BLACK HOLES AND THE GENERALIZED UNCERTAINTY … · 2013. 9. 17. · GUP in string theory (Hossain...

50
BLACK HOLES AND THE GENERALIZED UNCERTAINTY PRINCIPLE Bernard Carr Queen Mary, University of London Macroscopic Microscopic BLACK HOLES

Transcript of BLACK HOLES AND THE GENERALIZED UNCERTAINTY … · 2013. 9. 17. · GUP in string theory (Hossain...

  • BLACK HOLES ANDTHE GENERALIZED UNCERTAINTY PRINCIPLE

    Bernard CarrQueen Mary, University of London

    Macroscopic MicroscopicBLACK HOLES

  • BLACK HOLE FORMATION

    RS = 2GM/c2 = 3(M/MO) km => ρS = 1018(M/MO)-2 g/cm3

    Higher dimensions => TeV quantum gravity => larger minimum?

    10-5g at 10-43s (minimum)MPBH ~ c3t/G = 1015g at 10-23s (evaporating now) 1MO at 10-5s (maximum)

    Small “primordial” BHs can only form in early Universecf. cosmological density ρ ~ 1/(Gt2) ~ 106(t/s)-2g/cm3=> PBHs have horizon mass at formation

    Good evidence that BHs form at present or recent epochs.Stellar BH (M~101-2MO), IMBH (M~103-5MO), SMBH (M~106-9MO)

  • Planck scale

  • PBH

    SMBHIMBH

    Stellar BH

    Accel’ BH

    WHEN BLACK HOLES FORM

  • PBH EVAPORATION

    Black holes radiate thermally with temperature

    T = ~ 10-7 K (Hawking 1974) => evaporate completely in time tevap ~ 1064 y

    M ~ 1015g => final explosion phase today (1030 ergs)

    !

    M

    M0

    "

    # $

    %

    & '

    (1

    !

    M

    M0

    "

    # $

    %

    & '

    3

    !

    !

    hc3

    8"GkM

    γ-ray bgd at 100 MeV => ΩPBH(1015g) < 10-8(Page & Hawking 1976)

    => explosions undetectable in standard particle physics model

  • PBHs important even if never formed!

  • Microlensing searches => MACHOs with 0.5 MOPBH formation at QCD transition?Pressure reduction => PBH mass function peak at 0.5 MOBut microlensing => < 20% of DM can be in these objects1026-1033g PBHs excluded by microlensing of LMC1017-1020g PBHs excluded by femtolensing of GRBsAbove 105M0 excluded by dynamical effectsBut no constraints for 1016-1017g or 1020-1026g or above 1033gStable Planck-mass relics of evaporated BHs?

  • Will measurements of gamma-ray bursts, like the one shown sterilizing a planet in this artist's rendering, reveal the existence of tiny black holes? We may know soon.

    DETECTION OF 1017G PBHS BY FEMTOLENSING?

    Marani et al. (1999)

  • What Would Happen if a Small Black Hole Hit the Earth?by IAN O'NEILL on FEBRUARY 17, 2008

    Khriplovich et al. (2008)Long tube of radiatively damaged material recognisable for geological time

  • Could Primordial Black Holes Deflect Asteriods on a Collision Course with Earth?by IAN O'NEILL on FEBRUARY 22, 2008

    Shatskiy (2008)Earth-mass PBHs could deflect asteroids onto Earth every 190M years

  • BRANE COSMOLOGY (Bowcock et al. 2000, Mukohyama et al. 2000) Brane can be viewed as moving through 5th dimension in static bulk described by 5D Schwarzschild-anti de Sitter :

    (5)ds2 = -F(R)dT2 + F(R)-1dR2 + R2 [(1-Kr2) -1dr2 + r2dΩ2], F(R) = K - m/R2 + (R/L) 2

    5th dimension is identified with cosmic scale factor R=a(t)0, +1, -1 mass of BH cosm const scale

    m=0, a=const => Randall-Sundrum 1-braneK=1 (closed) and m non-zero => event horizon at “radial” distance

    5D BH F(R)dT2+F(R)-1dR2 4D FRW -dT2+R2 (1-Kr2) -1dr2

    Universe emerges from 5D black hole as a(t) passes through

    Rh = (1/2)[(L4+4mL2)1/2-L2] = m1/2 for Rh

  • 1015g

    1012g

    10-5g

    1 MO

    109 MO QSO

    Stellar

    exploding

    LHC

    Planck Universal

    BLACK HOLES

    extra dimensions

    M-theory Higher dimensions Multiverse

    106 MO MW

    1021glunar

    1022 MO

    102 MO IMBH

    1025gterrestrial

  • L. Modesto & I. Premont-Schwarz,Self-dual Black holes in LQG: Theoryand Phenomenology, Phys. Rev. D. 80, 064041 (2009).

