V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

46
V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1

Transcript of V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Page 1: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

V=V0sin(ωt)

V=V0cos(ωt)

V=V0sin(ωt+φ)

AC Circuit TheoryAmplitude

Phase

1

Page 2: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

R

Apply AC current to a resistor…

I I=I0sin(ωt)

VR=IR=I0Rsin(ωt)

C

I

20

0

0C

tsinIC

1

tcosIC

1

dttsinIC1

CQ

V

…capacitor…

Voltage lags current by /2I

L 200L tsinLItcosLI

dtdI

LV

…and inductor

Voltage leads current by /22

Page 3: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Adding voltages

R1

R2

R3

I0sin(ωt)

V=I0R1sin(ωt)+I0R2sin(ωt)+I0R3sin(ωt)

=I0(R1+R2+R3)sin(ωt)

+

-

V(t)?

Kirchoff’s Voltage LawandOhm’s law

3

Page 4: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Adding voltages

R1

C1

I0sin(ωt)

tcosC

ItsinRIV 0

10

voltages out of phase…

V(t) =VR+VC

+

+

4

Page 5: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Complex numbers in AC circuit theory

jexpzzIm jzRez

Re(z)

Im(z)

θ j2=–1

Reason:

‘i’ is already taken

|z|cos(θ)

|z|s

in(θ

)

tj

tj

eVtsinVtV

eVtcosVtV

00

00

Im

Re

5

Page 6: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Complex Impedance

R 0

0C

L 0

j t

j t

j t

V IR I R e

1 IV Idt e

C j C

dIV L j I Le

dt

The ratio of the voltage across a component to the current through it when both are expressed in complex notation

RZR

C

1 jZ

j C C

LjZL

I=I0sin(ωt) I=I0ejωt

6

Page 7: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Complex ImpedanceReal part: resistance (R)

Imaginary part: reactance

C1

L

IphaseZphaseVphase

IZV

IZV

jωL

Cj1

R

Ohm’s law

7

Page 8: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Series / parallel impedances

Z1=R Z2=jωL

Impedances in series: ZTotal=Z1+Z2+Z3…

T nn

Z Z

Z1 Z2 Z3

Impedances in parallel

nT n

1 2 3

1 1

Z Z

1 1 1

Z Z Z

LR C

3

jZ

C

8

Page 9: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

RC low pass filterR

1/(jwC)VIN VOUT

ZR

ZCCR

CIN

ZZZV

jeRC1

1V

RC1

RCj1V

RCj1RCj1

RCj11

V

RCj11

V

RV

ZZZV

V

2IN

2IN

IN

IN

Cj1

Cj1

INCR

CINOUT

RCtan 1

+ +

- -

9

Page 10: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

RL high pass filterR

jwLVIN VOUTLjR

LjVV INOUT

je

1VV

2RL

RL

INOUT

LR

tan 1

+

- -

+

Here is a slight trick:Get comfortable withthe complex result. 10

Page 11: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Bode plot

0

1 R or

RC L

2

1VV

IN

OUT0

(-3dB)

11

Page 12: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

DecibelsLogarithm of power ratio

IN

OUT2IN

2OUT

10 VV

log20VV

log10dB

VOUT/VIN dB

10 20

1 0

0.1 –20

0.01 –40

0.001 –60

12

Page 13: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Bode plot

13

Page 14: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Something Interesting

• Capacitor– At low frequencies (like DC) Open circuit

• Not a surprise, it’s got a gap!

– At high frequencies (“fast”) Short circuit!• Inductor

– At low frequencies Short circuit• Not a surprise, it’s just a wire really

– At high frequencies Open circuit!• Sometimes this can help you with your

intuition on the circuit’s behaviour. 14

Page 15: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

EXPLAIN PHASORSGo to black Board and

15

Page 16: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

LR CI0ejωt

LRC series circuit

IC

1LjR

IZZZ

VVVV

CLR

CLR

2

2

C1

LRZ

R

Ltan C

11

Purely resistive at LC

1R φ=0 Z=R

R

Ltantj2

20

C1

1

eC

1LRIV 16

Page 17: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

L

LRC parallel circuit

R C

I0ejωt

R L C

VI I I I

Z

L1

CjR1

Z1

2 2

1Z

1 1j C

R L

1 1j C

R L 1 1

CR L

22

CL

1R1

1Z

C

L1

Rtan 1

17

Page 18: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Bandpass filterR

CVIN VOUTL

INLC

LCOUT V

ZRZ

V

CjLj

1Z1

LC

C1

jZL

1LC

IN

L1

L1

OUT V

Cj

R

Cj

V

2L12

IN

OUT

CR1

1VV

1VV

LC

1

0VV

0 0VV

IN

OUT0

IN

OUT

IN

OUT

+ +

18

Page 19: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Bandpass filter 2L

12IN

OUT

CR1

1VV

build a radio filter

f0=455kHz

Δf=20kHzLC

1f2 00

0

C=10nF

L=12.2μH

2

1

CR1

12

0L12

0

1CR 20L

12

0

R=389Ω

2 f

19

Page 20: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

I(t)=I0ejωt

LCR series circuit – current driven

22 1

CLRZ

R

L C

111 tan

Re

Imtan

tjj eeZIIZV 0

L

R

C

I(t)

20

CLjRZ

CjLjRZ

1

1

Freq.Wild Stuff going on!

