2012 INBRE workshop...4-1 slope=-4 6 0 m p h 1 0 m p h Velocity-velocityPlot 60mph 10mph...

Post on 07-Jun-2020

4 views 0 download

Transcript of 2012 INBRE workshop...4-1 slope=-4 6 0 m p h 1 0 m p h Velocity-velocityPlot 60mph 10mph...

c-v c +vv c

u=4c/5

√(c-v)(c +v)=c√(1-v2/c2)=c sech ρ=c cos σ

v=c tanh ρ= c sin σσ

c sin σ

Multiply segments by cosh ρ = sec σ=1/√(1-v2/c2)to recover dimensions in (ck, ω) plot

Space-Time Geometry

2012 INBRE workshop

Weapons of Math Instruction:Geometry in Elementary and Advanced Physics

2012 INBRE workshop

Weapons of Math Instruction:Geometry in Elementary and Advanced Physics

Bill Harter Tyle Reimer Alvason LiBill Harter Tyle Reimer Alvason Li1

c-v c +vv c

u=4c/5

√(c-v)(c +v)=c√(1-v2/c2)=c sech ρ=c cos σ

v=c tanh ρ= c sin σσ

c sin σ

Multiply segments by cosh ρ = sec σ=1/√(1-v2/c2)to recover dimensions in (ck, ω) plot

Space-Time Geometry

2012 INBRE workshop

Weapons of Math Instruction:Geometry in Elementary and Advanced Physics

2012 INBRE workshop

Weapons of Math Instruction:Geometry in Elementary and Advanced Physics

Bill Harter Tyle Reimer Alvason LiBill Harter Tyle Reimer Alvason LiLogistics and love: Carole Harter

2

SOME PHYSICS YOU CAN DO BETTER WITH GEOMETRY

•Superball collision problems (Discover momentum-energy rules and Lagrange, Hamilton, and Poincare classical mechanics)

•Rutherford-Coulomb scattering orbits and caustics •Runga-Lenz-Lagrange scattering orbits and caustics

•Space-time wave fractal (“quantum carpet”) gives a lesson in fractions that is quite appealing

•Einstein-Lorentz-Minkowskii relativity (Discover relativistic quantum mechanics)

•Accurate pocket sundial that tells time and predicts sunrise, sunset, civil and nautical twilight, and sunburn hazard.

SOME PHYSICS YOU CAN DO BETTER WITH GEOMETRY

3

SOME PHYSICS YOU CAN DO BETTER WITH GEOMETRY

•Superball collision problems (Discover momentum-energy rules and Lagrange, Hamilton, and Poincare classical mechanics)

•Rutherford-Coulomb scattering orbits and caustics •Runga-Lenz-Lagrange scattering orbits and caustics

•Space-time wave fractal (“quantum carpet”) gives a lesson in fractions that is quite appealing

•Einstein-Lorentz-Minkowskii relativity (Discover relativistic quantum mechanics)

•Accurate pocket sundial that tells time and predicts sunrise, sunset, civil and nautical twilight, and sunburn hazard.

SOME PHYSICS YOU CAN DO BETTER WITH GEOMETRY

4

Ka-bong!Ka-bong! Ka-runch!Ka-runch!

Totallyinelastic

case

Perfectlyelasticcase

??????????

1060

????????

1060

0-0.2-0.4-0.6-0.8-1-6 sec.-12 sec.

-24 sec.

-36 sec.

-48 sec.

1 mile

1minute(60sec.) (b) Collision!

After collision...what velocities?Before collision.....A problem in ssppaaccee--ttiimmee : (6600mph Cell-faxing 4ton SUV rear-ends 1100mph 1ton VW)

6600mph1100mph

5

Ka-bong!Ka-bong! Ka-runch!Ka-runch!

Totallyinelastic

case

Perfectlyelasticcase

??????????

1060

????????

1060

0-0.2-0.4-0.6-0.8-1-6 sec.-12 sec.

-24 sec.

-36 sec.

-48 sec.

1 mile

1minute(60sec.) (b) Collision!

After collision...what velocities?Before collision.....A problem in ssppaaccee--ttiimmee : (6600mph Cell-faxing 4ton SUV rear-ends 1100mph 1ton VW)

6600mph1100mph

Conventional solution:Get out formulas: Σ mV(before)= Σ mV(after) [momentum conservation]

Σ mV2(before)= Σ mV2(after) [energy conservation]

6

Ka-bong!Ka-bong! Ka-runch!Ka-runch!

Totallyinelasticcase

Perfectlyelasticcase

??????????

1060

????????

1060

0-0.2-0.4-0.6-0.8-1-6 sec.-12 sec.

-24 sec.

-36 sec.

-48 sec.

1 mile

1minute(60sec.) (b) Collision!

After collision...what velocities?Before collision.....A problem in ssppaaccee--ttiimmee : (6600mph Cell-faxing 4ton SUV rear-ends 1100mph 1ton VW)

6600mph

Conventional solution:Get out formulas:ΣmV(before)=ΣmV(before) [momentum conservation]ΣmV2(before)=ΣmV2(before)[energy conservation]etc.

But an UNconventional way is quicker and slicker.......... (Just have to draw 2 lines! ... (and a circle...)

7

Ka-bong!Ka-bong! Ka-runch!Ka-runch!

Totallyinelasticcase

Perfectlyelasticcase

??????????

1060

????????

1060

0-0.2-0.4-0.6-0.8-1-6 sec.-12 sec.

-24 sec.

-36 sec.

-48 sec.

1 mile

1minute(60sec.) (b) Collision!

After collision...what velocities?Before collision.....A problem in ssppaaccee--ttiimmee : (6600mph Cell-faxing 4ton SUV rear-ends 1100mph 1ton VW)

6600mph

Conventional solution:Get out formulas:ΣmV(before)=ΣmV(before) [momentum conservation]ΣmV2(before)=ΣmV2(before)[energy conservation]etc.

But an UNconventional way is quicker and slicker.......... (Just have to draw 2 lines! ... (and a circle...)

..... and most importantly, DERIVE LOGICAL STRUCTURE!

8

Ka-bong!Ka-bong! Ka-runch!Ka-runch!

Totallyinelasticcase

Perfectlyelasticcase

??????????

1060

????????

1060

0-0.2-0.4-0.6-0.8-1-6 sec.-12 sec.

-24 sec.

-36 sec.

-48 sec.

1 mile

1minute(60sec.) (b) Collision!

After collision...what velocities?Before collision.....A problem in ssppaaccee--ttiimmee : (6600mph Cell-faxing 4ton SUV rear-ends 1100mph 1ton VW)

50mph20 40 60 90

20

40

60

80

50mph

100mph

100mph

VVVW

0

INITIAL

10 30 70 80

90

10

30

70

I

VVSUV

6600mph1100mph

VVeelloocciittyy-vveelloocciittyy PPlloott

6600mph

1100mph

Conventional solution:Get out formulas:ΣmV(before)=ΣmV(before) [momentum conservation]ΣmV2(before)=ΣmV2(before)[energy conservation]etc.

9

Ka-bong!Ka-bong! Ka-runch!Ka-runch!

Totallyinelasticcase

Perfectlyelasticcase

??????????

1060

????????

1060

0-0.2-0.4-0.6-0.8-1-6 sec.-12 sec.

-24 sec.

-36 sec.

-48 sec.

1 mile

1minute(60sec.) (b) Collision!

After collision...what velocities?Before collision.....A problem in ssppaaccee--ttiimmee : (6600mph Cell-faxing 4ton SUV rear-ends 1100mph 1ton VW)

50mph20 40 60 90

20

40

60

80

50mph

100mph

100mph

VVVW

0

INITIAL

10 30 70 80

90

10

30

70

I

VVSUV

6600mph1100mph

VVeelloocciittyy-vveelloocciittyy PPlloott

6600mph

1100mph

Conventional solution:Get out formulas:ΣmV(before)=ΣmV(before) [momentum conservation]ΣmV2(before)=ΣmV2(before)[energy conservation]etc.

50mph20 40 60 90

20

40

60

80

50mph

100mph

100mph

VVVW

0

INITIAL

10 30 70 80

90

10

30

70

I

VVSUV6600mph

1100mph

MSUVVVSUV+MVWVVVW =constant is AAxxiioomm ##11

4

-1

10

Ka-bong!Ka-bong! Ka-runch!Ka-runch!

Totallyinelasticcase

Perfectlyelasticcase

??????????

1060

????????

1060

0-0.2-0.4-0.6-0.8-1-6 sec.-12 sec.

-24 sec.

-36 sec.

-48 sec.

1 mile

1minute(60sec.) (b) Collision!

After collision...what velocities?Before collision.....A problem in ssppaaccee--ttiimmee : (6600mph Cell-faxing 4ton SUV rear-ends 1100mph 1ton VW)

50mph20 40 60 90

20

40

60

80

50mph

100mph

100mph

VVVW

0

INITIAL

10 30 70 80

90

10

30

70

I

VVSUV

4

-1

slope =-4

6600mph1100mph

VVeelloocciittyy-vveelloocciittyy PPlloott

6600mph

1100mph

Conventional solution:Get out formulas:ΣmV(before)=ΣmV(before) [momentum conservation]ΣmV2(before)=ΣmV2(before)[energy conservation]etc.

50mph20 40 60 90

20

40

60

80

50mph

100mph

100mph

VVVW

0

INITIAL

10 30 70 80

90

10

30

70

I

VVSUV6600mph

1100mph

= ΔVSUV

ΔVVWMSUV-mVW

4-1 =

MSUVVVSUV+MVWVVVW =constant is AAxxiioomm ##11

11

Ka-bong!Ka-bong! Ka-runch!Ka-runch!

Totally

inelastic

case

Perfectly

elastic

case

??????????

1060

????????

1060

0-0.2-0.4-0.6-0.8-1

-6 sec.

-12 sec.

-24 sec.

-36 sec.

-48 sec.

1 mile

1minute(60sec.) (b) Collision!

After collision...what velocities?Before collision.....