    B. Carr, L. Modesto & I. Premont-Schwarz, Generalized UncertaintyPrinciple and Self-Dual Black Holes, arXiv: 1107.0708 [gr-qc] (2011).

    B. Carr, Black Holes, the Generalized Uncertainty Principle and HigherDimensions, Phys. Lett. A 28, 134001 (2013).

    B. Carr, L. Modesto & I. Premont-Schwarz, Loop Black Holes and theBlack Hole Uncertainty Principle Correspondence (2013).

    GENERALIZED UNCERTAINTY PRINCIPLE - link with loop quantum gravity

    See talks by M. Isi, A. Kempf, R. Casadio, A.Bonanno, F.Scardigli

  • !

    "#x >h

    (2)#p

    UNCERTAINTY PRINCIPLE

    Photon of momentum p determines position to precision

    !

    "x > # = h / p

    !

    "p ~ pbut imparts momentum

    !

    RP

    = Gh /c3~ 10

    "33cm,

    !

    MP = hc /G ~ 10"5g,

    !

    "P =c5

    h2G~ 10

    94gcm

    #3

    BLACK HOLE EVENT HORIZON

    (Schwarzschild radius)R < RS= 2GM/c2

    Intersect at Planck scales

    !

    " RC

    =h

    Mc

    Particle production for QFT

    !

    R < RC"

    (Compton wavelength)

    !

    h" h

  • QUANTUM DOMAIN

    RELATIVISTIC DOMAIN

    even

    t hori

    zon

    log (R/cm)

    log (M/gm)

    Planck scale

    -5

    proton

    LHC

    -24 -20 15

    -13

    -18

    -33

    Compton wavelength

    CLASSICAL DOMAIN

    time f

    unny

    space funny

    evaporating black hole

    !

    RC

    =h

    Mc

    !

    RS

    =2GM

    c2

    Elementary Black particles holes

  • QUANTUM GRAVITY REGIMES

    !

    " R <3M

    4#$P

    %

    & '

    (

    ) *

    1/ 3

    ~ (M /MP)1/ 3RP

    !

    R < RP• (spacetime foam)

    • (above Planck density)!

    "R3(#$)2

    8%G>hc

    R"$ & R#$ >

    hcG

    R

    !

    "g

    g#$

    c2

    >RP

    R

    Energy density in gravitational field

    !

    "g =(#$)2

    8%G

    => spacetime distortion

    Eg. black hole or big bang singularity!

    " > "P

  • ?

    What happens to Compton and Schwarzschild lines near MP…

    …is important feature of theory of quantum gravity.

  • Newtonian heuristic argument

    Photon of frequency ω approaching to distance R induces=> acceleration over time=> uncertainty in momentum and in position

    !

    a ~ Gh" /(cR)2

    !

    t ~ R /c

    !

    "xg > at2~ Gh# /c 4 ~ G"p /c 3 ~ RP

    2

    "p /h

    !

    "p ~ p ~ h# /c

    Einstein heuristic argument

    Metric fluctuation δgµν on scale R is

    !

    "gµ#R2

    =8$G

    c4

    %

    & '

    (

    ) * pc

    R3

    !

    "#xg ~ R$gµ% ~ G#p /c3~ RP

    2

    #p /h

    !

    "x >h

    "p+ RP

    2 "p

    h> 2RPBoth suggest

    GENERALIZED UNCERTAINTY PRINCIPLE

    (GUP)

    Adler, Am. J. Phys. 78, 925 (2010)

  • !

    "x >h

    2"p1#

    $2

    2("p)2 +O($4 )

    %

    & '

    (

    ) *

    Polymer corrections in loop quantum gravity

    GUP in string theory

    (Hossain et al. 2010)

    (Veneziano 1986, Witten 1996)

    !

    "x >h

    "p+#

    "p

    hstring tension

    !

    " ~ (10RP)2

    Experimental probes of GUP (Pikowski et al 2012))

    Minimal length considerations (Maggiore 1993)

    Principle of relative locality (Doplicher 2010)

    Modifications of commutator [x,p] (Magueio & Smolin 2002)

    Link with back holes (Scardigli 1999, Calmet et al. 2004)

  • !

