V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact...

31
The Nullspace–free eigenvalue problem and the inexact Shift–and–invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit` a di Bologna and CIRSA, Ravenna, Italy [email protected] 1

Transcript of V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact...

Page 1: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

The Nullspace–free eigenvalue problem and

the inexact Shift–and–invert Lanczos method

V. Simoncini

Dipartimento di Matematica, Universita di Bologna

and CIRSA, Ravenna, Italy

[email protected]

1

Page 2: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

The generalized eigenvalue problem

Given

Ax = λMx

A sym. pos. semidef.

M sym. positive def.

C sparse basis for large null space of A

Find

minλi 6=0

λi

Difficulty: zero eigenvalues pollute approximation

2

Page 3: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Equivalent formulation for smallest eigenvalue

minCT Mx=006=x∈Rn

xT Ax

xT Mx

CT Mx = 0 constraint ⇒ Nullspace free eigenvectors

3

Page 4: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Outline

• General Spectral Transformation

• Inexact Shift-and-Invert Lanczos Method

• Inexactness vs. Constraint

• Alternative Problem Formulations

– Augmented Formulation

– Modified Formulation

• A numerical example

• Computational enhancements

4

Page 5: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

General Spectral Transformation

Original Problem: Solve

Ax = λMx

Transformed Problem: Fix σ ∈ R and rewrite as

(A− σM)−1Mx = ηx η = (λ− σ)−1

σ close to eigenvalues of interest ⇒ η large λ = σ + 1η

• Fast convergence of Lanczos method is expected

——————————————

Other methods: Jacobi-Davidson, Subspace iteration, Preconditioned

Inverse Iteration, etc.

5

Page 6: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

General Shift–and–Invert Lanczos (SI(σ) Lanczos)

Given v1 ∈ R,

for j = 1, 2, . . .

v = (A− σM)−1Mvj

vj+1tj+1,j = v − VjT:,j T:,j = V Tj Mv

Vj = [v1, . . . , vj ]

Yielding

(A− σM)−1MVj = VjTj + [0, . . . , 0, rj+1]

6

Page 7: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

(A− σM)−1MVj = VjTj + [0, . . . , 0, rj+1]

If Tjs(i)j = η

(i)j s

(i)j i = 1, . . . , j then

(σ +

1

η(i)j

, Vjs(i)j

), i = 1, . . . , j

are approximate eigenpairs of Ax = λMx

Warning: In our setting A is singular. If σ is close to zero, then many

zero eigenvalues may be detected

Take v1 s.t. CT Mv1 = 0 ⇒ CT MVj = 0 ∀j

(exact arithmetic)

7

Page 8: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

General Inexact Shift–and–Invert Lanczos

Take v1 s.t. CT Mv1 = 0,

for j = 1, 2, . . .

w ←Mvj

v approx. solves (A− σM)v = w

M -orthogonalize v w.r. to v1, . . . , vj → vj+1

Vj = [v1, v2, . . . , vj ]

CT MVj?= 0

? Krylov subspace inner solvers

8

Page 9: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Natural fixes

[1 ] Null space is available. Explicitly deflate (purge) null space

Starting vector v1 ⊥M N (A)⇒ span(Vj) ⊥M N (A)

for j = 1, 2, . . .

w ←Mvj

v approx. solves (A− σM)v = w

v ← (I − π)v

M -orthogonalize v w.r. to v1, . . . , vj → vj+1

π projection onto N (A) π = C(CT MC)−1CT M

see e.g. Golub, Zhang, Zha 2000

9

Page 10: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

[2 ] Use σ = 0 and generate approximation space in Range(A)

A†MVj = VjTj + rj+1eTj

At each iteration i, solve consistent system

Ay = Mvi

Arbenz, Drmac 2000

Preconditioning techniques for singular A: Notay 1989-1990, Hiptmair,

Neymeyr 2001, ...

10

Page 11: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Enforcing the constraint

Given v s.t. CT Mv = 0, approximately solve

(A− σM)x = Mv (1)

with the constraint CT Mx = 0

This problem is equivalent to A− σM MC

(MC)T 0

x

y

=

Mv

0

⇔ (A−σM)z =Mb (2)

Saddle–point linear system

Exploit work on preconditioning

(A− σM)P−1z =Mb (∗)

zm approx. solution to (*) ⇒ zm = P−1zm approx. solution to (2)

11

Page 12: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Structured preconditioning

Given the linear system K B

BT 0

x

y

=

f

g

Effective preconditioners include

P =

K1 0

0 S

Q =

K1 B

BT 0

R =

K1 B

0 S

S ≈ BT K−1B

Large bibliography. See Benzi, Golub, Liesen, Acta Numerica 2005

12

Page 13: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Definite preconditioning

(A− σM)x = Mv (1)

If A− σM MC

(MC)T 0

x

y

=

Mv

0

(2)

is preconditioned by

P =

K1 0

0 (MC)T K−11 (MC)

, K1 = A1 − τM A1C = 0

then MINRES soln of (2) is given by zm =

xm

0

, where xm is

MINRES soln. of (1) preconditioned by K1

13

Page 14: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Indefinite preconditioning

(A− σM)x = Mv (1)

If A− σM MC

(MC)T 0

x

y

=

Mv

0

(2)

is preconditioned by

Q =

K1 MC

(MC)T 0

, K1 = A1 − τM A1C = 0

then GMRES soln of (2) is given by zm =

xm

0

, where xm is

GMRES soln. of (1) preconditioned by K1

14

Page 15: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Important remark

Solve Preconditioned system

(A− σM)K−11 x = Mv K1 = A1 − τM

so that

xm = K−11 xm

Then it holds

CT Mxm = 0

15

Page 16: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Alternative Problem Formulations

Ax = λMx CT Mx = 0

[1 ] Augmented FE formulation (Kikuchi, 1987)

A MC

(MC)T 0

x

y

= λ

M 0

0T 0

x

y

minλi = minλi 6=0λi

Computational aspects in Arbenz Geus (1999), Arbenz Geus Adam (2001)

16

Page 17: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

[2 ] Modified FE formulation (Bespalov, 1988)

Given a sym. nonsingular H ∈ Rnc×nc , solve

(A + MCH−1CT M)x = ηMx

for suitable H, miniηi = minλi 6=0λi

17

Page 18: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Augmented formulation

A MC

(MC)T 0

︸ ︷︷ ︸A

x

y

= λ

M 0

0T 0

︸ ︷︷ ︸M

x

y

Az = λMz

Spectral transformation:

(A− σM)−1Mz = ηz η =1

λ− σ

⇒ Apply inexact SI(σ) Lanczos

18

Page 19: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Augmented formulation

At each iteration, solve Saddle-point linear system A− σM MC

(MC)T 0

x

y

=

Mv

0

Natural inner preconditioners

P =

K1 0

0 (MC)T K−11 (MC)

,

K1 = A1 − τM

A1C = 0

Q =

K1 MC

(MC)T 0

19

Page 20: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

but

Inexact SI(σ)-Lanczos applied to augmented formulation

with inner preconditioner P or Q

generates the same approximate eigenpairs as

Inexact SI(σ)-Lanczos applied to

Ax = λMx

with inner preconditioner K1

20

Page 21: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

The modified formulation

Original problem

Ax = λMx

Given a sym. nonsingular H ∈ Rnc×nc , solve

(A + MCH−1CT M)x = ηMx

• λ 6= 0 ⇒ ∃µ s.t. µ = λ

• λ = 0 ⇒ µ eigenvalue of (CT MC, H)

Remark. No practical (numerical) advantages over solving Ax = λMx

21

Page 22: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

A numerical example: Electromagnetic cavity resonator

Variational formulation for the 2D computational model

Find wh ∈ R s.t. ∃0 6≡ uh ∈ Σh ⊂ Σ: (rot(v1, v2) = (v2)x − (v1)y)

(rot uh, rot vh) = ω2h(uh, vh) ∀vh ∈ Σh,

Σ = v ∈ [L2(Ω)]2 : rot v ∈ L2(Ω), v · t = 0 on ∂Ω

t counterclockwise oriented tangent versor to the boundary

Ω =]0, π[2 ⇒ ω2 = 1, 1, 2, 4, 4, 5, 5, 8, 9, 9, 10, 10, . . .

********************

FE method using edge elements

Problem dimension = 3229 Number of zero eigenvalues = 1036

Boffi, Fernandes, Gastaldi, Perugia, SIAM J. Numer. Anal., v.36 (1999)

22

Page 23: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Norm of residual‖Ax

(1)j − λ

(1)j Mx

(1)j ‖

λ(1)j

(A − σM)−1Mx = ηx (A− σM)−1Mz = ηz (A− σM)−1Mz = ηz

m K1 P Q

4 0.02426393067395 0.02426393067727 0.02426393066981

6 0.02898748221567 0.02898746782699 0.02898748572682

8 0.01156203523797 0.01156203705189 0.01156203467534

10 0.00000041284501 0.00000041284501 0.00000041283893

12 0.00000000158821 0.00000000158844 0.00000000158891

14 0.00000000158802 0.00000000158827 0.00000000158882

23

Page 24: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

First wrap-up

Original ⇔ Augmented

Formulation (n) Formulation (n + nc)

Same Approximation

iterates

24

Page 25: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Computational considerations: Inexact Lanczos

Starting vector v1 ⊥M N (A)⇒ span(Vj) ⊥M N (A)

for j = 1, 2, . . .

w ←Mvj

v approx. solves (A− σM)v = w

v ← (I − π)v

M -orthogonalize v w.r. to v1, . . . , vj → vj+1

Compute approximate η(1)j , . . . , η

(j)j to η1, η2, . . .

Check convergence with Lanczos residuals

Question: How accurate should be the solution of (A− σM)v = w ?

25

Page 26: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Answer: You can decrease the accuracy as the Lanczos method

converges.

−200 −100 0 100 200 300 400 500 600−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

real part

ima

gin

ary

pa

rt

sherman5 MatrixMarket. Approx. min |λ| with “inverted” Arnoldi

26

Page 27: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

Example 2

0 2 4 6 8 10 1210

−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

number of outer iterations

magnitude

ε

inner residual norm

exact res.

inexact residual

sherman5 MatrixMarket. Approx. min |λ| with “inverted” Arnoldi

27

Page 28: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

At iteration j, solve (A− σM)v = w

η(1)j−1 approx eig. after j − 1 Lanczos its.

rj−1 associated computed eigenvalue residual

fj = (A− σM)vk − w residual after k inner iterations (linear system)

Stopping criterion for inner system solver

Empirically (Bouras and Fraysse, t.r. ’00):

‖fj‖ ≤10−α

|η(1)j−1| ‖rj−1‖

ε, α = 0, 1, 2

28

Page 29: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

At iteration j, solve (A− σM)v = w

η(1)j−1 approx eig. after j − 1 Lanczos its.

rj−1 associated computed eigenvalue residual

fj = (A− σM)vk − w residual after k inner iterations (linear system)

Stopping criterion for inner system solver

New computable bound (Simoncini, t.r. ’04):

‖fj‖ ≤min‖A− σM‖, δ(j−1)

2m|η(1)j−1| ‖rj−1‖

ε

where

δ(j−1) := minη(k)j−1∈Λ(Hj−1)\η

(1)j−1

|η(k)j−1 − η

(1)j−1|

29

Page 30: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

The whole story

If, for any k = 1, . . . , m, ‖rk‖ ≤δ2m,k−1

4‖sm‖and

‖fk‖ ≤δm,k−1

2m|η(1)j−1|‖rk−1‖

ε

then after m iterations, (η(1)m , s) satisfies

‖((A− σM)−1MVms− η(1)m Vms)− rm‖ ≤ ε

30

Page 31: V. Simoncini - unibo.itsimoncin/brescia.pdfThe Nullspace{free eigenvalue problem and the inexact Shift{and{invert Lanczos method V. Simoncini Dipartimento di Matematica, Universit

[1 ] P. Arbenz and R. Geus, A comparison of solvers for large eigenvalue

problems occuring in the design of resonant cavities, Numer. Linear Alg. with

Appl., 6 (1999), pp. 3–16.

[2 ] P. Arbenz, R. Geus, and S. Adam, Solving Maxwell eigenvalue problems

for accelerating cavities, Physical Review special Topics - Accelerators and

Beams, 4 (2001), pp. 1–10.

[3 ] A. N. Bespalov, Finite element method for the eigenmode problem of a rf

cavity resonator, Sov. J. Numer. Anal. Math. Mod., 3 (1988), pp. 163–178.

[4 ] F. Kikuchi, Mixed and penalty formulations for finite element analysis of an

eigenvalue problem in electromagnetism, Computer Methods in Appl. Mech.

Eng., 64 (1987), pp. 509–521.

[5 ] V. Simoncini, Algebraic formulations for the solution of the nullspace–free

eigenvalue problem using the inexact Shift–and-Invert Lanczos method,

Numerical Linear Algebra w/Appl, 2003.

[6 ] V. Simoncini, Variable accuracy of matrix-vector products in projection

methods for eigencomputation. March 2004. To appear in SIAM J. Numerical

Analysis.

http://www.dm.unibo.it/~simoncin e-mail: [email protected]

31