A problem in ssppaaccee--ttiimmee : (6600mph Cell-faxing 4ton SUV rear-ends 1100mph 1ton VW)

50mph20 40 60 90

20

40

60

80

50mph

100mph

100mph

VVVW

0

INITIAL

10 30 70 80

90

10

30

70

I

VVSUV

“Ka-Runch!”

V VW

=V SUV

line

FINAL

Ka-runch!

4

-1

slope =-4

6600mph1100mph

VVeelloocciittyy-vveelloocciittyy PPlloott

6600mph

1100mph

Conventional solution:

Get out formulas:

ΣmV(before)=ΣmV(before) [momentum conservation]ΣmV2(before)=ΣmV2(before)[energy conservation]etc.

50mph20 40 60 90

20

40

60

80

50mph

100mph

100mph

VVVW

0

INITIAL

10 30 70 80

90

10

30

70

F

45°

45°

I

VVSUV

6600mph

1100mph

= ΔVSUV

ΔVVW

MSUV

-mVW

4

-1 =

MSUVVVSUV

+MVWVVVW

=constant is AAxxiioomm ##11

BINGO!slope=+1

12

Ka-bong!Ka-bong! Ka-runch!Ka-runch!

Totally

inelastic

case

Perfectly

elastic

case

??????????

1060

????????

1060

0-0.2-0.4-0.6-0.8-1

-6 sec.

-12 sec.

-24 sec.

-36 sec.

-48 sec.

1 mile

1minute(60sec.) (b) Collision!

After collision...what velocities?Before collision.....

A problem in ssppaaccee--ttiimmee : (6600mph Cell-faxing 4ton SUV rear-ends 1100mph 1ton VW)

50mph20 40 60 90

20

40

60

80

50mph

100mph

100mph

VVVW

0

INITIAL

10 30 70 80

90

10

30

70

I

VVSUV

“Ka-Runch!”

V VW

=V SUV

line

FINAL

Ka-runch!

4

-1

slope =-4

6600mph1100mph

VVeelloocciittyy-vveelloocciittyy PPlloott

6600mph

1100mph

Conventional solution:

Get out formulas:

ΣmV(before)=ΣmV(before) [momentum conservation]ΣmV2(before)=ΣmV2(before)[energy conservation]etc.

50mph20 40 60 90

20

40

60

80

50mph

100mph

100mph

VVVW

0

INITIAL

10 30 70 80

90

10

30

70

F

45°

45°

I

VVSUV

6600mph

1100mph

= ΔVSUV

ΔVVW

MSUV

-mVW

4

-1 =

FINAL

Ka-bong!

MSUVVVSUV

+MVWVVVW

=constant is AAxxiioomm ##11

BINGO!

DOUBLE

BINGO!

“!hnuR-aK”

13

Ka-bong!Ka-bong! Ka-runch!Ka-runch!

Totally

inelastic

case

Perfectly

elastic

case

??????????

1060

????????

1060

0-0.2-0.4-0.6-0.8-1

-6 sec.

-12 sec.

-24 sec.

-36 sec.

-48 sec.

1 mile

1minute(60sec.) (b) Collision!

After collision...what velocities?Before collision.....

A problem in ssppaaccee--ttiimmee : (6600mph Cell-faxing 4ton SUV rear-ends 1100mph 1ton VW)

50mph20 40 60 90

20

40

60

80

50mph

100mph

100mph

VVVW

0

INITIAL

10 30 70 80

90

10

30

70

I

VVSUV

“Ka-Runch!”

V VW

=V SUV

line

FINAL

Ka-runch!

4

-1

slope =-4

6600mph1100mph

VVeelloocciittyy-vveelloocciittyy PPlloott

6600mph

1100mph

Conventional solution:

Get out formulas:

ΣmV(before)=ΣmV(before) [momentum conservation]ΣmV2(before)=ΣmV2(before)[energy conservation]etc.

50mph20 40 60 90

20

40

60

80

50mph

100mph

100mph

VVVW

0

INITIAL

10 30 70 80

90

10

30

70

F

45°

45°

I

VVSUV

6600mph

1100mph

= ΔVSUV

ΔVVW

MSUV

-mVW

4

-1 =

FINAL

Ka-bong!

MSUVVVSUV

+MVWVVVW

=constant is AAxxiioomm ##11

BINGO!

DOUBLE

BINGO!

“!hnuR-aK”

Superball Collision Simulatorhttp://www.uark.edu/rso/modphys/animations/BounceItWeb.html

Superball Collision Simulator

14

A problem in ssppaaccee--ttiimmee : (6600mph Cell-faxing 4ton SUV rear-ends 1100mph 1ton VW)Geometry of Galilean translation (A ssyymmmmeettrryy ttrraannssffoorrmmaattiioonn)

5020 40 60 90

10010 30 70 80

FEarth

10

20

30

40

50

60

70

80

90

100

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10-100-90-80-70-60

-50-40-30-20-10

FCOM

ICOM

IEarth

VSUV

VVW

subtracting

(50,50)

(a) Galileo transforms to COM frame

Fig. 2.5ain Unit 1

If you increase your velocity by 50 mph,...

