Full System Simulation Progressroystgnr/FSS_talk_2012.pdf · 2012. 10. 17. · PECOS Predictive...

Post on 15-Aug-2021

3 views 0 download

Transcript of Full System Simulation Progressroystgnr/FSS_talk_2012.pdf · 2012. 10. 17. · PECOS Predictive...

PECOSPredictive Engineering and Computational Sciences

Full System Simulation Progress

Roy H. Stogner

The University of Texas at Austin

October 17, 2012

Stogner 2012 FSS October 17, 2012 1 / 27

Outline

1 Prior Work

2 New Formulations

3 New Models

4 New Calibrations

5 New Results

6 Ongoing Work

Stogner 2012 FSS October 17, 2012 2 / 27

Prior Work

1 Prior Work

2 New Formulations

3 New Models

4 New Calibrations

5 New Results

6 Ongoing Work

Stogner 2012 FSS October 17, 2012 3 / 27

Prior Work

Full System Uncertainties

• High enthalpy aerothermochemistry, hypersonic flow

• Model uncertainties (turbulence, nitridation, kinetics)

• Numerical unknowns (discretization, UQ error)

• Modeling unknowns (missing/wrong physics)

Stogner 2012 FSS October 17, 2012 4 / 27

Prior Work

2010-2011 Model Calibrations

Ablator Nitridation Uncertainty• Probability of C(s)+N(g) => CN(g) at surface

• 4 OOM Prior Uncertainty range in literature

• βN sensitivity enormous in prior, negligible after calibration

Air Reaction Chemistry Uncertainty• Strong output sensitivities to N2 + O, NO + O reactions

• Calibration via shock tube spectroscopy

Turbulence Model Uncertainty• Prior “Turbulence augmentation” uncertainty: 0− 150% range

• Posterior: 8-parameter Spalart-Allmaras calibrated againstsupersonic boundary layer data, DNS

Stogner 2012 FSS October 17, 2012 5 / 27

New Formulations

1 Prior Work

2 New Formulations

3 New Models

4 New Calibrations

5 New Results

6 Ongoing Work

Stogner 2012 FSS October 17, 2012 6 / 27

New Formulations

Stabilized Navier-Stokes

∂U

∂t+∂F i

∂xi=∂Gi

∂xi+ S

Find U satisfying the essential boundary and initial conditions such that∫Ω

[W ·

(∂U

∂t− S

)+∂W

∂xi·(Kij

∂U

∂xj−AiU

)]dΩ

+

nel∑e=1

∫Ωe

τSUPG∂W

∂xk·Ak

[∂U

∂t+Ai

∂U

∂xi− ∂Gi

∂xi− S

]dΩ

+

nel∑e=1

∫Ωe

νDCO

(∂W

∂xi· gij ∂U

∂xj

)dΩ−

∮ΓW · (g − f) dΓ = 0

for all W in an appropriate function space.

Stogner 2012 FSS October 17, 2012 7 / 27

New Formulations

Stabilized Navier-Stokes

∂U

∂t+Ai

∂U

∂xi=

∂xi

(Kij

∂U

∂xj

)+ S

Find U satisfying the essential boundary and initial conditions such that∫Ω

[W ·

(∂U

∂t− S

)+∂W

∂xi·(Kij

∂U

∂xj−AiU

)]dΩ

+

nel∑e=1

∫Ωe

τSUPG∂W

∂xk·Ak

[∂U

∂t+Ai

∂U

∂xi− ∂Gi

∂xi− S

]dΩ

+

nel∑e=1

∫Ωe

νDCO

(∂W

∂xi· gij ∂U

∂xj

)dΩ−

∮ΓW · (g − f) dΓ = 0

for all W in an appropriate function space.

Stogner 2012 FSS October 17, 2012 7 / 27

New Formulations

Stabilized Navier-Stokes

∂U

∂t+Ai

∂U

∂xi=

∂xi

(Kij

∂U

∂xj

)+ S

Find U satisfying the essential boundary and initial conditions such that∫Ω

[W ·

(∂U

∂t− S

)+∂W

∂xi·(Kij

∂U

∂xj−AiU

)]dΩ

+

nel∑e=1

∫Ωe

τSUPG∂W

∂xk·Ak

[∂U

∂t+Ai

∂U

∂xi− ∂Gi

∂xi− S

]dΩ

+

nel∑e=1

∫Ωe

νDCO

(∂W

∂xi· gij ∂U

∂xj

)dΩ−

∮ΓW · (g − f) dΓ = 0

for all W in an appropriate function space.

