Ισοζύγιο Μάζας

Post on 04-Jan-2016

41 views 0 download

description

Ισοζύγιο Μάζας. Ισοζύγιο Μάζας είναι ο ισολογισμός των ποσοτήτων μάζας που υφίστανται αλλαγές ή διέρχονται μέσα από ένα σύστημα. Εξερχόμενα Ρεύματα. E ισερχόμενα Ρεύματα. Προσεκτική επιλογή των ορίων του συστήματος. Ορια του συστήματος. Ρυθμός Εισόδου Μάζας Εντός των ορίων του Συστήματος. - PowerPoint PPT Presentation

Transcript of Ισοζύγιο Μάζας

Ισοζύγιο Μάζας

Ισοζύγιο Μάζας είναι ο ισολογισμός των ποσοτήτων μάζας που υφίστανται αλλαγές ή διέρχονται μέσα από

ένα σύστημα

Εξερχόμενα ΡεύματαEισερχόμενα

Ρεύματα

Προσεκτική επιλογή των ορίων του συστήματος

Ορια του συστήματος

Γενικό Ισοζύγιο Μάζας

Εξερχόμενα Ρεύματα

Eισερχόμενα Ρεύματα

Ορια του συστήματος

Ρυθμός Εισόδου Μάζας Εντός των ορίων του Συστήματος

Ρυθμός Εξόδου Μάζας από τα όρια του Συστήματος

Ρυθμός Παραγωγής Μάζας Εντός του Συστήματος

Ρυθμός Κατανάλωσης Μάζας Εντός του Συστήματος

- +=

Ρυθμός Ρυθμός Ρυθμός Ρυθμός

Εισόδου + Παραγωγής = Εξόδου + Κατανάλωσης

Ολικό Ισοζύγιο Μάζας

Εφαρμογή Ισοζυγίου Μάζας

Εξερχόμενα Ρεύματα

Eισερχόμενα Ρεύματα

Ορια του συστήματος

1. Ολική Μάζα2. Ολικά Γραμμομόρια3. Μάζα Στοιχείων4. Γραμμομόρια Στοιχείων5. Μάζα Χημικών Ενώσεων6. Γραμμομόρια Χημικών Ενώσεων

Tυπική Παραγωγική Διαδικασία

Αέριες εκπομπές

Διεργασία 1Πρώτη Ύλη Προιόν……...

Αντιδραστήρια

Στερεά / ΥγράΑπόβλητα

Ρεύμα 1

Ρεύμα 2 Ρεύμα 3

Ρεύμα 4

Ρεύμα 5

Αέριες εκπομπές

Διεργασία n

Αντιδραστήρια

Στερεά / ΥγράΑπόβλητα

Ρεύμα k-4

Ρεύμα k-3 Ρεύμα k-2

Ρεύμα k-1

Ρεύμα k

Ενέργεια Ενέργεια

Απλοποιημένο διάγραμμα ροής

F1

F2

F3

Απλοποιημένο διάγραμμα ροής

Μετάλλευμα

60% Fe2O3

40% SiO21000 kg/h

Προιόν

100% Fe2O3

570 kg/h

Απόρριμμα

7% Fe2O3

93% SiO2

430 kg/h

Μαγνητικός Διαχωρισμός

Καύση μεθανίου με αέρα

S3:

S1:

S2:

Βήμα 1ο : Σχεδιασμός διαγράμματος

Καυσαέρια

Mεθάνιο

Αέρας

Καύση C + O2 = CO2Διεργασία Καύσης

Σ' έναν καυστήρα καίγεται μεθάνιο (CH4(g)) με ογκομετρική παροχή 10 m3/h. Να σχεδιαστεί το διάγραμμα ροής.

S1: S3:

S2:

Βήμα 2ο : Σχεδιασμός διαγράμματος Εισαγωγη Χημικών αντιδράσεων

ΚαυσαέριαMεθάνιο

Αέρας

Καύση C + O2 = CO2

Καύση

R1: CΗ4 + 2 Ο2 = CO2 + 2 Η2Ο

Καύση μεθανίου με αέρα

Σ' έναν καυστήρα καίγεται μεθάνιο (CH4(g)) με ογκομετρική παροχή 10 m3/h. Να σχεδιαστεί το διάγραμμα ροής.

S : Ρεύμα (Stream)S1: Ρεύμα 1 (Αρίθμηση Ρευμάτων)

R : Χημική Αντίδραση (Reaction)R1: Χημική Αντίδραση 1

S1: S3:

S2:

Βήμα 3ο : Τοποθετούμε τα δεδομένα και τις πιθανές συστάσεις των ρευμάτων

ΚαυσαέριαMεθάνιο

Αέρας

Καύση C + O2 = CO2

Καύση μεθανίου με αέρα

Σ' έναν καυστήρα καίγεται μεθάνιο (CH4(g)) με ογκομετρική παροχή 10 m3/h. Να σχεδιαστεί το διάγραμμα ροής.

ΚαύσηCΗ4 + 2 Ο2 = CO2 + 2 Η2Ο

F1 = ? kmol/h

M1 = ? kmol/h

mCH41 = ? kmol/h

fCH41 = ? kmol/h

Q1 = 10 m3/h

Q1 : Ογκομετρική Παροχή Ρεύμα 1 Μ1: Μαζική παροχή Ρεύμα 1F1: Γραμμομοριακή Παροχή Ρεύμα 1

q1CH4 : Ογκομετρική Μεθανίου Παροχή Ρεύμα 1 m1CH4: Μαζική παροχή Μεθανίου Ρεύμα 1f1CH4: Γραμμομοριακή Παροχή Μεθανίου Ρεύμα 1

q1CH4 = ? m3/h

S1: S3:

S2:

Βήμα 3ο : Τοποθετούμε τα δεδομένα και τις πιθανές συστάσεις των ρευμάτων

ΚαυσαέριαMεθάνιο

Αέρας

Καύση C + O2 = CO2

Καύση μεθανίου με αέρα

Σ' έναν καυστήρα καίγεται μεθάνιο (CH4(g)) με ογκομετρική παροχή 10 m3/h. Να σχεδιαστεί το διάγραμμα ροής.

ΚαύσηCΗ4 + 2 Ο2 = CO2 + 2 Η2Ο

F1 = ? kmol/h

M1 = ? kmol/h

mCH41 = ? kmol/h

fCH41 = ? kmol/h

Q1 = 10 m3/h

Q2 = ? m3/h

M2 = ? kg/h

F2 = ? kmol/h m2O2 = ? kg/h

m2N2 = ? kg/h

f2O 2 = ? kmol/h

f2N2 = ? kmol/h

x2O 2 = ?

f2N2 = ?

Q2 : Ογκομετρική Παροχή Ρεύμα 2 Μ2: Μαζική παροχή Ρεύμα 2F2: Γραμμομοριακή Παροχή Ρεύμα 2

q1CH4 : Ογκομετρική O2, N2 Παροχή Ρεύμα 2 m1CH4: Μαζική παροχή O2, N2 Ρεύμα 2f1CH4: Γραμμομοριακή Παροχή O2, N2 Ρεύμα 2

q1CH4 = ? m3/h

S1: S3:

S2:

Βήμα 3ο : Τοποθετούμε τα δεδομένα και τις πιθανές συστάσεις των ρευμάτων

ΚαυσαέριαMεθάνιο

Αέρας

Καύση C + O2 = CO2

Καύση μεθανίου με αέρα

Σ' έναν καυστήρα καίγεται μεθάνιο (CH4(g)) με ογκομετρική παροχή 10 m3/h. Να σχεδιαστεί το διάγραμμα ροής.

