[EP] MINTEGIA (2010/03/11) Azterketa: 2008ko Iraila, A atala (ebazpena)

Post on 21-Jun-2015

451 views 0 download

Transcript of [EP] MINTEGIA (2010/03/11) Azterketa: 2008ko Iraila, A atala (ebazpena)

λ

(J1)1 (J1)2

(IC)1

U1

U2

1

=12000400

U1

U2

2

=12000400

ISARE

Δ λ

Δ

(IC)2=(IC)1=IC

U1

U2

1

=12000400

⇒n1n2

1

=U1

U2

=12000400

= 30

U1

U2

2

=12000400

⇒n1n2

2

=

U13

U23

=12000

3400

3= 30

λ

Δ

λ

Δ

(V13)1

(V13)2

60o

(VL)1

IS1

IC

D1

D3

RL

IS2

IS3 €

23IC

13IC

IS1 =23IC

IS2 = −13IC

IS3 = −13IC

(V13)1

23IC

(Is1)1

(Is3)1

−23IC

−13IC €

13IC

30 60 90 120 150 180 210 240 270 300 330 360

(V13)1 (V23)1 (V21)1 (V31)1 (V32)1 (V12)1

(Is1)1

(Is3)1

IS1

IC

D1

D3

RL

IS2

IS3

23IC

13IC

IS1 =13IC

IS2 =13IC

IS3 = −23IC

(V23)1

23IC

23IC

13IC

13IC

−13IC

−13IC

−23IC

−23IC

(VL)1

30 60 90 120 150 180 210 240 270 300 330 360

(V13)1 (V23)1 (V21)1 (V31)1 (V32)1 (V12)1

(Is1)2

(Is3)2

IS1

IC

D1

D2

RL IS2

IS3 €

23IC

13IC

(V12)1

IS1 =13IC

IS2 = −23IC

IS3 =13IC

23IC

23IC

13IC

13IC

−13IC

−13IC

−23IC

−23IC

(VL)1

30 60 90 120 150 180 210 240 270 300 330 360

(V13)1 (V23)1 (V21)1 (V31)1 (V32)1 (V12)1

(Ip3)1

(Ip1)1

(J1)1 = (Ip1)1 - (Ip3)1

30 60 90 120 150 180 210 240 270 300 330 360

Δ

(J1)1

n1n2

1

IC

Δ

23x

23x

13x

13x

−13x

−13x

−23x

−23x

−x

x

30 60 90 120 150 180 210 240 270 300 330 360

(VL)2

(Is1)2

(V13)2 (V23)2 (V21)2 (V31)2 (V12)2

(J1)2 = (Ip1)2

IC

-IC

n2n1

1

⋅ IC( )1 = x

−n2n1

1

⋅ IC( )1 = −x

(V32)2

λ

(J1)2

IC

λ

n1n2

2

=n1n2

1

ISARE

2x

−2x

30 60 90 120 150 180 210 240 270 300 330 360

(J1)2

(J1)1

x

−x

ISARE =12π

⋅ 2 ⋅ 2π3⋅ 2x( )2

ISARE = 2 ⋅ 23⋅n2n1

1

⋅ IC

ISARE = 2 ⋅ 23⋅130

⋅ 600 = 32.66A

x

−x

(J1)1 = (J1)2 =12π

⋅ 2 ⋅ 2π3⋅ x( )2

(J1)1 = (J1)2 =23⋅n2n1

1

⋅ IC

(J1)1 = (J1)2 =23⋅130

⋅ 600 =16.33A

VLC( )1 = VLC 0( )1 − ΔVX( )1 = VLC 0( )1 − 0.12 VLC 0( )1= (1− 0.12) ⋅ VLC 0( )1 = 0.88 ⋅ 540 = 475v

VLC 0( )1 =VLC 0 S3 =3VO S3

π=3 ⋅ 400 2( )

π= 540v

VO S3 = 2 ⋅U2 = 400 2

λ

Δ

λ

Δ

VLC( )2 = VLC 0( )2 − ΔVX( )2 = VLC 0( )2 − 0.12 VLC 0( )2= (1− 0.12) ⋅ VLC 0( )2 = 0.88 ⋅ 540 = 475v

VLC 0( )2 =VLC 0 PD3=3 3 ⋅VO PD3

π=

3 ⋅ 3 ⋅ 400 23

π= 540v

VO PD3 = 2 ⋅ U23

= 400 2

3

FSARE =PLC( )1 + PLC( )23 ⋅U1 ⋅ ISARE

=VLC( )1 ⋅ (IC )1[ ] + VLC( )2 ⋅ (IC )2[ ]

3 ⋅U1 ⋅ ISARE=475 ⋅ 600[ ] + 475 ⋅ 600[ ]

3 ⋅12000 ⋅ 32.66= 0.84

cos ϕ1( )1 =1− ΔVX

VLC 0

1

cos ϕ1( )1 =1− 0.12 = 0.88

ϕ1( )1 = arccos 0.88( ) = 28.35º

cos ϕ1( )2 =1− ΔVX

VLC 0

2

cos ϕ1( )2 =1− 0.12 = 0.88

ϕ1( )2 = arccos 0.88( ) = 28.35º

VR

(I1)1

ϕ1( )1 = ϕ1( )2

(I1)2 (I1)SARE = (I1)1 + (I1)2

I1( )SARE = I1( )1 + I1( )2 =VLC 0( )1 ⋅ (IC )1

3 ⋅U1

+VLC 0( )2 ⋅ (IC )2

3 ⋅U1

=540 ⋅ 600 + 540 ⋅ 600

3 ⋅12000= 31.17A

τ SARE =I≈( )SAREI1( )SARE

=ISARE2 − I1( )SARE

2

I1( )SARE=

ISAREI1( )SARE

2

−1 =32.6632.17

2

−1 = 0.31