NOT a Very Good Idea

Page 21: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

L

R

C

V(t)=V0ejωt

LCR series circuit – voltage driven

22

C1

LRZ

R

Ltan C

11

j0 eZV

ZV

I

V(t)

maximum RV

I

0I 0

0I

00

2

2

0

C1

LR

VI

21

Page 22: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

R/L=106

R/L=105

22

Page 23: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

23

Page 24: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Q value No longer on CP2 syllabus (moved to CP3)

peak energy stored

Q 2energy dissipated per cycle

High Q value – narrow resonance

24

FWHM

Q0 Frequency at resonance

Diff. in Freq. to FWHM

Not a

lway

s he

lpfu

l

Page 25: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Q valueFor what we did last time.

High Q value – narrow resonance 25

L

CR

L

CRQ

FWHM

22

1

200

Dw

Page 26: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

LC circuit – power dissipation

Power is only dissipated in the resistor

proof – power dissipated inductor and capacitor – none

T

0dttVtI

T1

P

2

T

tcosXIV

tcosLIV

tcosIC

1V

tsinItI

0X

0L

0C

0

Lor C

1X

reactance

0tsinXIT2

1dttcostsinXI

T1

P/2T

0

220

T

0 0C,L

L

R

CI(t)

26

Page 27: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

LRC Power dissipation

L

R

C

V(t) Z=Z0ejφ

I

V(t)=

C1

LjRZ

22

0 C1

LRZ

R

Ltan C

1

tsinZV

tI

tsinVtV

0

0

0

tsintsinZV

tItVtP0

20

Instantaneous power 27

Page 28: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Power dissipation

tsintsinZV

tItVtP0

20

sintcoscostsintsinIV 00

dtsintcostsincostsinIVT1

PT

0

200

0 dtcost2cos1TIV

PT

0 2100

T

0

00 cos2t

TIV

cos2IV 00 cosIV RMSRMS

cosφ = power factor 28

Page 29: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

POWER IN COMPLEX CIRCUIT ANALYSIS

On black board

But then go ahead and flip to next slide now anyway.

29

Page 30: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Power factor

RMSRMSIVP

power apparentpower average

cos

Resistive load Z=R cosφ=1

Reactive load Z=X cosφ=0

30

Page 31: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Bridge circuits

V(t) V

Z1 Z3

Z2Z4

To determine an unknown impedance

Bridge balanced when VAVB=0

VA VB

2 4

1 2 3 4

Z ZV t V t 0

Z Z Z Z

2 4

1 2 3 4

2 3 4 4 1 2

2 3 4 1

Z ZZ Z Z Z

Z Z Z Z Z Z

Z Z Z Z 31

Page 32: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

CP2 September 2003

32

Page 33: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

33

Page 34: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

34

Page 35: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

35

Page 36: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

BACKUP SLIDESPhasors and stuff

36

Page 37: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

R

PhasorsI I=I0sin(ωt)

VR=IR=I0Rsin(ωt)

C

I

20

0

0C

tsinIC

1

tcosIC

1

dttsinIC1

CQ

V

I

L 200L tsinLItcosLIdtdI

LV

37

Page 38: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

tsinRIV 0R

tcosC

IV 0

C

VT

Phasors

ωt V0sin(ωt)

V0cos(ωt)

R CI0sin(ωt) tcos

CI

tsinRIV 00T

38

Page 39: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

RC phasorsR C

I0sin(ωt) tcosC

ItsinRIV 0

0T

RI0

CI0

VT=V0sin(ωt+φ)

CR1

tan

C1

RIV2

200

I0sin(ωt)

V0sin(ωt+φ)

CR1

tan 1 39

Page 40: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Phasors – mathematics

tcosC

ItsinRIV 0

0T

VT=V0sin(ωt+φ)

CR1

tan

C1

RIV2

200

Asin(ωt) + Bcos(ωt) = Rsin(ωt + φ)

Rsin(ωt + φ) = Rsin(ωt)cos(φ) + Rcos(ωt)sin(φ)

A=Rcos(φ) B=Rsin(φ)

A2 + B2 = R2

B/A = tan(φ)40

Page 41: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

RL phasorsR L

I0sin(ωt)

tcosLItsinRIV 00T

RI0

0LIVT=V0sin(ωt+φ)

RL

tan

LRIV 2200

I0sin(ωt)V0sin(ωt+φ)

RL

tan 141

Page 42: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

RL filterR

LVIN VOUT

2RL

RL

22IN

OUT

1

LR

1L

VV

0VV

0

1VV

IN

OUT

IN

OUT

high pass filter

RI0

0OUT LIV 22

00 LRIV

42

Page 43: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

Phasors: RC filterR

CVIN VOUTRI0

CI

V 0OUT

22

00IN C1

RIVV

2

2

C12

IN

OUT

RC1

1

R

1C

1VV

1VV

0

0VV

IN

OUT

IN

OUT

low pass filter43

Page 44: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

CP2 June 2003

44

Page 45: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

45

Page 46: V=V 0 sin(ωt) V=V 0 cos(ωt) V=V 0 sin(ωt+φ) AC Circuit Theory Amplitude Phase 1.

46