...the rest of the world appears to be 50 mph sslloowweerr

15

M1=70gmM1=70gm

M0=10kgM0=10kgbounceplatebounceplate

RRrrd

Superballpenetrationdepthr22Rd=

SuperballSuperball

ballpointpen

M2=10gm

ballpointpen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcher

The X-2 Pen launcher and Superball Collision Simulator*

*SimulatorWebsite:http://www.uark.edu/rso/modphys/animations/BounceItWeb.html16

M1=70gmM1=70gm

M0=10kgM0=10kg

bounce

plate

bounce

plate

RRrr

d

Superball

penetration

depth

r2

2Rd=

SuperballSuperball

ballpoint

pen

M2=10gm

ballpoint

pen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

-1.0

1.0

1.0

0.5

2.0

m2 Velocity axis

Vym2

m1 Velocity axis

Vym1

(0,0)

Bang-1(01)

INIT point at

(-1.0,-1.0)

(a)Bang-1(01)

Fig. 4.4a-bin Unit 1

Bang-1(01)

FINAL point

(+1.0,-1.0)

This 1st bang is a floor-bounce of

M1off very massive plate/Earth M

0

2.02.01st bang:

mass (M0)vs. mass (M

1)

-7

+1

1.0

1.0

0.5

2.0

m1 Velocity axis

Vym1

(0,0)

COM-point at

(0.75,0.75))

-1.0

Bang-2(12)

INIT point at

(+1.0,-1.0)

Bang-2(12)

FINAL point

(0.5,2.5)

(b)Bang-2(12)

2nd bang:

(M1)vs.(M

2)

17

M1=70gmM1=70gm

M0=10kgM0=10kgbounceplatebounceplate

RRrrd

Superballpenetrationdepthr22Rd=

SuperballSuperball

ballpointpen

M2=10gm

ballpointpen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

Fig. 4.5ain Unit 1Start at

(1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0 C

L

P

L is 15::1

P is 7::1C is 4::1

Line CPLis elastic collisionfinal pt. locus fordifferentmomentumslopesormassratiosM1::M2

M2 Velocity axisV2

M1 Velocity axis V1(0,0)

3.0

Bang-2(12)FINALpoints

(a)

18

M1=70gmM1=70gm

M0=10kgM0=10kgbounceplatebounceplate

RRrrd

Superballpenetrationdepthr22Rd=

SuperballSuperball

ballpointpen

M2=10gm

ballpointpen

M2=10gm

The X-2pen-

launcher

The X-2pen-

launcherFig. 4.1 and Fig. 4.3

in Unit 1

M1

m2BANG!M1

(BiggerBANG!)

(StillBiggerBANG!)

m2

M1M1

m2

Bang1!

Bang2!M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-BodySupernovaSuperballs

m2

Fig. 4.5a-bin Unit 1Start at

(1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0 C

L

P

L is 15::1

P is 7::1C is 4::1

Line CPLis elastic collisionfinal pt. locus fordifferentmomentumslopesormassratiosM1::M2

1.0

1.0

-1.0

0.5

2.0 C

L

P

L is 15::1

P is 7::1C is 4::1

II iiss 11::::00oorr ∞∞::::11II

MM iiss 33::::11

MM

3.0M2 Velocity axisV2

M2 Velocity axisV2

M1 Velocity axis V1 M1 Velocity axis V1(0,0) (0,0)

3.0

D is 2::1

Uis 1::1

Bang-2(12)FINALpoints

(a) (b)

-1.0

U2

U1

19

Geometric “Integration” (Converting Velocity data to Spacetime)

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-1(01)

Floor at y=0

Bang-1(01)

Bang-2(12)

Bang-3(20)

M2

slope

+2.5

M1

slope

+0.5

Height y

y=3

y=1

Ceiling at y=7

Bang-4(12)

??

Vy1

Vy2

??

(a)

Time t

(b)

M2

slope

-2.5

20

Geometric “Integration” (Converting Velocity data to Spacetime)

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-1(01)

Floor at y=0

Bang-1(01)

Bang-2(12)

Bang-3(20)

M2

slope

+2.5

M1

slope

+0.5

Height y

y=3

y=1

Ceiling at y=7

Bang-4(12)

??

Vy1

Vy2

??

(a)

Time t Bang-1(01)

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-5(20)

Bang-6(12)

Bang-7(01)

Bang-8(20)

Bang-9(12)

Time t

Floor at y=0

Ceiling at y=7

y

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-1(01)

Bang-5(20)

Bang-6(12)

Bang-7(01)

Vy1

Vy2

(b)

(c)

(d)

M2

slope

-2.5

Fig. 4.7a-din Unit 1

Kinetic Energy Ellipse

KE = 12

M1V12 + 1

2M 2V2

2 =12

+ 72= 4

1 = V12

2KE /M1

+V2

2

2KE /M 2

=x1

2

a12 +

x22

a22

21

Geometric “Integration” (Converting Velocity data to Spacetime)

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-1(01)

Floor at y=0

Bang-1(01)

Bang-2(12)

Bang-3(20)

M2

slope

+2.5

M1

slope

+0.5

Height y

y=3

y=1

Ceiling at y=7

Bang-4(12)

??

