1) Estrutura geral da fibra óptica · 2018-05-28 · ... observa-se a irradiação de luz para...

Post on 21-Jan-2019

227 views 0 download

Transcript of 1) Estrutura geral da fibra óptica · 2018-05-28 · ... observa-se a irradiação de luz para...

UNIVERSIDADE ESTADUAL PAULISTA“JÚLIO DE MESQUITA FILHO”

FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA

Tecnologia de Fibras Ópticas

Prof. Cláudio Kitano

Ilha Solteira, julho de 2017

1) Estrutura geral da fibra óptica

20 μm

Woman hair

* Joseph C. Palais, Fiber Optic Communications, Prentice Hall, 1988.

Redução da atenuação óptica no vidro ao longo da história:

Atenuação: dB/km

Causa perda de potência óptica.

A energia luminosa é absorvida/ espalhada/ dissipada.

-10-2

10-0.2

Entre 1966 e 1979:

after 1km ≈10-0,02

Atenuação em meios transparentes:

OBS: −30 dB = a potência caí a 1 milésimo do seu valor inicial.

Variação do índice de refração do vidro (sílica fundida) com o comprimento de onda:

Estrutura da fibra óptica:

revestimentocore cladding jacket

needle point

optical fiber cablehole ofa needle

fiber head

John Tyndall, 1870

recipientecom água

luzguiada

lanterna

Revestimento: Acrilato

(proporciona resistência à curvaturas acentuadas)

Cladding

2) Fibras monomodo e multimodos

Degrau Gradual Degrau

Multimode (MM) versus singlemode (SM) fiber optic

* VECSEL – vertical-external-cavity surface-emitting-laser

3) Janelas de transmissão

00,7

1

2

3

4

5

6

0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6

perd

a, d

B/km

comprimento de onda, μm

pico de absorção OH-

1a janela~ 2,5 dB/km; 0,85 μm

2a janela~ 0,5 dB/km; 1,3 μm 3a janela

~ 0,25 dB/km1,55 μm

IVIVUVUV

00,7

1

2

3

4

5

6

0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6

perd

a, d

B/km

comprimento de onda, μm

0,7

1

2

3

4

5

6

0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6

perd

a, d

B/km

comprimento de onda, μm

pico de absorção OH-

1a janela~ 2,5 dB/km; 0,85 μm

2a janela~ 0,5 dB/km; 1,3 μm 3a janela

~ 0,25 dB/km1,55 μm

IVIVUVUV

Distributed FeedBack

Atenuação em função do comprimento de onda

Atenuação em função do comprimento de onda:

Tecnologia atual da fabricação de vidros(sílica, SiO2).

4) Perfis de modos de propagação

Campo evanescente em Fibras Ópticas

A reflexão interna, para ângulos de incidência superiores ao ângulo crítico, vem acompanhada por uma onda evanescente a fim de satisfazer as condições de contorno na interface. É natural se esperar que tal tipo de campo também surja durante as sucessivas reflexões no interior da fibra óptica.

Na verdade, como a fibra óptica tem simetria cilíndrica em torno do eixo de propagação da luz no seu interior, o fenômeno ocorre, mas o campo evanescente na região da casca da fibra óptica deve ser calculado usando-se a teoria de ondas guiadas. Segundo essa teoria, existe mais de uma forma da luz se propagar na fibra, sendo os respectivos campos denominados de modos LPmn. Esses modos são soluções discretas da equação de onda de Helmholtz, e podem ser associados aos diferentes ângulos que os raios em zigue-zague formam com o eixo longitudinal.

Assim, o modo fundamental LP01 está associado a um raio com propagação quase colinear com o eixo da fibra. O modo LP11 está associado a um ângulo de zigue-zague um pouco maior, o modo LP21 a um ângulo ainda maior, e assim por diante. Esses campos exibem uma distribuição de campo ao longo do plano transversal ao eixo da fibra.

O modo LP01 tem amplitude de campo máxima no centro do núcleo, o qual decai radialmente em direção à casca. A fim de satisfazer as condições de contorno na interface núcleo-casca, existe um campo evanescente na região de casca. Na figura, este campo está relacionado com um pequeno rabicho do perfil de campo que penetra levemente na casca.

O modo LP01 exibe um único máximo e seu perfil tem o formato semelhante a um sino. Obser-vando a fibra pelo topo, vê-se um perfil na forma de círculo (devido a simetria circular). O modo LP21 exibe dois picos (máximos) e dois vales (mínimos) na direção azimutal, e, pelo menos um máximo na direção radial.

Basicamente, a nomenclatura dos modos LPmn é tal que existem m máximos na direção azimutal e pelo menos n máximos na direção radial. Portanto, o modo LP83 exibe oito máximos e oito mínimos na direção azimutal, e, pelo menos três máximos na direção radial. Quando uma fibra é projetada para acomodar no máximo um modo, o modo fundamental LP01, ela é chamada de fibra monomodo. Quando é projetada para acomodar mais modos, é denominada de fibra multimodos.

O tamanho do rabicho é tanto maior (penetra mais na casca) quanto maior a ordem do modo na fibra. Na Figura estão ilustrados os perfis (vista lateral) dos modos LP01, LP11 e LP02. O tamanho do rabicho é menor para o modo LP01, cresce para o modo LP11 e é ainda maior para o modo LP02.