ΚαύσηCΗ4 + 2 Ο2 = CO2 + 2 Η2Ο

F1 = ? kmol/h

M1 = ? kmol/h

Q1 = 10 m3/h

Q2 = ? m3/h

M2 = ? kg/h

F2 = ? kmol/hf3CH4 : Γραμμομοριακή Παροχή CH4, Ρεύμα 3 f3O2: Γραμμομοριακή Παροχή O2, Ρεύμα 3f3N2: Γραμμομοριακή Παροχή N2 Ρεύμα 3

F3 = ? kmol/h

Q3 = ? m3/h

M3 = ? kg/h

m3CO 2 = ? kg/h

m3H2O = ? kg/h

m3CH4 = ? kg/h

m3O 2 = ? kg/h

m3N2 = ? kg/h

f3CO 2 = ? kmol/h

f3H2O = ? kmol/h

f3CH4 = ? kmol/h

f3O 2 = ? kmol/h

f3N2 = ? kmol/h

x3CO 2 = ?

x3H2O = ?

x3CH4 = ?

x3O 2 = ? x3N2 = ?

S1: S3:

S2:

Βήμα 3ο : Τοποθετούμε τα δεδομένα και τις πιθανές συστάσεις των ρευμάτων

ΚαυσαέριαMεθάνιο

Αέρας

Καύση C + O2 = CO2

Καύση μεθανίου με αέρα

Σ' έναν καυστήρα καίγεται μεθάνιο (CH4(g)) με ογκομετρική παροχή 10 m3/h. Να σχεδιαστεί το διάγραμμα ροής.

ΚαύσηCΗ4 + 2 Ο2 = CO2 + 2 Η2Ο

F1 = ? kmol/h

M1 = ? kmol/h

Q1 = 10 m3/h

Q2 = ? m3/h

M2 = ? kg/h

F2 = ? kmol/h

F3 = ? kmol/h

Q3 = ? m3/h

M3 = ? kg/h

m3CO 2 = ? kg/h

m3H2O = ? kg/h

m3CH4 = ? kg/h

m3O 2 = ? kg/h

m3N2 = ? kg/h

f3CO 2 = ? kmol/h

f3H2O = ? kmol/h

f3CH4 = ? kmol/h

f3O 2 = ? kmol/h

f3N2 = ? kmol/h

x3CO 2 = ?

x3H2O = ?

x3CH4 = ?

x3O 2 = ? x3N2 = ?

mCH41 = ? kmol/h

fCH41 = ? kmol/h

q1CH4 = ? m3/h

m2O2 = ? kg/h

m2N2 = ? kg/h

f2O 2 = ? kmol/h

f2N2 = ? kmol/h

x2O 2 = ?

f2N2 = ?

S1: S3:

S2:

Βήμα 3ο : Τοποθετούμε τα δεδομένα και τις πιθανές συστάσεις των ρευμάτων

ΚαυσαέριαMεθάνιο

Αέρας

Καύση C + O2 = CO2

Καύση μεθανίου με αέρα

Σ' έναν καυστήρα καίγεται μεθάνιο (CH4(g)) με ογκομετρική παροχή 10 m3/h. Να σχεδιαστεί το διάγραμμα ροής.

ΚαύσηCΗ4 + 2 Ο2 = CO2 + 2 Η2Ο

F1 = ? kmol/h

M1 = ? kmol/h

Q1 = 10 m3/h

Q2 = ? m3/h

M2 = ? kg/h

F2 = ? kmol/h

F3 = ? kmol/h

Q3 = ? m3/h

M3 = ? kg/h

m3CO 2 = ? kg/h

m3H2O = ? kg/h

m3CH4 = ? kg/h

m3O 2 = ? kg/h

m3N2 = ? kg/h

f3CO 2 = ? kmol/h

f3H2O = ? kmol/h

f3CH4 = ? kmol/h

f3O 2 = ? kmol/h

f3N2 = ? kmol/h

x3CO 2 = ?

x3H2O = ?

x3CH4 = ?

x3O 2 = ? x3N2 = ?

mCH41 = ? kmol/h

fCH41 = ? kmol/h

q1CH4 = ? m3/h

m2O2 = ? kg/h

m2N2 = ? kg/h

f2O 2 = ? kmol/h

f2N2 = ? kmol/h

x2O 2 = ?

f2N2 = ?

S1: S3:

S2:

Βήμα 3ο : Τοποθετούμε τα δεδομένα και τις πιθανές συστάσεις των ρευμάτων

ΚαυσαέριαMεθάνιο

Αέρας

Καύση C + O2 = CO2

Καύση μεθανίου με αέρα

Σ' έναν καυστήρα καίγεται μεθάνιο (CH4(g)) με ογκομετρική παροχή 10 m3/h. Να σχεδιαστεί το διάγραμμα ροής.

ΚαύσηCΗ4 + 2 Ο2 = CO2 + 2 Η2Ο

F1 = ? kmol/h

Q1 = 10 m3/h

fCH41 = ? kmol/h

q1CH4 = ? m3/h

M1 = ? kg/h

m1CH4 = ? kg/h

x1CH4 = ?

w1CH4 = ?

x1CH4 : Γραμμομοριακή Σύσταση CH4, Ρεύμα 1 w1CH4: Κατά Βάρος Σύσταση CH4, Ρεύμα 1

S1: S3:

S2:

Βήμα 3ο : Τοποθετούμε τα δεδομένα και τις πιθανές συστάσεις των ρευμάτων

ΚαυσαέριαMεθάνιο

Αέρας

Καύση C + O2 = CO2

Καύση μεθανίου με αέρα

Σ' έναν καυστήρα καίγεται μεθάνιο (CH4(g)) με ογκομετρική παροχή 10 m3/h. Να σχεδιαστεί το διάγραμμα ροής.

ΚαύσηCΗ4 + 2 Ο2 = CO2 + 2 Η2Ο

F1 = ? kmol/h

Q1 = 10 m3/h

fCH41 = ? kmol/h

q1CH4 = ? m3/h

M1 = ? kg/h

m1CH4 = ? kg/h

x1CH4 = 1

w1CH4 = 1

q1CH4 = x1CH4 x Q1 = 1,00 x 10,00 kmol/h = 10,00 m3/h

f1CH4 = q1CH4 / Vm = 10,00 m3/h / 22,40 m3/kmol = 0,45 kmol/h

m1CH4 = f1CH4 x ΜΒCH4 = 0,45 kmol/h x 18,00 kg/kmol = 8,04 kg/hF1 = f1cH4 / x1CH4 = 0,45 kmol/h / 1,00 = 0,45 kmol/h

M1 = m1CH4 / w1CH4 = 8,04 kg/h / 1,00 = 8,04 kg/h

Πλήρης καύση μεθανίου με περίσσεια αέρα

Φυσικό Αέριο

99% CH4

1% N2

10 m3/h

Προιόν Kαύσης

9% CO2

72% N2

1% O2

18% Η2Ο

110 m3/h

Αέρας

79% N2

21% O2

100 m3/h

Καύση Μεθανίου

CH4 + 2 O2 = CO2 + 2 H2O

Πληροφορίες που πρέπει να απεικονίζονται σ’ ένα ρεύμα

Θεμελιώδεις πληροφορίες Μονάδες

Είδος ρεύματοςΕίδος συστατικώνΚλάσματα μάζας για κάθε συστατικόKατ’ όγκο περιεκτικότηταΓραμμομοριακά κλάσματα για κάθε συστατικόΣυγκέντρωση συστατικούΜαζική ροήΟγκομετρική ροήΓραμμομοριακή ροήΜαζική ροή κάθε συστατικούΟγκομετρική ροή κάθε συστατικούΓραμμομοριακή ροή κάθε συστατικούΘερμοκρασίαΠίεση