Stogner 2012 FSS October 17, 2012 7 / 27

New Formulations

Stabilization Improvements

Formulation Consistency• Penalty→ Dirichlet boundary conditions

I Still adjoint-consistent in libMesh tests• Avoid reinterpolation of primitive variables, gradients

I Accurate MMS convergence to finer grids• Calculate τSUPG at quadrature points, not nodes

I More stable convergence with Gaussian quadrature, strong reactions

Stogner 2012 FSS October 17, 2012 8 / 27

New Formulations

Stabilization Improvements

Formulation Sophistication• Selective Discontinuity Capturing Operator disabling• Discontinuity Capturing Operator based on Roe’s flux splitting

I Still using straightforward ν from LeBeau & Tezduyar for capsule runs• “Eigen-decomposition” based SUPG τ from Erwin et. al.

I τ−1 =∑i∈nodes

∣∣∣ ∂φi

∂xjAj

∣∣∣I New default FIN-S stabilizationI No longer Lagrange-basis-dependent

With 2011 FSS physics, we can get iterative convergence on steadycapsule runs to machine precision! No more transient oscillations after 6OOM!

Stogner 2012 FSS October 17, 2012 9 / 27

New Models

1 Prior Work

2 New Formulations

3 New Models

4 New Calibrations

5 New Results

6 Ongoing Work

Stogner 2012 FSS October 17, 2012 10 / 27

New Models

Transition Modeling

Motivations• Turbulence: most significant initial parameter uncertainty

• Turbulence remained significant after calibration

• Transition to turbulence is critical to peak heat flux, ablation rate

Models• User-specified transition location

I Testing purposes• Momentum thickness transition model

I θ ≡∫ ρu(y)

ρ0u0

(1− u(y)

u0

)dy

I PDE→ Integro-differential equation

Stogner 2012 FSS October 17, 2012 11 / 27

New Models

Parallel Transition Evaluation

Issues• Integrals cross

subdomains

• Must “batch”communication

Stogner 2012 FSS October 17, 2012 12 / 27

New Models

Parallel Transition Evaluation

Line Construction• At each boundary node

• Iterate up outward normal

• Find local element intersections

• Save “local lines”, link interior andboundary ranks

Integral Evaluation• Freestream evaluations→

boundary→ interior

• Boundary layer edge candidates→boundary→ interior

• Integral subline contributions→boundary, sum

Stogner 2012 FSS October 17, 2012 13 / 27

New Calibrations

1 Prior Work

2 New Formulations

3 New Models

4 New Calibrations

5 New Results

6 Ongoing Work

Stogner 2012 FSS October 17, 2012 14 / 27

New Calibrations

Carbon Reaction Chemistry

k = ATne−TrT

C2 + M −−−− 2 C + M

CN + M −−−− C + N + M

CO + M −−−− C + O + M

CO + C −−−− C2 + O

CO + O −−−− O2 + C

CO + N −−−− CN + O

N2 + C −−−− CN + N

CN + O −−−− NO + C

CN + C −−−− C2 + N

CO + C2−−−− C3 + O

10-3

10-2

10-1

Distance [m]

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Mol

ar F

ract

ion

[-]

COCOCO

2

N2

CNCN

C2

N

O

Uncertain Reaction Rates• Arrhenius pre-exponential

uncertainty: +/- 1 OOM

• Strong ablation sensitivities toN2 + C, CO + N, CO + C2

• Joint calibration

Stogner 2012 FSS October 17, 2012 15 / 27

New Calibrations

Carbon Reaction Chemistry

Experimental Data• Spectroscopy as part of Mars test campaign, Electric Arc Shock Tube

(EAST) facility, NASA Ames

• 96%CO2 + 4%N2 test gas

• 6-7 km/s shock speeds

Numerical Calibration• SHOCKING: 1D Eulerian shock code

• QUESO Markov-Chain Monte Carlo parameter estimation

• Data shows more rapid thermochemical relaxation than predicted byPark1994 or Park2001!

Stogner 2012 FSS October 17, 2012 16 / 27

New Results

1 Prior Work

2 New Formulations

3 New Models

4 New Calibrations

5 New Results

6 Ongoing Work

Stogner 2012 FSS October 17, 2012 17 / 27

New Results

Baseline With Transition

• Spalart-Allmaras ν reduced ten-fold

Stogner 2012 FSS October 17, 2012 18 / 27

New Results

Off-Baseline Convergence: 2011

0 50 100 150 200 250Iteration N

108

109

1010

1011

1012

Uns

tead

yR

esid

ual

ISS Offbaseline Convergence - Dataset 270

10−10

10−9

10−8

10−7

Tim

eS

tep

[s]

‖du/dt‖∞∆t

0 50 100 150 200 250Iteration N

10−6

10−5

QoI

Valu

e

ISS Offbaseline Convergence - Dataset 270

10−10

10−9

10−8

10−7

Tim

eS

tep

[s]

QoI∆t

Convergence• Large initial transients, QoI

change

• Secondary transient spike

• 250 time steps

• 6 OOM convergence

• Reaction stabilization?