Vy1

Vy2

??

(a)

Time t Bang-1(01)

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-5(20)

Bang-6(12)

Bang-7(01)

Bang-8(20)

Bang-9(12)

Time t

Floor at y=0

Ceiling at y=7

y

Start at

(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-1(01)

Bang-5(20)

Bang-6(12)

Bang-7(01)

Vy1

Vy2

(b)

(c)

(d)

M2

slope

-2.5

Fig. 4.7a-din Unit 1

Kinetic Energy Ellipse

KE = 12

M1V12 + 1

2M 2V2

2 = 72

+12= 4

1= V12

2KE /M1

+ V22

2KE /M 2

= x12

a12 +

x22

a22

Ellipse radius 1

a1 = 2KE /M1

= 2KE /7

= 8/7 = 1.07

Ellipse radius 2

a2 = 2KE /M1

= 2KE /1

= 8/1 = 2.83

22

Difficult to see high mass-ratio-skinny-ellipse improved byScale transformation M1v1 -> √M1 v1

M1 =49m2 =1

23

Ellipse rescaling geometry and reflection symmetry analysis Convert to rescaled velocity: symmetrize: V1 = v1 ⋅ m1 , V2 = v2 ⋅ m1 , KE =2

1m1v12+2

1m2v22 =2

1 V12 +21 V22Then collisions become reflections and double-collisions become rotations

where:

cosθ sinθsinθ −cosθ

⎝⎜⎞

⎠⎟

cosθ ≡ m1 − m2

m1 + m2

⎛⎝⎜

⎞⎠⎟

and: sinθ ≡2 m1m2

m1 + m2

⎝⎜

⎠⎟ with: m1 − m2

m1 + m2

⎛⎝⎜

⎞⎠⎟

2

+2 m1m2

m1 + m2

⎝⎜

⎠⎟

2

= 1

θ=16.26°1

m1 - m2m1+m2 2√m1 m2

m1+m2

4850=

1450=

slope :

−m2

m1

= −17

slope :

+m2

m1

= +17

11

33

77

1177

1199

11331155

55

991111

2211

θ=16.26°V1

V2

[11]-tangent slope-√m1/√m2= -7

22

44

11

33

77

1177

1199

11331155

55

991111

2211

v1

v2

slope1/1

slope-1/1

[11]-tangentslope

-m1/m2= -49

22

44

24

(a) Lagrangian L = L(v1,v2)

v1

v2(b) Estrangian E = E(V1,V2)

V1=√m1v1

(c) Hamiltonian H = H(p1,p2)

p1=m1v1

p2=m2v2

V2=√m2v2

COM Bisectorslope = 1/1

Collision line andCOM tangent slope= -m1/m2 =-16

Collision line andCOM tangent slope=-√m1/√m2=-4

COM Bisector slope= √m2/√m1 =1/4

Collision line andCOM tangent slope

= -1/1

COM Bisector slope= m2/m1 =1/16

slope√m1√m2

=4

slope=1

25

p2=m2v2

p1=m1v1

Hamiltonian plotH(p)=const.=p•M-1•p/2(b)Lagrangian plot

L(v)=const.=v•M•v/2

v2=p2 /m2

L=const = E

v1=p1 /m1

(a)

v v = ∇∇pH=M-1•p

p = ∇∇vL=M•v

p

Lagrangian tangent at velocity vis normal to momentum p

Hamiltonian tangent at momentum pis normal to velocity v

(c) Overlapping plotsv

p

v

p

p

v (d) Less mass

(e) More mass

H=const = E

L=const = E

H=const = E

26

-1

-1

+2

0 +1

+1

p-slope=v

dH/dp=+1.0

-1 0 +1

-1

+1

+2

v-slope=p

dL/dv =+1.6

1.6

1

1.0

1

Lagrangian plot

L(v)= v•p - H(p)(a) Hamiltonian plot

H(p)=p•v-L(v)(b)

v-slope

intercept

-H = -0.6 p-slope

intercept

-L = -1.0

Lagrangian

L(v) = 1.0 Hamiltonian

H(p) = 0.6

momentum

pvelocity

v

velocity

v = 1.0

momentum

p = 1.6

L(v) H(p)

v-slope is momentum p

velocity v is p-slope

Lagrangian L(v) is -p-slope intercept

-v-slope intercept is Hamiltonian H(p)

Unit 1Fig. 12.3

27

“Monster Mash”classical segue to Heisenberg action relationsExample of very very large M1 ball-walls crushing a poor little m2

How m2 keeps its action An interesting wave analogy: The “Tiny-Big-Bang” [Harter, J. Mol. Spec. 210, 166-182 (2001)],[Harter, Li IMSS (2012)]

A lesson in geometry of fractions: Ford Circles and Farey Sums [Lester. R. Ford, Am. Math. Monthly 45,586(1938)] [John Farey, Phil. Mag.(1816)]

28

2

-2

4

-46

-6

Δx=1.5

Δx=0.75Δx=0.5

Δx=3.0

Δx=0.375

Δx=1.5

Δx=0.75Δx=0.5

Δx=3.0

Δx=0.375

11//11

11//22

11//33

11//4411//5511//6611//77

v2=0

v2=2

v1=1

Time

Space

The Wall

Time

Space

(a) Big ball moves in and traps small ball between it and The Wall

(b) Trajectory geometry exposed

Y Y

Vy2

Vy2

(a) Big space

Low speed

Bang (1)12

Bang (2)20

(b) Decreasing space

Increasing speed

Y

Vy2(c) Small space

High speed

Bang (n)12

Bang (n+1)20

VyY = const.