    "x >h

    "p+#RP

    2 "p

    h

    !

    =h

    "p1+#

    "p

    cMP

    $

    % &

    '

    ( )

    2*

    + , ,

    -

    . / /

    !

    "x# R

    !

    h

    Mc1+"

    M

    MP

    #

    $ %

    &

    ' (

    2)

    * + +

    ,

    - . .

    Compton irrelevant for M>>MP since RC

  • GENERALIZED EVENT HORIZON

    !

    R > RS

    /

    =2GM

    c21+ "

    MP

    M

    #

    $ % %

    &

    ' ( (

    2)

    *

    + +

    ,

    -

    .

    .

    !

    RC

    /

    " RS

    /

    #

    !

    2GM /c2

    !

    h /(Mc)

    For M>>MP we obtain generalized event horizon

    This becomes Compton wavelength for M

  • GUPGEH

    HUP

    Interesting alternative

    α < 0 => cusp rather than smooth minimum

    !

    h" 0#

    !

    G" 0# asymptotic safety (Bonanno & Reuter 2006)classical theory (Scardigli et al. 2009)

  • !

    "x >h

    "p

    #

    $ %

    &

    ' (

    2

    + )RP2 "p

    h

    #

    $ %

    &

    ' (

    2

    !

    " RC

    /

    =h

    Mc

    #

    $ %

    &

    ' (

    2

    +)GM

    c2

    #

    $ %

    &

    ' (

    2

    !

    "h

    Mc1+

    # 2

    2

    M

    MP

    $

    % &

    '

    ( )

    4*

    + , ,

    -

    . / /

    !

    "x >h

    "p

    #

    $ %

    &

    ' (

    n

    + )RP2 "p

    h

    #

    $ %

    &

    ' ( n*

    + , ,

    -

    . / /

    1/ n

    !

    " RC

    /

    =h

    Mc

    #

    $ %

    &

    ' ( n

    +)GM

    c2

    #

    $ %

    &

    ' ( n*

    + ,

    -

    . /

    1/ n

    !

    "h

    Mc1+

    # n

    n

    M

    MP

    $

    % &

    '

    ( )

    2n*

    + , ,

    -

    . / /

    Root-mean-square error would give

    More generally

    DO GUP UNCERTAINTIES ADD LINEARLY?

    !

    " RS

    /

    =2GM

    c2

    #

    $ %

    &

    ' ( n

    +)h

    Mc

    #

    $ %

    &

    ' ( n*

    + ,

    -

    . /

    1/ n

    !

    "2GM

    c21+

    #

    n

    n

    MP

    M

    $

    % & &

    '

    ( ) )

    2n*

    +

    , ,

    -

    .

    / /

    !

    Rmin

    = 21/ n

    2"RP,

    !

    Mmin

    = " /2MP

    Minimum at

    !

    " RS

    /

    =2GM

    c2

    #

    $ %

    &

    ' (

    2

    +)h

    Mc

    #

    $ %

    &

    ' (

    2

    !

    "2GM

    c21+

    #

    8

    2

    MP

    M

    $

    % & &

    '

    ( ) )

    4*

    +

    , ,

    -

    .

    / /

  • n=1

    n=20

    n=2

    • Can there be black holes for M

  • Pikowski et al. Nature Phys. 8 39 (2012)Probing Planck-scale physics with quantum optics

  • “Generalized Uncertainty and Self-dual Black Holes” Carr, Modesto & Premont-Schwarz, arXiv: 1107.0708

  • At large r

    Metric

    implies

    LOOP BLACK HOLES

    Immirzi parameter 1

  • => another asymptotic infinity (r=0) with BH mass MP2/m

    Physical radial coordinate

    !

    " RS

    =2Gm

    c2

    #

    $ %

    &

    ' (

    2

    +c2ao

    2Gm

    #

    $ %

    &

    ' (

    2

    )!

    R = H(r) = r2

    +ao

    r2

    2

    !

    3"#

    4

    h

    mc

    Introduce dual coordinates

    !

    r = ao/r" R = r

    2+ r

    2

    !

    t = tr*

    2

    /ao

    !

    2Gm

    c2

    Metric has self-duality with dual radius

    !

    r = r = ao

    This removes the singularity, permits existence of black holeswith m MP)

    !

    (m < MP)

  • Penrose diagrams for Schwarzschild and LBH metric

    cf. Reissner-Nordstrom

  • L. Modesto & I. Premont-Schwarz, Phys. Rev. D. 80, 064041 (2009)

  • GUP AND BLACK HOLE THERMODYNAMICS

    Heuristic argument

    !

    kTBH ="c#p ="hc

    #x="hc 3

    2GM~MP

    2

    Mη=1/(4π)

    !

    " TBH

    =#Mc 2

    $k1% 1%

    $MP

    2

    M2

    &

    ' ( (

    )

    * + + ,

    hc3

    8-GkM1+

    $MP

    2

    4M2

    .

    / 0

    1

    2 3

    Complex for

    !

    "p ~ T

    !

    "x ~ GM /c2

    => Planck mass relics.

    Putting and in linear GUP (Adler & Chen)

    !

    M < "MP

    !

    "2GM

    c2

    =#hc

    kT+$R

    P

    2

    kT

    h#c

    !

    (M >> MP)

    !

    (M >> MP)

  • Quadratic GUP

    !

    " TBH

    =2#Mc 2

    $k1% 1%

    $ 2MP

    4

    4M4

    &

    ' ( (

    )

    * + +

    1/ 2

    ,hc

    3

    8-GkM1+

    $ 2MP

    4

    32M4

    .

    / 0

    1

    2 3 (M >> MP )

    !

    "2GM

    c2

    =#hc

    kT

    $

    % &

    '

    ( ) 2

    +*R

    P

    2kT

    h#c

    $

    % &

    '

    ( )

    2+

    ,

    - -

    .

    /

    0 0

    1/ 2

    Complex for

    !

    M < " /2MP

    Minus sign gives T>TPwhich may be unphysical

    -

    !

    Tmax

    ="MPc2/ #

    => smaller relics

  • Quadratic GUP + GEH

    !

    "2GM

    c2

    #

    $ %

    &

    ' ( 2

    +h)

    Mc

    #

    $ %

    &

    ' ( 2*

    + ,

    -

    . /

    1/ 2

    =0hc

    kT

    #

    $ %

    &

    ' ( 2

    +1R

    P

    2kT

    h0c

    #

    $ %

    &

    ' (

    2*

    +

    , ,

    -

    .

    / /

    1/ 2

    !

    " TBH

    =2#Mc 2

    $k1+

    % 2MP

    4

    4MP

    4& 1+

    (2% 2 &$ 2)MP

    4

    4M4

    +% 4M

    P

    8

    16MP

    8

    '

    ( ) )

    *

    + , ,

    1/ 2

    Real for all M if

    !

    " < 2#

    !

    "Mc 2

    #k1+

    $ 2 % 4# 2

    2# 4&

    ' (

    )

    * + M

    4

    MP

    4

    ,

    - . .

    /

    0 1 1

    !

    "hc 3

    2GkM1+

    # 2 $ 4% 2

    32

    &

    ' (

    )

    * + M

    P

    4

    M4

    ,

    - . .

    /

    0 1 1

    !

    " TBH#

    Regard α are β as independent

    BHUP => α = 2β

    !

    " TBH

    =h#c 3

    2kGMor

    !

    TBH

    ="

    #Mc

    2 Exact!

    !

    (M >> MP)

    !

    (M

  • SURFACE GRAVITY ARGUMENT

    !

    T "GM

    RS

    2"

    M3n / 2

    M2n

    + (# /2)n MP

    2n

    $

    % &

    '

    ( )

    2 / n

    "

    !

    M"1(M >> M

    P)

    !

    M3(M different prediction in sub-Planckian range!

    (n=2)

    (area)

    +

  • !

    "#R

    BH

    #rBH

    $

    !

    (M /MP)"2(M

  • More precise surface gravity argument

    !

    " 2 = #gµ$ gµ$%µ&'%$ &

    (

    !

    r"#$ g00"1$ % µ = (1,0,0,0)$

    !

    "# =4G

    3m3c4P4

    16G4m4P8

    + aoc8

    !

    "+ =4G

    3m3c4

    16G4m4

    + aoc8

    !

    r" 0# g00" r

    *

    4/a

    0

    2= P 4 (m /MP )

    4 # $ µ = P%2(m /MP )%2(1,0,0,0)#

    !

    T" = T0P2(m /M

    P)2

    This reconciles to the two arguments!

    T = hκ/(2πkc)

  • Three mass regimes

    !

    M > P"2M

    P# r

    P< r" < r+ # T$ %M

    "1,T0%P

    "6M

    "3

    !

    M < MP" r# < r+ < rP " T$ %M

    3,T0%P

    2M

    !

    MP

    < M < P"2M

    P# r" < rP < r+ # T$ %M

    "1,T0%P

    2M

    our space other space

  • CAN SUB-PLANCKIAN RELICS PROVIDE DARK MATTER?

    cooler than CMB for

    !

    M <TCMB

    TP

    "

    # $

    %

    & '

    1/ 3

    MP ~ 10(16g

    !

    T "M3#

    !

    dM

    dt"R

    #2T4"M

    10$ M(t)" t

    #1/ 9

    => never evaporate but current mass

    !

    M ~tP

    t0

    "

    # $

    %

    & '

    1/ 9

    MP ~ 10(12g

    => current temperature

    !

    T ~tP

    to

    "

    # $

    %

    & '

    1/ 3

    TP~ 10

    12K

    => same observational effects as PBHs with M~1015g!

    stableunstable

  • BLACK HOLES AS A PROBE OF HIGHER DIMENSIONS

  • BLACK HOLES AND EXTRA DIMENSION

    Higher dimensions => MDn +2Vn ~ Mp2

    Vn is volume of compactified or warped space

    Standard model => Vn ~ MP-n , MD ~ Mp, Large extra dimensions => Vn >> MP-n, MD

  • Forming black holes by collisions

    Cross-section σ(ij BH) = πrS2Θ(E - MBHmin)Schwarzschild radius rS= MP-1(MBH/MP)1/(1+n)Temperature TBH = (n+1)/rS < 4D caseLifetime τBH =MP-1(MBH/MP)(n+3)/(1+n) > 4D case

    centre of mass energy

  • BLACK HOLES AND HIGHER DIMENSIONS

    Gauss law

    !

    Fgrav =GDm1m2

    R2+n

    !

    Fgrav =G m

    1m2

    R2

    !

    G =G

    D

    RC

    2

    (RRC)

    3D black hole smaller than RC for

    !

    M < MC

    =c2RC

    2G

    Black hole condition

    !

    R <

    Intersects Compton boundary at higher dimensional Planck scale

    !

    MD

    = MP

    RP

    RC

    "

    # $

    %

    & '

    n /(n+2)

    ,

    !

    RD

    = RP

    RC

    RP

    "

    # $

    %

    & '

    n /(n+2)

    Assume D=3+n dimensions for R MC)

    !

    (M < MC)

  • QUANTUM DOMAIN

    RELATIVISTIC DOMAIN

    6D 5D 4D

    3D

    even

    t hori

    zon

    log (R/cm)

    log (M/gm)Planck scale

    revised Planck scale

    -5

    LHC

    -24 -20 15

    -13

    -18

    -33

    Compton wavelength

    CLASSICAL DOMAIN

    scale of extra dimensions

    BH radius RS= MP-1(MBH/MP)1/(1+n)

    Hierarchy of compactified dimensions

    Ri=αiRP => (RP’/RP)(d+2)/(d+1) = α11/2 α21/6.....αd1/d(d+1)

    αi = α => RP’ = RPαd(/d+2) !

    " RC

    / #h

    Mc1+

    M

    MP

    $

    % &

    '

    ( )

    (n+2)/(n+1)*

    + , ,

    -

    . / /

    cf. 2D black holes (Mureika & Nicolini 2013)

  • DETECTABLE AT LHC?

    !

    MD~ TeV " R

    C~ 10

    (32 / n )#17cm ~

    1016 cm (n=1)10-1 cm (n=2)10-6 cm (n=3)10-13 cm (n=7)

    Dark energy

    !

    "U ~ 10#120"U ~ 10

    #29gcm

    #3

    => intersects Compton line at

    !

    M ~ MPtP

    tU

    "

    # $

    %

    & '

    1/ 2

    ~ 10(30MP ~ 10

    (35g,

    !

    R ~ RURU~ 100µm

    excludeddark energy?

  • QUANTUM DOMAIN

    RELATIVISTIC DOMAIN

    log (R/cm)

    log (M/gm)

    -5

    collapsing star

    -24 -20 15

    -13

    -18

    -33

    CLASSICAL DOMAIN

    HIGHER-DIMENSIONAL DOMAIN

    4D5D6D

    Planck d

    ensity

  • DARK ENERGY M~10-35g, R~10-2cm M~1055g, R~1027cm

  • CONCLUSIONS

    • Both black holes and Generalized Uncertainty Principleprovide important link between micro and macro physics.

    • They are themselves linked and black holes with sub-Planckian mass may play a role in quantum gravity.