Stogner 2012 FSS October 17, 2012 19 / 27

New Results

Off-Baseline Convergence: 2012

0 50 100 150 200 250 300 350 400Iteration N

103

104

105

106

107

108

109

Uns

tead

yR

esid

ual(

Nor

mal

ized

)

ISS Offbaseline Convergence - Dataset 20

10−8

10−7

10−6

10−5

10−4

Tim

eS

tep

[s]

‖du/dt‖∞∆t

0 50 100 150 200 250 300 350 400Iteration N

10−8

10−7

10−6

10−5

10−4

Tim

eS

tep

[s]

ISS Offbaseline Convergence - Dataset 20

10−6

10−5

10−4

QoI

Valu

e

∆t

∆t

Convergence• Aggressive + paranoid

adaptive time steppingI Orders of magnitude

higher time stepsI Ought to be replaced with

estimator-basedadaptivity

• Secondary transient spikewell captured

• 8 OOM convergenceI Transition smoothing

needed?

Stogner 2012 FSS October 17, 2012 20 / 27

New Results

Ablation Rate PDFs

0 0.5 1 1.5 2 2.5 3

x 10−5

−1

0

1

2

3

4

5

6

7

8x 10

5 Capsule Peak Ablation Rate Distributions

Probability Density

Abl

atio

n R

ate,

m/s

UQ Output• Dramatic prediction changes

I 2010: ≈ 2.0× 10−5m/sI 2011: ≈ 4.4× 10−6m/sI 2012: ≈ 7.8× 10−6m/s

• 2010-2011: 100× lowernitridation

• 2011-2012: Faster C kinetics?

Stogner 2012 FSS October 17, 2012 21 / 27

Ongoing Work

1 Prior Work

2 New Formulations

3 New Models

4 New Calibrations

5 New Results

6 Ongoing Work

Stogner 2012 FSS October 17, 2012 22 / 27

Ongoing Work

Built-in Reaction, Catalysis Chemistry

Surface Catalysis• Accelerated recombination of atomic→ molecular gasses at solid

surface

• Significant to heat flux uncertainty at some conditions

• Under testing in Arcjet simulations

FIN-S Reaction Chemistry• Gas-phase, high-enthalpy focus unlike Cantera

• Speed optimized unlike Chemay

Stogner 2012 FSS October 17, 2012 23 / 27

Ongoing Work

Speedup – Multithreading

# Threads

Spe

edup

1 2 3 4 5 61

2

3

4

5

6

Ideal3D, perfect gas2D, 13 species

• Physics cost overwhelms assembly contention

Stogner 2012 FSS October 17, 2012 24 / 27

Ongoing Work

Adjoint Refinement Error Estimator

Error Estimators• eQ ≡ Q(uh; ξ)−Q(u; ξ)

• R(uh, z; ξ) = eQ −RQ +RRI RQ and RR: higher order, typically quadratic in

∣∣∣∣u− uh∣∣∣∣.

• Q(uH)−Q(uh) = −R(uh, zH) +O(e2)

• Higher order z:I Project uh to uH in a refined spaceI Jacobian calculation, linear adjoint solve on refined meshI Residual evaluation on refined mesh

• Linear-only solve on refined mesh

• 1± 2−p asymptotic effectivity

• Element-by-element QoI contributions

Stogner 2012 FSS October 17, 2012 25 / 27

Ongoing Work

RadiationOne-way coupling• FIN-S generates Ttr, Tve, P , molar fractions

• PECOS libradiation generates chemistry-dependent kabs• deal.II-based SPN radiation transport

I −µ2n∇ · ∇I+M + σaI

+m = σa

14πacT

4

I Exact for 1D problems, accurate for “locally 1D” problems

• Adjoint-based error using SN model

Stogner 2012 FSS October 17, 2012 26 / 27

Ongoing Work

ConclusionsForward Uncertainty Propagation• Wide priors require fat, well-resolved tails

I Adaptive importance sampling?• Model inadequacy must be propagated too!

I “Unknown unknowns” can dwarf “known unknowns”

Rapid Application Development• Rapid development and testing is practical:

I FIN-S 2008: “toy” perfect gas problemsI FIN-S 2012: high-enthalpy reacting multiphysicsI 5 part-time contributors, 0 full-time FIN-S developers

• Critical factors:I Modularity first, physics secondI Multidisciplinary expertiseI “Not invented here” not believed hereI Collaborative development

Any questions?Stogner 2012 FSS October 17, 2012 27 / 27