Στερεό (S), Υγρό (L), Αέριο (G)Χημικός τύπος% w/w% w/v% f/fmol/Lkg/hm3/hmol/hkg/hm3/hmol/hK, Cbar, atm

Ολικό Ισοζύγιο Μάζας

Ισοζύγιο σε moles μπορεί να γίνει μόνο σε συστήματα στα οποία δεν συμβαίνει χημική αντίδραση

ή

ί

έ

μάζας

ό

ό

ή

ί

έ

μάζας

ί

ό

Εφαρμογή Ισοζυγίου Μάζας

Ανάμιξη

S1: Πρώτη ύλη

M1: kg/h

Q1: m3/h

S2: Διαλύτης

M2: kg/h

Q2: m3/h

S3: Προιόν

M3: kg/h

Q3: m3/h

j

jouti

iin MM

joutjoutj

iiniin QQ

Ολικό ισοζύγιο μάζας: Μ1 + Μ2 = Μ3 Q1ρ1 + Q2ρ2 = Q3ρ3

Ολικό Ισοζύγιο Μάζας: Παράδειγμα

Αραίωση φωσφορικού οξέος με νερό, ολικό ισοζύγιο μάζας σε kg/h

1.4 kg/h διαλύματος φωσφορικού οξέος (H3PO4) αραιώνονται με 2.3 kg/h νερού. Πόση είναι η μαζική παροχή του διαλύματος που προκύπτει;

Δεδομένα: Μ1 = 1.4 kg-π. διαλ. H3PO4 /hΜ2 = 2.3 kg-Η2Ο/h

Ζητούνται: Μ3 = ? kg-αρ. διαλ. Η3PO4/h

Ολικό Ισοζύγιο Μάζας: Αραίωση φωσφορικού οξέος με νερό

S1:

Μ1 1 kg/h

S3:

Μ3 ? kg/h

S2:

Μ2 2,3 kg/h

H2O

Πυκνό Διάλυμα Η3PO4

Αραιό Διάλυμα Η3PO4

Καύση C + O2 = CO2Αραίωση

Η3 PO4 με Η2Ο

Σταδιο 1: Κατασκευή διαγράμματος ΡοήςΣτάδιο 2: Αρίθμηση ρευμάτωνΣτάδιο 3: Σημείωση όλων των διαθέσιμων στοιχείων στο

διάγραμμα

Ολικό Ισοζύγιο Μάζας: Αραίωση φωσφορικού οξέος με νερό

Στάδιο 4: Εξισώσεις ισοζυγίων μάζαςΣτάδιο 5: Αντικατάσταση μεταβλητών και εκτέλεση

υπολογισμών

Ολικό ισοζύγιο μάζας: Μ1 + Μ2 = Μ3

S1:

Μ1 1 kg/h

S3:

Μ3 ? kg/h

S2:

Μ2 2,3 kg/h

H2O

Πυκνό Διάλυμα Η3PO4

Αραιό Διάλυμα Η3PO4

Καύση C + O2 = CO2Αραίωση

Η3 PO4 με Η2Ο

Μ3 = Μ1 + Μ2 = 1,40 kg αρ. διαλ. Η3PO4 /h + 2,30 kg Η2O /h = 3,70 kg π. διαλ. Η3PO4 /h

Ολικό Ισοζύγιο Μάζας: Παράδειγμα Αραίωση θειικού οξέος με νερό, ολικό ισοζύγιο μάζας σε kmol/h

0.4 kmol/h καθαρού θειικού οξέος (H2SO4) αραιώνονται με 5.2 kmol/h νερού. Πόση είναι η μαζική και η γραμμομοριακή παροχή του διαλύματος που προκύπτει ;

Δεδομένα: F1 = 0.4 kmol- Η2SO4/hF2 = 5.2 kmol-Η2Ο/hMBH2SO4 = 98.09 kg/kmolMBH2O = 18.01 kg/kmol

Ζητούνται: Μ3 = ? kg. διαλ. Η2SO4/hF3 = ? kmol. διαλ. Η2SO4/h

Ολικό Ισοζύγιο Μάζας: Αραίωση φωσφορικού οξέος με νερό

Σταδιο 1: Κατασκευή διαγράμματος ΡοήςΣτάδιο 2: Αρίθμηση ρευμάτωνΣτάδιο 3: Σημείωση όλων των διαθέσιμων στοιχείων στο

διάγραμμα

S1:

F1: ? kg/h Μ1 0,4 kmol/h

S3:

Μ3 ? kg/h F3: ? kmol/h

S2:

M2 ? kg/h F2: 5,2 kmol/h

H2O

Η2SO4

Διάλυμα Η2SO4

Καύση C + O2 = CO2Αραίωση

Η2 SO4 με Η2Ο

Ολικό Ισοζύγιο Μάζας: Αραίωση φωσφορικού οξέος με νερό

Στάδιο 4: Εξισώσεις ισοζυγίων μάζαςΣτάδιο 5: Άλλες εξισώσεις (ρεύματα διεργασίας)Στάδιο 6: Αντικατάσταση μεταβλητών και εκτέλεση

υπολογισμών

Προσοχή!!!!! αφού στο σύστημα δεν συμβαίνει χημική αντίδραση το ολικό ισοζύγιο μάζας μπορεί να γίνει και σε kmoles και σε kg

Ολικό ισοζύγιο μάζας kmol: F1 + F2 = F3 Ολικό ισοζύγιο μάζας kg : Μ1 + Μ2 = Μ3

S1:

F1: ? kg/h Μ1 0,4 kmol/h

S3:

Μ3 ? kg/h F3: ? kmol/h

S2:

M2 ? kg/h F2: 5,2 kmol/h

H2O

Η2SO4

Διάλυμα Η2SO4

Καύση C + O2 = CO2Αραίωση

Η2 SO4 με Η2Ο

S1: F1 x MBH2SO4 = Μ1

+ +S2: F2 x MBH2O = Μ2

= =S3: F3 Μ3

Ολικό Ισοζύγιο Μάζας: Αραίωση φωσφορικού οξέος με νερό

Στάδιο 4: Εξισώσεις ισοζυγίων μάζαςΣτάδιο 5: Άλλες εξισώσεις (ρεύματα διεργασίας)Στάδιο 6: Αντικατάσταση μεταβλητών και εκτέλεση

υπολογισμών

F3 = F1 + F2 = 0,40 kmol Η2SO4 /h + 5,20 kmol Η2O /h = 5,60 kmol διαλ. Η2SO4 /h

M1 = F1 x MWH2SO4 = 0,40 kmol Η2SO4 /h x 98,09 kg/kmol = 39,24 kg Η2SO4 /h

M2 = F2 x MWH2O = 5,20 kmol Η2O /h x 18,01 kg/kmol = 93,65 kg Η2O /hM3 = M1 + M2 = 39,24 kg Η2SO4 /h x 93,65 kg Η2O /h = 132,89 kg διαλ. Η2SO4 /h

ΑποτελέσματαEξισώσεις Αντικατάσταση Μεταβλητών

S1:

F1: ? kg/h Μ1 0,4 kmol/h

S3:

Μ3 ? kg/h F3: ? kmol/h

S2:

M2 ? kg/h F2: 5,2 kmol/h

H2O

Η2SO4

Διάλυμα Η2SO4

Καύση C + O2 = CO2Αραίωση

Η2 SO4 με Η2Ο

Ολικό Ισοζύγιο Μάζας: Άσκηση για εξάσκηση Ανάμιξη Η2 και CO, ολικό ισοζύγιο μάζας

50 m3/h αέριου υδρογόνου αναμιγνύονται σε κανονικές συνθήκες με 30 m3/h αέριου μονοξειδίου του άνθρακα. Πόση είναι η παροχή του αερίου διαλύματος που προκύπτει σε kg/h, kmol/h και m3/h ; Ποιο είναι το μέσο μοριακό βάρος του ρεύματος που προκύπτει από την ανάμιξη των δύο αερίων; Ποια είναι η μαζική και ποια η γραμμομοριακή παροχή, καθώς το μέσο μοριακό βάρος, αν η παροχή του μονοξειδίου του άνθρακα μεταβληθεί από 0 m3 CO/h σε 150 m3 CO/h; Να γίνει η γραφική παράσταση της μεταβολής του μέσου μοριακού βάρους συναρτήσει της ογκομετρικής παροχής του CO.

Ισοζύγιο Μάζας Xημικού Στοιχείου

Ισοζύγιο χημικού στοιχείου σε μη σταθερή κατάσταση

ή

ί

έ

στοιχείου

όό

ή

ί

έ

στοιχείου

ίό

ύ

έ

ί

ώ

ό

Ισοζύγιο Μάζας Xημικού Στοιχείου

Ισοζύγιο μάζας χημικού στοιχείου μπορεί να γίνει σε όλα τα συστήματα σε moles ή σε kg

ανεξάρτητα αν στο σύστημα συμβαίνει χημική αντίδραση

ή

ί

έ

μάζας

ό

ό

ή

ί

έ

μάζας

ί

ό

Ισοζύγιο χημικού στοιχείου σε σταθερή κατάσταση

Xρησιμοποιείται και για τον έλεγχο της ορθότητας των υπολογισμών

Ισοζύγιο Μάζας Χημικού Στοιχείου: Παράδειγμα

Ηλεκτρόλυση νερού ισοζύγιο μάζας σε mol/h και g/h

Ένας σπουδαστής ισχυρίζεται ότι σχεδίασε μια συσκευή ηλεκτρόλυσης νερού η οποία μπορεί να κατεργάζεται 90 g-H2O/h και να παράγει 120 L/h H2 και 56 L/h O2 σε κανονικές συνθήκες. Ελέγξτε την ορθότητα των ισχυρισμών του διενεργώντας το ισοζύγιο του υδρογόνου και του οξυγόνου στα ρεύματα εισόδου και εξόδου.

Μ1 = 90 g-H2O/h Q2 = 120 L-H2/h Q3 = 56 L-O2/h Vm = 22.4 L/mol Δεδομένα:

ΜΒH2 = 2 g/mol ΜΒO2 = 16 g/mol ΜΒH2O = 18 g/mol

Ζητούνται: m1H2 = ? m1O2 = ? m2H2 = ? m3O2 = ?

Σταδιο 1: Κατασκευή διαγράμματος Ροής

Στάδιο 2:Αρίθμηση ρευμάτωνΣτάδιο 3:Σημείωση όλων των διαθέσιμων

στοιχείων στο διάγραμμα

Ισοζύγιο Μάζας Χημικού Στοιχείου: Ηλεκτρόλυση νερού

S2:

Q2: 120 L/hm2H2 ? g/h

S1:

Μ1: 90 g/h m1H2 ? g/h S3: Οξυγόνοm1O2 ? g/h Q3: 56 L/h

m3O2 ? g/h

Νερό

Υδρογόνο

Καύση C + O2 = CO2Ηλεκτρόλυση

Η2 + 1/2 O2 = Η2Ο

Στάδιο 4: Εξισώσεις ισοζυγίων μάζαςΣτάδιο 5: Άλλες εξισώσεις (ρεύματα

διεργασίας)Στάδιο 6: Αντικατάσταση μεταβλητών

και εκτέλεση υπολογισμών

Προσοχή!!!!! αφού στο το ολικό ισοζύγιο μάζας των

χημικών στοιχείων μπορεί να γίνει και σε kmoles και σε kg

Ισοζύγιο Μάζας Χημικού Στοιχείου: Ηλεκτρόλυση νερού

S2:

Q2: 120 L/hm2H2 ? g/h

S1:

Μ1: 90 g/h m1H2 ? g/h S3: Οξυγόνοm1O2 ? g/h Q3: 56 L/h

m3O2 ? g/h

Νερό

Υδρογόνο

Καύση C + O2 = CO2Ηλεκτρόλυση

Η2 + 1/2 O2 = Η2Ο

x 1 = f1H2 / MBH2 = m1H2

S1: Μ1 / MBH2O = F1H2O

x 0.5 = f1O2 / MBO2 = m1O2

S2: Q2 / Vm = F2 / MBH2 = m2H2

S3: Q2 / Vm = F2 / MBO2 = m3O2

? =

? =

Ισοζύγιο Μάζας Χημικού Στοιχείου: Ηλεκτρόλυση νερού

F1 = F1 / ΜBH2O = 90 g/h / 18 kg/kmol = 5,00 mol/h

f1H2 = 1 x F1 = 1 mol-H2/mol-H2Ox 5,00 kmol/h = 5,00 mol/h

f1O2 = 0.5 x F1 = 0,50 mol-O2/mol-H2Ox 5,00 kmol-O2/kmol-air = 2,50 mol/h

m1H2 = f1H2 x ΜΒH2 = 5,00 kmol-O2/h x 2,00 kg/kmol = 10,00 g/h

m1O2 = f1O2 x ΜΒO2 = 2,50 kmol-N2/h x 32 kg/kmol = 80,00 g/h

F2 = Q2/ Vm = #### L/h / 22,4 L/mol = 5,36 mol/h

F3 = Q3/ Vm = 56,00 L/h / 22,4 L/mol = 2,50 mol/h

F2 = f2H2 = 5,36 mol/h = 5,36 mol/h

F3 = f3O2 = 2,50 mol/h = 2,50 mol/h

m2H2 = f2H2 x ΜΒH2 = 5,36 mol/h x 2,00 g/mol = 10,71 g/h

m3O2 = f3O2 x ΜΒO2 = 2,50 mol/h x 32,00 g/mol = 80,00 g/h

S2:

Q2: 120 L/hm2H2 ? g/h

S1:

Μ1: 90 g/h m1H2 ? g/h S3: Οξυγόνοm1O2 ? g/h Q3: 56 L/h

m3O2 ? g/h

Νερό

Υδρογόνο

Καύση C + O2 = CO2Ηλεκτρόλυση

Η2 + 1/2 O2 = Η2Ο

x 1 = f1H2 / MBH2 = m1H2

S1: Μ1 / MBH2O = F1H2O

x 0.5 = f1O2 / MBO2 = m1O2

S2: Q2 / Vm = F2 / MBH2 = m2H2

S3: Q2 / Vm = F2 / MBO2 = m3O2

? =

? =

Ισοζύγιο Μάζας Χημικού Στοιχείου: Ηλεκτρόλυση νερού

F1 = F1 / ΜBH2O = 90 g/h / 18 kg/kmol = 5,00 mol/h

f1H2 = 1 x F1 = 1 mol-H2/mol-H2Ox 5,00 kmol/h = 5,00 mol/h

f1O2 = 0.5 x F1 = 0,50 mol-O2/mol-H2Ox 5,00 kmol-O2/kmol-air = 2,50 mol/h

m1H2 = f1H2 x ΜΒH2 = 5,00 kmol-O2/h x 2,00 kg/kmol = 10,00 g/h

m1O2 = f1O2 x ΜΒO2 = 2,50 kmol-N2/h x 32 kg/kmol = 80,00 g/h

F2 = Q2/ Vm = #### L/h / 22,4 L/mol = 5,36 mol/h

F3 = Q3/ Vm = 56,00 L/h / 22,4 L/mol = 2,50 mol/h

F2 = f2H2 = 5,36 mol/h = 5,36 mol/h

F3 = f3O2 = 2,50 mol/h = 2,50 mol/h

m2H2 = f2H2 x ΜΒH2 = 5,36 mol/h x 2,00 g/mol = 10,71 g/h

m3O2 = f3O2 x ΜΒO2 = 2,50 mol/h x 32,00 g/mol = 80,00 g/h

S2:

Q2: 120 L/hm2H2 ? g/h

S1:

Μ1: 90 g/h m1H2 ? g/h S3: Οξυγόνοm1O2 ? g/h Q3: 56 L/h

m3O2 ? g/h

Νερό

Υδρογόνο

Καύση C + O2 = CO2Ηλεκτρόλυση

Η2 + 1/2 O2 = Η2Ο

Ολικό Ισοζύγιο Μάζας: Μ1 = m1H2 + m1O2 = Μ2 + Μ3 = m2H2 + m3O2

10 g/h + 80 g/h <=> 10.71 g/h + 80 g/h

Ισοζύγιο Μάζας Xημικής Ένωσης

Ισοζύγιο μάζας χημικής ένωσης σε μη σταθερή κατάσταση

ή

ό

ύ

ά

ό

ή

ό

ύ

ή

ό

ύ

τταπό

συστατικού

ό

ό

ύ

σ έ

συστατικού

ό

ό

ή

ό

ύ

ώ

ό

Ισοζύγιο μάζας χημικής ένωσης μπορεί να γίνει σε όλα τα συστήματα σε moles ή σε kg

ανεξάρτητα αν στο σύστημα συμβαίνει χημική αντίδραση

Ισοζύγιο μάζας χημικής ένωσης σε σταθερή κατάσταση

Αρκεί να ληφθούν υπόψη οι παράγοντεςΡυθμός παραγωγής generation (gen)

Ρυθμός κατανάλωσης consumption (cons)

Ισοζύγιο Μάζας Xημικής Ένωσης

συστατικού συστατικού -

σ από το

ό ό ό ό

ό ό

ύ

έ ό

ύ ή

ή

ύ

ύ

ά

ό

ή

Ισοζύγιο μάζας χημικής ένωσης σε σταθερή κατάσταση

gen: Ρυθμός παραγωγήςcons: Ρυθμός κατανάλωσης

Ισοζύγιο Μάζας Xημικής Ένωσης

συστατικού συστατικού -

σ από το

ό ό ό ό

ό ό

ύ

έ ό

ύ ή

ή

ύ

ύ

ά

ό

ή

Tο ισοζύγιο μάζας σε σταθερή κατάσταση για ένα συστατικό Α όταν η μάζα είναι εκφρασμένη σε kg/h είναι:

minA + mgenA = moutA + mconsA

αντίστοιχα όταν η μάζα είναι εκφρασμένη σε kmol/h:

finA + fgenA = foutA + fconsA

Καύση μεθανίου και συστατικά που προκύπτουν από αυτήν

gen: Ρυθμός παραγωγήςcons: Ρυθμός κατανάλωσης

Ισοζύγιο Μάζας Xημικής Ένωσης

CH4: καταναλώνεται fconsCH4

O2: καταναλώνεται fconsO2

CO2: παράγεται fgenCO2

H2O: παράγεται fgenH2O

N2: ούτε παράγεται ούτε καταναλώνεται

S3:

f3CH4

S1: f3O2

f1CH4 f3CO2

x1CH4 1,00 f3H2O

f3N2

S2:

f2O2

f2Ν2

x2O2 0,21

x2Ν2 0,79

Άκαυστο ή περίσσεια

Δυνατή Σύσταση Καυσαερίων

Mεθάνιο

Αέρας

Περίσσεια ή Μη αντιδράσαν

Προιόν

Προιόν

Δεν αντιδρά είναι ίσο με το f2N2

Καύση C + O2 = CO2

ΚαύσηCΗ4 + 2 Ο2 = CO2 + 2 Η2Ο

Καύση μεθανίου και συστατικά που προκύπτουν από αυτήν

Ισοζύγιο Μάζας Xημικής Ένωσης

CH4: καταναλώνεται fconsCH4

O2: καταναλώνεται fconsO2

CO2: παράγεται fgenCO2

H2O: παράγεται fgenH2O

N2: ούτε παράγεται ούτε καταναλώνεται

S3:

f3CH4

S1: f3O2

f1CH4 f3CO2

x1CH4 1,00 f3H2O

f3N2

S2:

f2O2

f2Ν2

x2O2 0,21

x2Ν2 0,79

Άκαυστο ή περίσσεια

Δυνατή Σύσταση Καυσαερίων

Mεθάνιο

Αέρας

Περίσσεια ή Μη αντιδράσαν

Προιόν

Προιόν

Δεν αντιδρά είναι ίσο με το f2N2

Καύση C + O2 = CO2

ΚαύσηCΗ4 + 2 Ο2 = CO2 + 2 Η2Ο

CH4: f1CΗ4 + f2CΗ4 + fgenCΗ4 = f3CΗ4 + fconsCΗ4

O2: f1O2 + f2O2 + fgenO2 = f3O2 + fconsO2

N2: f1N2 + f2N2 + fgenN2 = f3N2 + fconsN2

CO2: f1CO2 + f2CO2 + fgenCO2 = f3CO2 + fconsCO2

H2O: f1H2O + f2H2O + fgenH2O = f3H2O + fconsH2O

Εξισώσεις ισοζυγίου μάζας συστατικών κατά την καύση μεθανίου

Ισοζύγιο Μάζας Xημικής Ένωσης

CH4: καταναλώνεται fconsCH4

O2: καταναλώνεται fconsO2

CO2: παράγεται fgenCO2

H2O: παράγεται fgenH2O

N2: ούτε παράγεται ούτε καταναλώνεται

S3:

f3CH4

S1: f3O2

f1CH4 f3CO2

x1CH4 1,00 f3H2O

f3N2

S2:

f2O2

f2Ν2

x2O2 0,21

x2Ν2 0,79

Άκαυστο ή περίσσεια

Δυνατή Σύσταση Καυσαερίων

Mεθάνιο

Αέρας

Περίσσεια ή Μη αντιδράσαν

Προιόν

Προιόν

Δεν αντιδρά είναι ίσο με το f2N2

Καύση C + O2 = CO2

ΚαύσηCΗ4 + 2 Ο2 = CO2 + 2 Η2Ο

CH4: f1CΗ4 + f2CΗ4 + fgenCΗ4 = f3CΗ4 + fconsCΗ4

O2: f1O2 + f2O2 + fgenO2 = f3O2 + fconsO2

N2: f1N2 + f2N2 + fgenN2 = f3N2 + fconsN2

CO2: f1CO2 + f2CO2 + fgenCO2 = f3CO2 + fconsCO2

H2O: f1H2O + f2H2O + fgenH2O = f3H2O + fconsH2O

fgenCΗ4 = fgenO2 = fgenN2

fconsN2 = fconsCO2 = fconsH2O

f1O2 = f1N2 = f1CO2 = f1H2O

f2CΗ4 = f2CO2 = f2H2O

Προσοχή όμως !!!!!!!