Y

Vy2

Y

Vy2

Y

Vy2

Unit 1Fig. 6.4

The Classical“Monster Mash”

Classical introduction to

Heisenberg “Uncertainty” Relations

v2 = const.Y

or: Y ⋅v2 = const.

is analogous to: Δx ⋅ Δp = N ⋅

29

-3

-57

-7 8-8

Δx=2.0

Δx=1.5Δx=1.2

Δx=3.0

Δx=1.0

v2=3

Time

v2=-1

5

2

-2

-44

6-6

11//11

11//22

11//33

11//4411//5511//6611//77

9-9

v2=+1

v2=0 v2=0

V1=+1 V1=-1

v2=-0.2

v2=+2.2

Double “Monster Mash”

30

-3

3

The Wall-1

5

3

-1

5

-3

0

4

-26

2

-2

-4

4

6-6

The Wall(a) Galilean shift by V=1 (b)

−vINvFIN=vIN+2V

1

+vIN

V1=1V1=1

V1=1V1=1

V1=1V1=1

V1=1V1=1

V1

V1=1V1=1

V1=1V1=1

B− B0 B+

A−A0 A+

C

O

V1=1V1=1

V1=1V1=1

(a) (b)

(c)

V1V1

vFIN2

+4

+3

+2

+1

0

-1

-2

-3

+5B− B0 B+

Unit 1Fig. 6.6

andFig. 6.7

31

Δm = 9

2Δx = 4 %

-15 -10 -5 0 5 10 15 = m

1/1

0/11/1

2Δx = 4 % 0/1Time t (units of fundamental period ) τ1

Coordinate φ (units of 2π )

0/1

1/10

1/5

3/10

2/5

1/2

3/5

7/10

4/5

9/10

1/1

3/4

1/4

1/21/40-1/4-1/2

1/21/4

0-1/4

-1/2

(Imagine "wrap-around" φ-coordinate) +π /2

−π /2

+π−π

3/4

1/4

0/1

1/2

1/1

Time t

[Harter, J. Mol. Spec. 210, 166-182 (2001)]

32

Δm = 9

2Δx = 4 %

-15 -10 -5 0 5 10 15 = m

1/1

0/1

1/2

1/4

1/61/7

1/3

1/5

2/5

2/7

3/7

1/8

Wave packet starts hereZeros start here Zeros start here

Time t(units of τ1)

Coordinate φ(units of 2π)

1/1

0/10 1/4 1/2-1/2 -1/4

N-level-system and revival-beat wave dynamics (9 or10-levels (0, ±1, ±2, ±3, ±4,..., ±9, ±10, ±11...) excited) Zeros (clearly) and “particle-packets” (faintly) have paths

labeled by fraction sequences like: 07, 17, 27, 37, 47, 57, 67,11

17

27

37

47

57

67

47

57

67

11

01

[Harter, J. Mol. Spec. 210, 166-182 (2001)]

33

Farey Sum algebra of revival-beat wave dynamicsLabel by numerators N and denominators D of rational fractions N/D

Time t(units of τ1)

0 1/4 1/2

1/d1

1/d2

Coordinate φ(units of 2π)

1/1

0/1-1/2 -1/4

1/d2

2/d2

3/d2

n2/d2

14/d113/d112/d1

n1/d1(n2-1)/d2

(n1+1)/d1

•••

•••

1/d2

2/d2

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

•••

•••

n1/d1 and n2/d2 pathfractions

numerator/denominator

34

n1+n2d1+d2

tx=

Time t(units of τ1)

0 1/4 1/2

1/d1

1/d2

n2/d2- t

1/2 -φ= 1/d2

Coordinate φ(units of 2π)

1/1

0/1-1/2 -1/4

n1/d1 - t1/2 -φ = -1/d1

(φx ,tx)

1/d2

2/d2

3/d2

n2/d2

14/d113/d112/d1

n1/d1(n2-1)/d2

(n1+1)/d1

•••

•••

1/d2

2/d2

x

n1/d1 and n2/d2 pathintersection time

(Farey-Sum)

•••

•••

d1n2-n1d2d1+d2

φx=

n1/d1 and n2/d2 pathintersection point

(Ford-Cross)

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

Farey Sum algebra of revival-beat wave dynamicsLabel by numerators N and denominators D of rational fractions N/D

[Lester. R. Ford, Am. Math. Monthly 45,586(1938)] [John Farey, Phil. Mag.(1816)] 35