Segundo a teoria, um modo é tanto mais confinado no interior do núcleo quanto menor for o comprimento da sua calda evanescente; isto significa que ele está mais “preso” dentro do núcleo.

Modos TE, TM, EH e HE:

TE: 1, TM: 1, EH: 2, HE 2

dispersion curves for LP modes

Modos LPmn :

Modos Linearmente (LP) polarizados

Intensity pattern

LP modes: Optical intensity pattern projected onto a plane screen

LP modes: Optical intensity pattern projected onto a plane screen

LP modes: Optical intensity pattern projected onto a plane screen

LP modes: Optical intensity pattern projected onto a plane screen

Modos LP degenerados (modos ortogonais)

5) Curvaturas em fibras ópticas

Curvaturas:

Se houver algum tipo de perturbação na fibra, o primeiro modo a perder energia para o exterior é o modo de calda mais alongada, ou seja, o modo de ordem mais alta. Modos de ordens superiores são menos confinados que o fundamental; o modo fundamental é o modo mais confinado.

Se houver algum tipo de perturbação na fibra, o primeiro modo a perder energia para o exterior é o modo de calda mais alongada, ou seja, o modo de ordem mais alta. Modos de ordens superiores são menos confinados que o fundamental; o modo fundamental é o modo mais confinado.

Uma curvatura (a perturbação) na fibra pode fazer com um raio que se propaga em zigue-zague(modo superior) saia da condição de reflexão interna total. Próximo á região de curvatura, o ângulo de incidência pode ficar menor que o ângulo crítico. Ocorre refração do raio, o qual é transmitido para o exterior da fibra; haverá perda de potência para o exterior.

Uma explicação alternativa, é que a curvatura na fibra encurta o rabicho de um lado (interno) e o alonga do outro (externo). Se, no lado em que o rabicho se alonga, este se aprofunda tanto que atinge o exterior da casca, então, haverá fuga de energia para fora da fibra.

Uma explicação alternativa, é que a curvatura na fibra encurta o rabicho de um lado (interno) e o alonga do outro (externo). Se, no lado em que o rabicho se alonga, este se aprofunda tanto que atinge o exterior da casca, então, haverá fuga de energia para fora da fibra.

Na fotografia, observa-se a irradiação de luz para fora da fibra devido a uma curvatura, principal-mente, dos modos de ordem superior

6) Acopladores direcionais

Campo evanescente em taper de fibra óptica

Processo de fabricação:

Star coupler (híbrida)

7) Dispersão na fibra óptica

a. Dispersão Modal

• Ocorre em fibras multimodos;• Cada modo se propaga com diferentes velocidades longitudinais;• Não ocorre em fibras monomodo.

b. Dispersão Cromática (Material)

• É resultado da largura de linha finita da fonte óptica;• Laser DFB tem largura de linha entre 40 e 50 MHz;• Dependência do índice de refração com o comprimento de onda;• A velocidade em cada comprimento de onda é diferente;

c. Dispersão de Guia de Onda

• É importante em guia monomodo;• Uma parte do campo guiado encontra-se na casca (evanescente);• A casca tem menor índice de refração: maior velocidade;• É função do tamanho do núcleo, geometria, comprimento de onda e

largura de linha da fonte.

8) Compensação da dispersão

Para fibra monomodo operando em 1300 nm.

Total

Para fibra monomodo operando em 1550 nm.

1300 nm

1550 nm

Dispersão nula

Dispersão elevada

• Deslocar a curva de dispersão para a direita;• Dopar a fibra com (GeO2);• Atuar na dispersão de guia de onda alterando-se o perfil de índice de

refração do núcleo;• Triangular dispersion shift (DSF – Dispersion Shift Fiber)• Quadrupole-clad dispersion flattened (NZDSF – Non-Zero Dispersion

Shift Fiber)

Para 1300 nm

Para 1550 nm

Matched-cladding

Depressed-cladding

TriangularDSF

QuadrupoleNZDSF

NZDSF – baixo perfil de dispersão entre 1300 e 1600 nmAplicações em DWDM

*DWDM – Dense Wavelength-Division Multiplexing

9) Emendas em fibras ópticas

Máquinas antigas

Problemas e dificuldades:

Máquinas recentes

Máquinas recentes

Processo de remoção do revestimento:Mergulhar a fibra em diclorometano ou acetona;Usar um alicate descascador de revestimento.

Clivador de fibra óptica:

Emenda (splice) por fusão:

LID – Local Light Injection and Detection:

LID – Local Light Injection and Detection:

L-PAS = Lens-Profile Alignment System:

LID – Local Light Injection and Detection:

Problemas com limpeza (pré-fusion):

Alinhamento automático: Pré-fusão:

Fusão:

10) Métodos de fabricação

Método do duplo cadinho: Double Crucible Method

Método do deposição de vapor químico(CVD = Chemical Vapor Deposition):

Deposição externa

Método do deposição de vapor axial(VAD = Vapor Axial Deposition):

Deposição externa

Método do deposição interna(MCVD = Modified Chemical Vapor Deposition):

Puxamento:

Fiber optic preforms:

Fiber optic preforms:

Fiber optic preforms: