$6%)3&')(+36#/+1)+$)3+&)=B!)3$()D

!G)6.')/#0'1203&)/3%%)#4)B7@C'$)+%)H<)3$()6.')/#0'1203&)/3%%)#4)D+6&#C'$)+%)<I?

!+$1')3+&)+%)3)/+762&')#4)C3%'%)6.')6#630)/3%%)13$)5')'%6+/36'()5@)3((+$C)6.')A'+C.6)#4)300)/3J#&1#/"#$'$6%)3%)%.#A$)5'0#AK

L#/"#$'$6%)+$M&@)N+&

O#02/')P36+#1#/"3&'()6#)M&@

N+&

Q#0'1203&)Q3%%)=!

8,C;,/#0>

Q#0'1203&)Q3%%)+$N+&

B7@C'$ R?<RST H<?RR E?URF

D+6&#C'$ R?UIRS <I?R< <:?II

L3&5#$)M+#7+(' R?RRRH FF?R: R?R:H

V@(&#C'$ R?RRRRRRT <?R< R

N&C#$ R?RRSHH HS?SF R?HUH

D'#$ R?RRRR:I <R?:I R

V'0+2/ R?RRRRRT F?RR R

W&@"6#$ R?RRRRR: IH?I R

X'$#$ R?RS):R"# :H:?<S R

-#630)Q#0'1203&)Q3%%)#4)N+& <I?SU

:%*,"$;%7-"

Y36'&)Z3"#&)+%)30/#%6)30A3@%)"&'%'$1')+$)(&@)3+&?)-.')1#$6'$6)/3@)Z3&@)3$()6.')/37+/2/)13"31+6@)#4A36'&)Z3"#&)+$)(&@)3+&)('"'$(%)#$)6.')6'/"'&362&'?

Y36'&)Z3"#&)=)V!B)=)+%)1#/"#%'()#4)#$')B7@C'$)36#/)3$()6A#)V@(&#C'$)36#/%?)V@(&#C'$)+%)6.'

0+C.6'%6)'0'/'$6)36):)36#/+1)2$+6)A.+0')B7@C'$)+%):E)36#/+1)2$+6%?)-.2%)6.')A36'&)Z3"#&)36#/).3%)3$36#/+1)/3%%)#4):I)36#/+1)2$+6%?)N6):I)36#/+1)2$+6%G)A36'&)Z3"#&)+%)0+C.6'&)6.3$)(+36#/+1)B7@C'$)A+6.H<)2$+6%)3$()(+36#/+1)D+6&#C'$)A+6.)<I)2$+6%?

!"#$%)Y36'&)Z3"#&)+$)3+&)A+00)&'"031')#6.'&)C3%'%)3$()&'(21')6.')6#630)('$%+6@)#4)6.')/+762&'?)&'()*'+*,+-"'$+.$/,$+#0)/+01-*.+)*'%

!"#$%#&'()*+$,%

Air Pressure TransducerAir Pressure Transducer The TopIndustrial Resource.Industrial101.com

USB Temperature LoggersLow cost temperature and RHloggers starting from $59www.measurementcomputing.com

Treat Pressure UlcerSignitin: Simple time testedremedy for Pressure UlcerSignitin.com

Pressure CalibrationPressure Controller Specialists forthe New England Life Sciencesbiometrix.com

Air Flow MetersDirectory of flow meter suppliers.Find flow meters quickly.

Design Clear CalculationsStruggling with quantity? Use MSWord for max result

Heparin Recall UpdateDanger from ContaminatedHeparin. Contact Our Law Firm For

Basement DehumidifierMaintenance-free dehumidifierwith no hidden costs - improve

V#/'

!"N1#2%6+1%

!"N+&)[%@1.&#/'6&+1%

!"\3%+1%

!"L#/52%6+#$

!"]1#$#/+1%

!"]0'16&+130

!"]$Z+&#$/'$6

!"^02+()Q'1.3$+1%

!"_3%)3$()L#/"&'%%'(

N+&

!"VONL)!@%6'/%

!"V@(&320+1%)3$(

[$'2/36+1%

!"`$%2036+#$

!"Q36'&+30)[&#"'&6+'%

!"Q36.'/36+1%

!"Q'1.3$+1%

!"Q+%1'003$'#2%

!"[.@%+#0#C@

!"[+"+$C)!@%6'/%

!"[&#1'%%)L#$6&#0

!"[2/"%

!"!63$(3&(%

B&C3$+a36+#$%

!"!6'3/)3$(

L#$('$%36'

!"-.'&/#(@$3/+1%

!"Y36'&)!@%6'/%

!""#$"%&!"#$%&'(%&&'&())&*+,-&./012

'&31/45+&*+,-&3,*12

'&!4/6-#/*1&*+,-&./012

'&(7"8*&9-2

!1:;14/*841

!!!

!!"

<160*+

#$

#%$

#&'

#()

#*+,-.

#$&/0.

#'+1)&2+/#$&/0.

;4,6*14=4,16)#>.4,6*14?4,16)#>

!""#$"%&!"#$%&'(%&&'&())&*+,-&./012

&')*&*"&*+,-&./012

2'$$+3/.1,#'(4$,"1'5$,

]`b)P'"#&6KB"'&36+#$30

]71'00'$1'K)]$350+$C!2%63+$'()_&#A6.)=!"#60+C.6)#$)6.'N/'&+13%

V#A)6#)1#/"0@)A+6.6.')[3@/'$6)L3&(`$(2%6&@)!63$(3&(

N\L%)#4)P^`MKb$('&%63$(+$C)3$(

b%+$C)P3(+#^&'92'$1@`('$6+!136+#$

2'$$+3/.1,#'(4$,"1'5$,

]$350+$C)[&#!6350'_&#A6.)6.&#2C.[&#12&'/'$6K

-&3$%4#&/+$C)6.'!#2&1+$C)3$([&#12&'/'$6B&C3$+a36+#$

:R)!6'"%)6#)3!211'%%420)LPQ`/"0'/'$636+#$

P'%#2&1'%G)-##0%)3$()\3%+1)`$4#&/36+#$)4#&)]$C+$''&+$C)3$()M'%+C$)#4)-'1.$+130)N""0+136+#$%c

!

!"#$! %&#!'()*(##+*()!%,,-.,/

Dry air gas constant

Saturday, September 17, 2011

Page 5: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Atmospheric temperature variations • Atmospheric temperature varies in horizontal and vertical• Vertical variations are similar everywhere

pattern set by radiation budget (thermodynamics)• Horizontal variations depend on height

pattern set atmospheric transport (dynamics)

Saturday, September 17, 2011

Page 6: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Vertical variations of temperature Three hot spots:

1) thermopause =>

2) stratopause =>

3) surface =>Saturday, September 17, 2011

Page 7: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Thermosphere• Named from the Greek θερμός (heat) σφαιρα (sphere), begins about 90 km above Earth’s surface• Molecules are dissociated and electrons are ionized (no triatomic molecules)• Absorbs high-energy UV (λ < 0.1 μm) - heated from above• Temperature increases with height

Saturday, September 17, 2011

Page 8: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Mesosphere• Named from the Greek μεσό (middle) σφαιρα (sphere), located from about 50 km to 80-90 km above Earth's surface• Composition is similar to troposphere and stratosphere (N2, O2, Ar, CO2) • Absorbs decreasing amounts of low-energy UV through ozone• Temperature decreases with height from 0oC to -100oC

Saturday, September 17, 2011

Page 9: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Stratosphere• Named from the Greek στράτος (layered) σφαιρα (sphere), located from about 10 km to 50 km above Earth's surface• Contains most of the ozone in the atmosphere• Ozone absorbs medium wavelength UV (0.1 < λ < 0.35 μm) - heated from above• Temperature increases with height from -40oC to 0oC

Saturday, September 17, 2011

Page 10: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Ozone layer• Ozone is byproduct of photodissociation of molecular oxygen• Ozone absorbs medium wavelength UV (important for life on Earth)

Saturday, September 17, 2011

Page 11: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Troposhere• Named from the Greek τρόπος (turn) σφαιρα (sphere), located within 10 km of the Earth's surface• Contains 85% of the atmospheric mass• Absorbs infrared radiation through H2O and CO2 - heated from below• Temperature decreases with height from to 15oC -40oC

Saturday, September 17, 2011

Page 12: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Troposphere• Atmospheric layer most dynamically active

weather we experience is confined to troposphere• Transport modifies temperature profiles

Saturday, September 17, 2011

Page 13: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Hydrostatic balanced pdz

=−gρ (1)

FgGravitational force

+ FTTop pressure force

+ FBBottom pressure force

= 0 (2)

κ|∇T |2 (3)

uuueTe · ∇T (4)

(∂t +uuug · ∇) T +ΓT v+N2T w = DT (5)

(∂t +uuug · ∇) S +ΓS v+N2S w = DS (6)

(∂t +uuug · ∇) ρ +Γρ v+N2ρ w = Dρ (7)

(∂t +uuug · ∇) C +ΓC v = DC (8)

ρ = ρ0 [1−α (T −T0)+β (S−S0)] (9)

C = ρ0

1−

N2S

N2ρ

α (T −T0)+N2

TN2

ρβ (S−S0)

(10)

(11)

1

d pdz

=−gρ (1)

FgGravitational force

+ FTTop pressure force

+ FBBottom pressure force

= 0 (2)

κ|∇T |2 (3)

uuueTe · ∇T (4)

(∂t +uuug · ∇) T +ΓT v+N2T w = DT (5)

(∂t +uuug · ∇) S +ΓS v+N2S w = DS (6)

(∂t +uuug · ∇) ρ +Γρ v+N2ρ w = Dρ (7)

(∂t +uuug · ∇) C +ΓC v = DC (8)

ρ = ρ0 [1−α (T −T0)+β (S−S0)] (9)

C = ρ0

1−

N2S

N2ρ

α (T −T0)+N2

TN2

ρβ (S−S0)

(10)

(11)

1

Saturday, September 17, 2011

Page 14: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Vertical distribution of pressure• Isothermal atmosphere

• Non-isothermal atmosphere

d p

dz= −gρ (1)

FgGravitational force

+ FTTop pressure force

+ FBBottom pressure force

= 0 (2)

p(z) = ps exp− z

H

H =

RT0

g(3)

p(z) = ps exp−

z

0

dz

H(z)

H(z) =

RT (z)g

(4)

uuueTe · ∇T (5)

(∂t +uuug · ∇) T +ΓT v+N2T

w = DT (6)(∂t +uuug · ∇) S +ΓS v+N

2S

w = DS (7)

(∂t +uuug · ∇) ρ +Γρ v+N2ρ w = Dρ (8)

(∂t +uuug · ∇) C +ΓC v = DC (9)

ρ = ρ0 [1−α (T −T0)+β (S−S0)] (10)

C = ρ0

1−

N2S

N2ρ

α (T −T0)+N

2T

N2ρ

β (S−S0)

(11)

(12)

1

d p

dz= −gρ (1)

FgGravitational force

+ FTTop pressure force

+ FBBottom pressure force

= 0 (2)

p(z) = ps exp− z

H

H =

RT0

g(3)

p(z) = ps exp−

z

0

dz

H(z)

H(z) =

RT (z)g

(4)

uuueTe · ∇T (5)

(∂t +uuug · ∇) T +ΓT v+N2T

w = DT (6)(∂t +uuug · ∇) S +ΓS v+N

2S

w = DS (7)

(∂t +uuug · ∇) ρ +Γρ v+N2ρ w = Dρ (8)

(∂t +uuug · ∇) C +ΓC v = DC (9)

ρ = ρ0 [1−α (T −T0)+β (S−S0)] (10)

C = ρ0

1−

N2S

N2ρ

α (T −T0)+N

2T

N2ρ

β (S−S0)

(11)

(12)

1

Saturday, September 17, 2011

Page 15: 12.003 Atmosphere, Ocean and Climate Dynamics Lecture VI ...

Vertical distribution of density• Isothermal atmosphere

• Non-isothermal atmosphere

d p

dz= −gρ (1)

FgGravitational force

+ FTTop pressure force

+ FBBottom pressure force

= 0 (2)

p(z) = ps exp− z

H

H =

RT0

g(3)

p(z) = ps exp−

z

0

dz

H(z)

H(z) =

RT (z)g

(4)

ρ(z) =ps

RT0exp

− z

H

H =

RT0

g(5)

ρ(z) =ps

RT (z)exp

z

0

dz

H(z)

H(z) =

RT (z)g

(6)

uuueTe · ∇T (7)

(∂t +uuug · ∇) T +ΓT v+N2T

w = DT (8)(∂t +uuug · ∇) S +ΓS v+N

2S

w = DS (9)

(∂t +uuug · ∇) ρ +Γρ v+N2ρ w = Dρ (10)

(∂t +uuug · ∇) C +ΓC v = DC (11)

ρ = ρ0 [1−α (T −T0)+β (S−S0)] (12)

C = ρ0

1−

N2S

N2ρ

α (T −T0)+N

2T

N2ρ

β (S−S0)

(13)

(14)

1

d p

dz= −gρ (1)

FgGravitational force

+ FTTop pressure force

+ FBBottom pressure force

= 0 (2)

p(z) = ps exp− z

H

H =

RT0

g(3)

p(z) = ps exp−

z

0

dz

H(z)

H(z) =

RT (z)g

(4)

ρ(z) =ps

RT0exp

− z

H

H =

RT0

g(5)

ρ(z) =ps

RT (z)exp

z

0

dz

H(z)

H(z) =

RT (z)g

(6)

uuueTe · ∇T (7)

(∂t +uuug · ∇) T +ΓT v+N2T

w = DT (8)(∂t +uuug · ∇) S +ΓS v+N

2S

w = DS (9)

(∂t +uuug · ∇) ρ +Γρ v+N2ρ w = Dρ (10)

(∂t +uuug · ∇) C +ΓC v = DC (11)

ρ = ρ0 [1−α (T −T0)+β (S−S0)] (12)

C = ρ0

1−

N2S

N2ρ

α (T −T0)+N

2T

N2ρ

β (S−S0)

(13)

(14)

1

Saturday, September 17, 2011