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

20 3 4 51 7 8 9 106 12 13 14 1511 17 18 19 2016-1-2-3

11

v1=(1,1)v0=(0,1)

(a) 01

Numerator Axis N

DenominatorAxisD

Unit Real Interval Farey Sum related to

vector sumand

Ford Circles1/1-circle has

diameter 1

36

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

20 3 4 51 7 8 9 106 12 13 14 1511 17 18 19 2016-1-2-3

12

11

v1=(1,1)v0=(0,1)

(b) 01

v1=(1,2)

Numerator Axis N

DenominatorAxisD

Unit Real Interval

12

11

01

Farey-Sum Tree

Farey Sum related to

vector sumand

Ford Circles

1/2-circle hasdiameter 1/22=1/4

1/1-circle hasdiameter 1

37

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

20 3 4 51 7 8 9 106 12 13 14 1511 17 18 19 2016-1-2-3

12

13

11

v1=(1,1)v0=(0,1)

(c) 01

v1/2=(1,2)v1/3=(1,3)

Numerator Axis N

DenominatorAxisD

Unit Real Interval

12

11

01

13

23

Farey-Sum Tree

Farey Sum related to

vector sumand

Ford Circles

1/2-circle hasdiameter 1/22=1/4

1/3-circles havediameter 1/32=1/9

38

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

20 3 4 51 7 8 9 106 12 13 14 1511 17 18 19 2016-1-2-3

122

513

14

15

Numerator Axis N

DenominatorAxisD

Unit Real Interval 11

v1=(1,1)v0=(0,1)

(d) 01

v1/2=(1,2)v1/3=(1,3)

v2/5=(2,5)

16

17

27

37

18

38

12

11

01

13

23

14

34

15

25

35

45

16

56

17

27

37

47

57

67

18

38

58

78

Farey-Sum Tree

Farey Sum related to

vector sumand

Ford Circles

1/2-circle hasdiameter 1/22=1/4

1/3-circles havediameter 1/32=1/9

n/d-circles havediameter 1/d2

39

U of A Physics Day 2000(Quantum computer simulation)

That makes an ∞-ly deep “3D-Magic-Eye” picture

40

•Einstein-Lorentz-Minkowskii relativity (Discover relativistic quantum mechanics)

41

42

43

43

44

45

Wavevector ck

Frequency ω

1 300THz

2 600THz

2 900THz

4 1200THz

1 300THz-1 300THz 2-2 1-1 3 4

3

46

Wavevector ck

Frequency ω

1 300THz

2 600THz

2 900THz

4 1200THz

1 300THz-1 300THz 2-2 1-1 3

3

4

Phase

Group

47

Wavevector ck

Frequency ω

1 300THz

2 600THz

2 900THz

4 1200THz

1 300THz-1 300THz 2-2 1-1 3 4

3

Phase

Group

Doppler blue-shiftUP by factor e+ρ=2

Doppler red-shiftDN by factor e-ρ=1/2

48

Wavevector ck

Frequency ω

1 300THz

2 600THz

2 900THz

4 1200THz

1 300THz-1 300THz 2-2 1-1 3 4

3

Phase

Group

Doppler blue-shiftUP by factor e+ρ=2

Doppler red-shiftDN by factor e-ρ=1/2

49

Wavevector ck

Frequency ω

1 300THz

2 600THz

2 900THz

4 1200THz

1 300THz-1 300THz 2-2 1-1 3 4

3

Phase

Group

Doppler blue-shiftUP by factor e+ρ=2

Doppler red-shiftDN by factor e-ρ=1/2

50

Wavevector ck

Frequency ω

1 300THz

2 600THz

2 900THz

4 1200THz

1 300THz-1 300THz 2-2 1-1 3 4

3

Phase

Group

Doppler blue-shiftUP by factor e+ρ=2

Doppler red-shiftDN by factor e-ρ=1/2

Group

Phase

Group vector shiftedfrom ϖ(1,0) to ϖ(cosh ρ ,sinh ρ)

Phase vector shiftedfrom ϖ(0,1) to ϖ(sinh ρ,cosh ρ)ϖ=2

51

52

Wavevector ck

Frequency ω

1 300THz

2 600THz

2 900THz

4 1200THz

1 300THz-1 300THz 2-2 1-1 3 4

3

Phase

Group

Doppler blue-shiftUP by factor e+ρ=2

Doppler red-shiftDN by factor e-ρ=1/2

Group

Phase

Group vector shiftedfrom ϖ(1,0) to ϖ(cosh ρ ,sinh ρ)

Phase vector shiftedfrom ϖ(0,1) to ϖ(sinh ρ,cosh ρ)ϖ=2

53

Wavevector ck

Frequency ω

1 300THz

2 600THz

2 900THz

4 1200THz

1 300THz-1 300THz 2-2 1-1 3 4

3

Phase

Group

Doppler blue-shiftUP by factor e+ρ=2

Doppler red-shiftDN by factor e-ρ=1/2

Group

Phase

Group vector shiftedfrom ϖ(1,0) to ϖ(cosh ρ ,sinh ρ)