Εξισώσεις ισοζυγίου μάζας συστατικών κατά την καύση μεθανίου

Ισοζύγιο Μάζας Xημικής Ένωσης

S3:

f3CH4

S1: f3O2

f1CH4 f3CO2

x1CH4 1,00 f3H2O

f3N2

S2:

f2O2

f2Ν2

x2O2 0,21

x2Ν2 0,79

Άκαυστο ή περίσσεια

Δυνατή Σύσταση Καυσαερίων

Mεθάνιο

Αέρας

Περίσσεια ή Μη αντιδράσαν

Προιόν

Προιόν

Δεν αντιδρά είναι ίσο με το f2N2

Καύση C + O2 = CO2

ΚαύσηCΗ4 + 2 Ο2 = CO2 + 2 Η2Ο

CH4: f1CΗ4 + f2CΗ4 + fgenCΗ4 = f3CΗ4 + fconsCΗ4

O2: f1O2 + f2O2 + fgenO2 = f3O2 + fconsO2

N2: f1N2 + f2N2 + fgenN2 = f3N2 + fconsN2

CO2: f1CO2 + f2CO2 + fgenCO2 = f3CO2 + fconsCO2

H2O: f1H2O + f2H2O + fgenH2O = f3H2O + fconsH2O

fgenCΗ4 = fgenO2 = fgenN2

fconsN2 = fconsCO2 = fconsH2O

f1O2 = f1N2 = f1CO2 = f1H2O

f2CΗ4 = f2CO2 = f2H2O

f1CΗ4 = fconsCΗ4

f2O2 = fconsO2

f2N2 = f3N2

fgenCO2 = f3CO2

fgenH2O = f3H2O

Τελικό Σύστημα !!!!!

Εξισώσεις χημικής αντίδρασης καύσης μεθανίου

Ισοζύγιο Μάζας Xημικής Ένωσης

f1CΗ4 = fconsCΗ4

f2O2 = fconsO2

f2N2 = f3N2

fgenCO2 = f3CO2

fgenH2O = f3H2O

Τελικό Σύστημα !!!!!

CH4 (g) + 2 O2 (g) = CO2 (g) + 2 H2O (g)Αντιδρώντα προϊόντα

fconsCH4/1 = fconsO2/2 = fgenCO2/1 = fgenH2O/2

fconsO2 = 2 x fconsCΗ4

fgenCO2 = fconsCΗ4

fgenH2O = 2 x fconsCΗ4

Iσοζύγιο μάζας Χημική αντίδραση

Εξισώσεις που προκύπτουν από μια χημική αντίδραση

Xημική Aντίδραση

Ri: aA + bB = cC + dDΑντιδρώντα προϊόντα

fconsRiA/a = fconsRiB/b = fgenRiC/c = fgenRiD/d

Προσοχή !!!!! fconsRiA, fconsRiB, fgenRiC, fgenRiD

γραμμομοριακές παροχές kmol/h

Εξισώσεις που προκύπτουν από μια χημική αντίδραση

Xημική Aντίδραση

Ri: aA + bB = cC + dDΑντιδρώντα προϊόντα

mconsRiA/a MBA = mconsRiB/b MBB = mgenRiC/c MBC= mgenRiD/d MBD

Προσοχή !!!!! mconsRiA, mconsRiB, mgenRiC, mgenRiD

μαζικές παροχές kg/h

Ποια σχέση συνδέει τις μαζικές παροχές;;

Εξισώσεις που προκύπτουν από πολλές χημικές αντιδράσεις

Xημική Aντίδραση

R1: a1A + b1B1 = c1C1 + d1D1

R2: a2A2 + b2B2 = c2C2 + d2DR3: a3A + b3B3 = c3C3 + d3D

R1: fconsR1A /a1 = fconsR1B1/b1 = fgenR1C1/c1 = fgenR1D1/d1

R2: fconsR2A2/a2 = fconsR2B2/b2 = fgenR2C2/c2 = fgenR2D /d2

R3: fconsR3A /a3 = fconsR3B3/b3 = fgenR3C3/c3 = fgenR3D/d3

Προσοχή !!!!! fconsRiA, fconsRiB, fgenRiC, fgenRiD

γραμμομοριακές παροχές kmol/h

Ισοζύγιο Μάζας Χημικής Ένωσης: Παράδειγμα

Ανάμιξη θειικού οξέος ισοζύγιο μάζας χωρίς χημική αντίδραση σε kg/h

50 kg/h πυκνού διαλύματος θειικού οξέος (H2SO4) περιεκτικότητας 35% w/w, αραιώνονται με 15 kg/h νερού. Πόση ποσότητα θειικού οξέος και νερού περιέχει το αραιό διάλυμα που προκύπτει; Πόση είναι η μαζική παροχή του αραιού διαλύματος και ποια η κατά βάρος περιεκτικότητα του; .

Δεδομένα: Μ1 = 50 kg Η2SO4/h M2 = 15 kg Η2Ο/h

Ζητούνται: Μ3, m3H2SO4, m3H2O, x3H2SO4, x3H2O

Σταδιο 1: Κατασκευή διαγράμματος Ροής

Στάδιο 2:Αρίθμηση ρευμάτωνΣτάδιο 3:Σημείωση όλων των διαθέσιμων

στοιχείων στο διάγραμμα

Ισοζύγιο Μάζας Χημικής Ένωσης: Αραίωση θειικού οξέος

S1: π. διαλ. Η2SO4

M1 50,00 kg/h m1H2SO4 ? kg/h m1H2O ? kg/h S3:

xw3H2SO4 0,35 Μ3 ? kg/h m3H2SO4 ? kg/h

S2: m3H2O ? kg/h M2 15,00 kg/h xw3H2SO4 ?

m2H2O 15,00 kg/h xw3H2O ?

Aραίωση θειικού οξέος με νερό

H2O

αρ. διαλ. Η2SO4

Καύση C + O2 = CO2Αραίωση

Η2SO4 με Η2Ο

Στάδιο 4: Εξισώσεις ισοζυγίων μάζαςΣτάδιο 5: Άλλες εξισώσεις (ρεύματα

διεργασίας)Στάδιο 6: Αντικατάσταση μεταβλητών

και εκτέλεση υπολογισμών

Προσοχή!!!!! αφού στο το ολικό ισοζύγιο μάζας των

μπορεί να γίνει και σε kmoles και σε kg. Στο συγκεκριμένο

πρόβλημα διευκολύνει να γίνει σε Kg

Iσοζύγιο μάζας συστατικών σε kg/h:

Η2SO4: m1Η2SO4 + m2Η2SO4 + mgenΗ2SO4 = m3Η2SO4 + mconsΗ2SO4

Η2O: m1Η2O + m2Η2O + mgenΗ2O = m3Η2O + mconsΗ2O

S1: π. διαλ. Η2SO4

M1 50,00 kg/h m1H2SO4 ? kg/h m1H2O ? kg/h S3:

xw3H2SO4 0,35 Μ3 ? kg/h m3H2SO4 ? kg/h

S2: m3H2O ? kg/h M2 15,00 kg/h xw3H2SO4 ?

m2H2O 15,00 kg/h xw3H2O ?

Aραίωση θειικού οξέος με νερό

H2O

αρ. διαλ. Η2SO4

Καύση C + O2 = CO2Αραίωση

Η2SO4 με Η2Ο

mgenΗ2SO4 = mconsΗ2SO4 = mconsΗ2SO4 = mgenΗ2O m2Η2SO4 = 0

m1Η2SO4 = m3Η2SO4

m3Η2O = m1Η2O + m2Η2O

Προσοχή !!!!! Στις μηδενικές μεταβλητές

Επομένως οι εξισώσεις απλοποιούνται στις:

Ισοζύγιο Μάζας Χημικής Ένωσης: Αραίωση θειικού οξέος

Στάδιο 5: Άλλες εξισώσεις (ρεύματα διεργασίας)

Στάδιο 6: Αντικατάσταση μεταβλητών και εκτέλεση υπολογισμών

Iσοζύγιο μάζας συστατικών σε kg/h:

S1: π. διαλ. Η2SO4

M1 50,00 kg/h m1H2SO4 ? kg/h m1H2O ? kg/h S3:

xw3H2SO4 0,35 Μ3 ? kg/h m3H2SO4 ? kg/h

S2: m3H2O ? kg/h M2 15,00 kg/h xw3H2SO4 ?

m2H2O 15,00 kg/h xw3H2O ?

Aραίωση θειικού οξέος με νερό

H2O

αρ. διαλ. Η2SO4

Καύση C + O2 = CO2Αραίωση

Η2SO4 με Η2Ο

m1Η2SO4 = m3Η2SO4

m3Η2O = m1Η2O + m2Η2O

Στο παραπάνω σύστημα γνωρίζω μόνο τη μεταβλητή m3H2O, επομένως δεν μπορώ να υπολογίσω τις άλλες μεταβλητές

Άρα χρειάζομαι και άλλες εξισώσεις >>>>> Στάδιο 5

Ισοζύγιο Μάζας Χημικής Ένωσης: Αραίωση θειικού οξέος

M1 x xw1H2SO4

1 – xwH2SO4

M1 x xw1H2O

m3H2SO4 + m3H2O

M3 / m3H2SO4

M3 / m3H2O

m1H2SO4 =xw1H2O =m1H2O =M3 =xw3H2SO4 =xw3H2O =

Ισοζύγιο Μάζας Χημικής Ένωσης: Αραίωση θειικού οξέος

Μεταβλητήm1Η2SO4 = M1 x xw1H2SO4 = 50,0 kg π.Η2SO4 /h x 0,35 = 17,50 kg H2SO4/hxw1H2O = 1 - xw1H2SO4 = 1,0 - 0,35 = 0,65m1Η2O = M1 x xw1H2O = 50,0 kg π.Η2SO4 /h x 0,65 = 32,50 kg H2O/hm1Η2SO4 = m3Η2SO4 = 17,5 kg H2SO4/h = 17,50 kg H2SO4/hm3Η2O = m1Η2O + m2Η2O = 32,5 kg H2O/h + 15,00 kg H2O/h = 47,50 kg H2O/hM3 = m3Η2SO4 + m3Η2O = 17,5 kg H2SO4/h + 47,50 kg H2O/h = 65,00 kg αρ.H2SO4/hxw3H2SO4 = M3 / m3Η2SO4 = 47,5 kg H2SO4/h / 65,00 kg αρ.H2SO4/h = 0,73xw3H2O = M3 / m3Η2O = 17,5 kg H2O/h / 65,00 kg αρ.H2SO4/h = 0,27

Εξίσωση Απόδοση τιμών στις μεταβλητές Αποτέλεσμα

Στάδιο 6: Αντικατάσταση μεταβλητών και εκτέλεση υπολογισμών

S1: π. διαλ. Η2SO4

M1 50,00 kg/h m1H2SO4 ? kg/h m1H2O ? kg/h S3:

xw3H2SO4 0,35 Μ3 ? kg/h m3H2SO4 ? kg/h

S2: m3H2O ? kg/h M2 15,00 kg/h xw3H2SO4 ?

m2H2O 15,00 kg/h xw3H2O ?

Aραίωση θειικού οξέος με νερό

H2O

αρ. διαλ. Η2SO4

Καύση C + O2 = CO2Αραίωση

Η2SO4 με Η2Ο

Ισοζύγιο Μάζας Χημικής Ένωσης: Παράδειγμα

Πύρωση ασβεστόλιθου ισοζύγιο μάζας με χημική αντίδραση σε kmol/h

250 kg/h ασβεστόλιθου, περιεκτικότητας 100% σε ανθρακικό ασβέστιο (CaCO3(s)), διασπώνται με πύρωση σε οξείδιο του ασβεστίου (CaO(s)) και διοξείδιο του άνθρακα (CO2(g)). Υπολογίστε τις ποσότητες των υλικών που παράγονται αν η διάσπαση του ασβεστόλιθου δεν είναι πλήρης και το 5% ασβεστόλιθου παραμένει αδιάσπαστο.

Δεδομένα: Μ1 = 250 kg CaCO3/h, x3CaCO3 = 0.08, MΒCaCO3 = 100.09 kg/kmol, MΒCaO = 56.08 kg/kmol, MΒCO2 = 44.01 kg/kmol

Σταδιο 1: Κατασκευή διαγράμματος Ροής

Στάδιο 2:Αρίθμηση ρευμάτωνΣτάδιο 3:Σημείωση όλων των διαθέσιμων

στοιχείων στο διάγραμμα

Ισοζύγιο Μάζας Χημικής Ένωσης: Πύρωση ασβεστόλιθου

S2: Διοξ. Άνθρακα

m2CO2 ? kg/h

S1:

Μ1 250 kg/hm1CaCO3 ? kg/h

S3: Οξ. Ασβεστίου

Μ3 ? kg/h m3CaCO3 ? kg/h

m3CaO ? kg/h x3CaCO3 0,08

x3CaO ?

Ασβεστόλιθος

Πύρωση ασβεστολίθου

Καύση C + O2 = CO2

Πύρωση CaCO3(s) = CaO(s) + CO2(g)

Στάδιο 4: Εξισώσεις ισοζυγίων μάζας Προσοχή!!!!! αφού στο σύστημα συμβαίνει χημική

αντίδραση το ισοζύγιο μάζας των συστατικών συμφέρει να

γίνει σε kmoles/hIσοζύγιο μάζας συστατικών σε kmol/h:

Προσοχή !!!!! Στις μηδενικές μεταβλητές

Επομένως οι εξισώσεις απλοποιούνται στις:

Ισοζύγιο Μάζας Χημικής Ένωσης: Πύρωση ασβεστόλιθου

Τα συστατικά που εμπλέκονται στο πρόβλημα είναι τρία το CaCO3(s), CaO(s) και το CO2(g).

CaCO3(s): f1CaCO3 + fgenCaCO3 = f2CaCO3 + f3CaCO3 + fconsCaCO3

CaO(s): f1CaO + fgenCaO = f2CaO + f3CaO + fconsCaO

CO2(g): f1CO2 + fgenCO2 = f2CO2 + f3CO2 + fconsCO2

fgenCaCO3 = fconsCaO = fconsCO2 = 0f1CaO = f1CO2 = f2CaCO3 = f2CaO = f2CO2 = f3CO2 = 0

f1CaCO3 = fconsCaCO3

fgenCaO = f3CaO

fgenCO2 = f2CO2

Στάδιο 5: Άλλες εξισώσεις (ρεύματα διεργασίας)

Iσοζύγιο μάζας συστατικών σε kg/h:

Στο παραπάνω σύστημα δεν γνωρίζω καμμία μεταβλητή επομένως

χρειάζομαι και άλλες εξισώσεις >>>>> Στάδιο 5

m1CaCO3 x MBCaCO3

f2CO2 x MBCO2

f3CaO x MBCaO

f3CaCO3 x MBCaCO3

m3CaCO3 + m3CaO

m3CaCO3 / M3

m3CaO / M3

f1CaCO3 =m2CO2 =m3CaO =m3CaCO3 =M3 =x3CaCO3 =x3CaO =

f1CaCO3 = fconsCaCO3

fgenCaO = f3CaO

fgenCO2 = f2CO2

f1CaCO3 = m1CaCO3 / ΜΒCaCO3

m2CO2 = f2CO2 x ΜΒCO2

m3CaO = f2CaO x ΜΒCaO

m3CaCO3 = f3CaCO3 x ΜΒCaCO3

M3 = m3CaCO3 + m3CaO

x3CaCO3 = m3CaCO3 / M3

x3CaO = m3CaO / M3

f3CaCO3 = f1CaCO3 x xCaCO3

O ασβεστόλιθος δεν αντιδρά πλήρως, άρα

Ισοζύγιο Μάζας Χημικής Ένωσης: Πύρωση ασβεστόλιθου

Στάδιο 5: Eξισώσεις από την χημική αντίδραση

Iσοζύγιο μάζας συστατικών σε kmol/h:

fconsCaCO3 = fgenCaO

fconsCaCO3 = fgenCO2

f1CaCO3 = fconsCaCO3

fgenCaO = f3CaO

fgenCO2 = f2CO2

f1CaCO3 = m1CaCO3 / ΜΒCaCO3

m2CO2 = f2CO2 x ΜΒCO2

m3CaO = f2CaO x ΜΒCaO

m3CaCO3 = f3CaCO3 x ΜΒCaCO3

M3 = m3CaCO3 + m3CaO

x3CaCO3 = m3CaCO3 / M3

x3CaO = m3CaO / M3

f3CaCO3 = f1CaCO3 x xCaCO3

Ισοζύγιο Μάζας Χημικής Ένωσης: Πύρωση ασβεστόλιθου

Eξισώσεις από τα ρεύματα της διεργασίας

Eξισώσεις από τους περιορισμούς του προβλήματος

Iσοζύγιο μάζας συστατικών σε kmol/h:

f1CaCO3 = fconsCaCO3

fgenCaO = f3CaO

fgenCO2 = f2CO2

f1CaCO3 = m1CaCO3 / ΜΒCaCO3

m2CO2 = f2CO2 x ΜΒCO2

m3CaO = f2CaO x ΜΒCaO

m3CaCO3 = f3CaCO3 x ΜΒCaCO3

M3 = m3CaCO3 + m3CaO

x3CaCO3 = m3CaCO3 / M3

x3CaO = m3CaO / M3

f3CaCO3 = f1CaCO3 x xCaCO3

Εξισώσεις από τα ρεύματα της διεργασίας

Εξισώσεις από τους περιορισμούς του προβλήματος

Ισοζύγιο Μάζας Χημικής Ένωσης: Πύρωση ασβεστόλιθου

fconsCaCO3 = fgenCaO

fconsCaCO3 = fgenCO2

Eξισώσεις από την χημική αντίδραση

Μεταβλητή

f1CaCO3 = m1CaCO3 / ΜΒCaCO3 = 250,000 kg/h / 100,090 kg/kmol = 2,498 kmol/h

f3CaCO3 = f1CaCO3 x xCaCO3 = 2,498 kmol/h x 0,050 = 0,125 kmol/h

fConsCaCO3 = f1CaCO3 - f3CaCO3 = 2,498 kmol/h - 0,125 kmol/h = 2,373 kmol/h

fgenCaO = fconsCaCO3 = 2,373 kmol/h = 2,373 kmol/h

fgenCO2 = fconsCaCO3 = 2,373 kmol/h = 2,373 kmol/h

f3CaO = fgenCaO = 2,373 kmol/h = 2,373 kmol/h

f2CO2 = fgenCO2 = 2,373 kmol/h = 2,373 kmol/h

m2CO2 = f2CO2 x ΜΒCO2 = 2,373 kmol/h x 44,010 kg/kmol = 104,430 kg/h

m3CaO = f2CaO x ΜΒCaO = 2,373 kmol/h x 56,080 kg/kmol = 133,070 kg/h

m3CaCO3 = f3CaCO3 x ΜΒCaCO3 = 0,125 kmol/h x 100,090 kg/kmol = 12,500 kg/h

M3 = m3CaCO3 + m3CaO = 133,07 kg/h + 12,5 kg/h = 145,5702 kg/h

x3CaCO3 = m3CaCO3 / M3 = 12,5 kg/h / 145,5702 kg/h = 0,086

x3CaO = m3CaO / M3 = 133,07 kg/h / 145,5702 kg/h = 0,914

Eξίσωση Απόδοση Τιμών στις Μεταβλητές Αποτέλεσμα

Ισοζύγιο Μάζας Χημικής Ένωσης: Πύρωση ασβεστόλιθου

Μεθοδολογία Επίλυσης Προβλημάτων

•Πλήρης κατανόηση του προβλήματος και των ζητούμενων από αυτό•Σύντομη καταγραφή των δεδομένων και των ζητούμενων ποσοτήτων•Συνοπτικό διάγραμμα ροής του προβλήματος που περιλαμβάνει την

διεργασία και στο οποίο σημειώνονται τα εισερχόμενα και εξερχόμενα ρεύματα, οι γνώστες και οι ζητούμενες ποσότητες των ρευμάτων

•Επιλογή μονάδας μάζας (mol ή kg) των υπολογισμών•Διατύπωση των πλήρων εξισώσεων ισοζυγίων των συστατικών,

εντοπισμός των μηδενικών μεταβλητών και τελική διατύπωση του απλοποιημένου συστήματος των εξισώσεων

•Διατύπωση των εξισώσεων που προκύπτουν από τη στοιχειομετρία των χημικών αντιδράσεων

•Διατύπωση των εξισώσεων που προκύπτουν από τους περιορισμούς του προβλήματος

•Διατύπωση των εξισώσεων που προκύπτουν από τις σχέσεις των συστατικών των ρευμάτων τις κατεργασίας ανάλογα με τις ανάγκες του προβλήματος

•Διαμόρφωση του τελικού συστήματος των εξισώσεων, απόδοση τιμών στις γνωστές μεταβλητές και επίλυση

Μεθοδολογία Επίλυσης Προβλημάτων

1 Σχεδιάζουμε ένα απλοποιιημένο διάγραμμα ροής2 Αριθμούμε τα ρεύματα της διεργασίας3 Σημειώνουμε όλα τα διαθέσιμα στοιχεία και συστατικά στο διάγραμμα4 Εκλέγουμε μιά βάση γιά τους υπολογισμούς 1000 kg, 1 kmole5 Γράφουμε τις εξισώσεις των ισοζυγίων μάζας με βάση τα συστατικά (αριθμός εξισώσεων = αριθμό των συστατικών)6 Σημειώνουμε τις μεταβλητές που είναι μηδενικές και απλοποιούμε το σύστημα7 Σημειώνουμε τις μεταβλητές και τον συνολικό αριθμό τους8 Σημειώνουμε τις διδόμενες μεταβλητές9 Οι άγνωστες μεταβλητές είναι το σύνολο των μεταβλητών μείον τον αριθμό των διδόμενων μετααβλητών10 Βρίσκουμε τους βαθμούς ελευθερίας του συστήματος ΒΕ = Μ - Ε11 Αν ΒΕ=0 επιλύουμε το σύστημα12 Αν ΒΕ>0 προσθέτουμε τόσες εξίσώσεις από τα άλλα δεδομένα του προβλήματος όσοι και οι ΒΕ και επιλύουμε το σύστημα