Phase vector shiftedfrom ϖ(0,1) to ϖ(sinh ρ,cosh ρ)ϖ=2

54

Wavevector ck

Frequency ω

1 300THz

2 600THz

2 900THz

4 1200THz

1 300THz-1 300THz 2-2 1-1 3 4

3

Phase

Group

Doppler blue-shiftUP by factor e+ρ=2

Doppler red-shiftDN by factor e-ρ=1/2

Group

Phase

Group vector shiftedfrom ϖ(1,0) to ϖ(cosh ρ ,sinh ρ)

Phase vector shiftedfrom ϖ(0,1) to ϖ(sinh ρ,cosh ρ)ϖ=2

55

56

57

58

The Circular Functions “Urban elite” The Hyperbolic Functions “Country-cousins”They’re related by Legendre contact transformation L = p•v-H

tan σ = sinh ρ

Circular Geometry of Lagrangian Functions versus Hyperbolic Geometry of Hamiltonian Functions

59

The Circular Functions “Urban elite” The Hyperbolic Functions “Country-cousins”They’re related by Legendre contact transformation L = p•v-H

tan σ = sinh ρ sin σ = tanh ρ

Circular Geometry of Lagrangian Functions versus Hyperbolic Geometry of Hamiltonian Functions

60

The Circular Functions “Urban elite” The Hyperbolic Functions “Country-cousins”They’re related by Legendre contact transformation L = p•v-H

tan σ = sinh ρ sin σ = tanh ρcos σ = sech ρ

Circular Geometry of Lagrangian Functions versus Hyperbolic Geometry of Hamiltonian Functions

61

The Circular Functions “Urban elite” The Hyperbolic Functions “Country-cousins”They’re related by Legendre contact transformation L = p•v-H

tan σ = sinh ρ sin σ = tanh ρcos σ = sech ρ sec σ = cosh ρ

Circular Geometry of Lagrangian Functions versus Hyperbolic Geometry of Hamiltonian Functions

62

The Circular Functions “Urban elite” The Hyperbolic Functions “Country-cousins”

Circular Geometry of Lagrangian Functions versus Hyperbolic Geometry of Hamiltonian Functions

In spacetime: asimultaneity factor In per-spacetime: momentum velocity u/c group velocity Lorentz contraction -Lagrangian Einstein time dilation Hamiltonian

They’re related by Legendre contact transformation L = p•v-Htan σ = sinh ρ sin σ = tanh ρcos σ = sech ρ sec σ = cosh ρcot σ = csch ρcsc σ = coth ρ

sin σ = tanh ρ = u/csec σ = cosh ρ =1/√1-u2/c2

Old-fashionednotation:

63

64

65

66

Rest energy

Mc2=1

u/c=4/5

Frequency ωorTotal energy

Hamiltonian

H=ω=5/3=coshρ=secσ

Momentum cp or Wavevector ck

cp=ck=4/3=sinhρ=tanσ

-Lagrangian

-L=3/5=sechρ=cosσ

Momentum or Wavevector ck

cp=ck=4/3=sinhρ=tanσPhase velocity

c/u=5/4=cothρ=cscσ

DeBroglie

wavelength λ=3/4=cschρ=cotσ

u/c slope angle υ=atan(u/c)

stellar aberation angle σ=asin(u/c)

DeBroglie

wavelength

λ=3/4=cschρ=cotσ

Phase velocity

c/u=5/4=cothρ=cscσ

Doppler

blue-shift

b=3=e+ρ

Doppler

red-shift

r=1/3=e−ρ

Group velocity

u/c=4/5

=tanhρ=sinσ

Kinetic energy

KE=2/3=coshρ -1=secσ -1

ω

ck

ω´

ck´

67

-2-3 1 2 3 4 5 6 7 8 9

1

2

3

5

6

7

8

9

-1

Phasevector

Groupvector

BHamiltonian

H=Bcosh ρAreaB·ρ/2

per-Space-Time Geometry(frequency vs wavevector)

68

VVW100110120

-120

(60,10)Initial-point

Final“Ka-Bong”-point

a=√=60.21

2·KEMSUV

b=√=120.42

2·KEmVW

ElasticKineticEnergyellipse(KE=7,250)

MomentumPTotal=250line

(50,50)

(40,90)

MSUV=4MSUV=4

mVW=1mVW=1

VSUV

Fig. 3.1 ain Unit 1

69

VVW

100

110

120

-120

(60,10)

Initial-point

Final“Ka-Bong”-point

a=√=60.21

2·KE

MSUV

b=√=120.42

2·KEmVW

Elastic

Kinetic

Energy

ellipse

(KE=7,250)

Momentum

PTotal=250

line

(50,50)

(40,90)

MSUV=4M

SUV=4

mVW=1m

VW=1

VSUV

Fig. 3.1 ain Unit 1

a=√=55.9

2·IE

MSUV

b=√=111.8

2·IEmVW

COM

Energy

ellipse

(ECOM=1,000)

elastic

FIN

IN

inlastic

FIN is

VCOM

point

Inelastic

Kinetic

Energy

ellipse

(IE=6,250)

Fig. 3.1 bin Unit 1

70