TRANSISTOR MOS Approches imagées des propriétés des...

52
72 Cette page est destinée à faciliter l’affichage 2 pages à l’écran : figures à gauche, et texte à droite sur les pages impaires. TRANSISTOR MOS Approches imagées des propriétés des transistors MOS Représentation Qψ ψ ψ http://perso.orange.fr/physique.belledonne/

Transcript of TRANSISTOR MOS Approches imagées des propriétés des...

Page 1: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

72

Cette page est destinée à faciliter l’affichage 2 pages à l’écran : figures à gauche, et texte à droite sur les pages impaires.

TRANSISTOR MOS

Approches imagées des propriétés des transistors MOS

Représentation Qψψψψ

http://perso.orange.fr/physique.belledonne/

Page 2: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

73

TRANSISTOR MOS

Approches imagées des propriétés des transistors MOS

Représentation Qψψψψ

http://perso.orange.fr/physique.belledonne/

Page 3: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

74

n+

+

Dr

ai

n 0VG

n+

+

Dr

ai

n

n+

+

Dr

ai

n 0VG

Page 4: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

75

Sommaire TRANSISTOR MOS................................................................................................................ 77

Présentation .......................................................................................................................... 77 Courant du TMOS avec U=RI et Q=CV.............................................................................. 79

Calcul de base................................................................................................................... 79 Prise en compte de la tension seuil................................................................................... 81 Prise en compte de la tension de drain dans la charge. .................................................... 83 Courant élémentaire ......................................................................................................... 83 Signification de cette relation.......................................................................................... 83 Effet de la vitesse limite. .................................................................................................. 85 Pincement du canal et courant associé. ............................................................................ 85

Courant du TMOS exhaustif …et illustrations .................................................................... 87 Adaptation du graphe Qψ................................................................................................. 87 Relation générale.............................................................................................................. 93 Courant en inversion forte sur toute la longueur du canal ............................................... 95 Pincement du canal et courant associé. ............................................................................ 97 Courant de saturation pour VD>VDSAT.............................................................................. 99 Evolution en fonction de VG (transconductance).............................................................. 99 Régime sous le seuil (VG<VT) ........................................................................................ 101

Effet de la polarisation du substrat ..................................................................................... 105 Modifications de la représentation Qψ........................................................................... 105 Conséquences physiques de la polarisation substrat ...................................................... 107

Résumé............................................................................................................................... 109 Annexe TMOS: Conduction d'une distribution de porteurs............................................... 111 Annexe TMOS : Conduction : Gauss, Ohm et vitesse limite. Diffusion / Conduction ..... 113

Gauss, Ohm et vitesse limite. Balistique........................................................................ 113 Diffusion / Conduction................................................................................................... 115 Relation toujours valable................................................................................................ 115 Synthèse diffusion/conduction : quasi niveaux de Fermi............................................... 117

Annexe TMOS: Champ et potentiel le long du canal. ....................................................... 119 Annexe TMOS: approximation charge de zone désertée constante................................... 121 Annexe TMOS: Courant dans une diode ........................................................................... 123

Page 5: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

76

n++ n++SOURCE Drain

0

0

VD

VG

GRILLE

SUBSTRAT

n++DRAIN

p

Transistor MOS

n++ n++SOURCE Drain

0

0

VD

VG

GRILLE

SUBSTRAT

n++DRAIN

p

Transistor MOS

TMOS et Bipolaire: principe de conduction

TMOS et Bipolaire: barrière de potentiel

n

p

nEtat bloqué

TMOS et Bipolaire: barrière de potentiel

n

p

nEtat bloqué

Transistor bipolaireTransistor MOS

Tension appliquée directement au matériau p

Abaissement du potentiel en surface,par grille + isolant

Etat passant

Transistor bipolaireTransistor MOS

Tension appliquée directement au matériau p

Abaissement du potentiel en surface,par grille + isolant

Etat passant

Page 6: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

77

TRANSISTOR MOS

Présentation Le transistor MOS (TMOS) est essentiellement une structure MOS (cf. Chapitre Structure MOS) sur laquelle deux contacts latéraux, appelés source et drain, ont été intégrés (cf. fig. Transistor MOS). Ils sont généralement constitués d’un SC très dopé, de dopage opposé à celui du substrat. Le dispositif est parfaitement symétrique, source et drain peuvent être permutés. Pour faciliter le raisonnement, le substrat sera supposé de type p, comme dans l’étude de la structure MOS. L’effet transistor consiste à contrôler le courant source drain par une tension sur la grille. Pour l’instant, les tensions appliquées sont : 0 sur source et substrat VG sur la grille VD sur le drain. La tension VG peut être quelconque, par contre la tension drain VD doit toujours maintenir la diode drain/substrat en inverse (donc ici VD>0) En l’absence de tension grille :

- la diode source-substrat est non polarisée, donc aucun courant ne la traverse - le courant inverse de la diode drain-substrat (pour l’expression du courant de diode, cf annexe Courant

dans une diode) est très faible. Il ne passe donc quasiment aucun courant . Le transistor est bloqué. Comme nous l’avons vu dans l’étude de la structure MOS une tension grille VG suffisante, ici positive, va peupler d’électrons l’interface SC-oxyde. Sans rentrer dans les détails, nous avons alors deux zones peuplées d’électrons la source et le drain reliées par un canal rempli d’électrons : les électrons circulent, le transistor est passant. Ce type de transistor se nomme transistor MOS canal n (électrons dans le canal), ou transistor NMOS. Ce n’est donc pas le type du substrat dans lequel passe le canal qui fixe le nom, mais le type des porteurs qui circulent dans le canal. Les noms source et drain proviennent du fait que les électrons vont de la source vers le drain (en empruntant le canal !). Il en serait de même dans un MOS canal p, où VD serait <0, et où les trous iraient aussi de la source vers le drain. Par contre le courant conventionnel va bien de la source vers le drain dans le TMOS p, mais en sens contraire dans le TMOS n. NB : 1/ Le principe de fonctionnement est différent de celui du transistor bipolaire: la figure TMOS et Bipolaire compare les principes de ces deux grandes familles de transistors.

Page 7: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

78

n++ n++

L

W eox

e

SOURCE Drain

0

0

VD

VG

GRILLE

SUBSTRATn++DRAIN

type p

TMOS: éléments géométriques et tensions

variable y

L0

x

y

z

n++ n++

L

W eox

e

SOURCE Drain

0

0

VD

VG

GRILLE

SUBSTRATn++DRAIN

type p

TMOS: éléments géométriques et tensions

variable y

L0

x

y

z

Page 8: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

79

2/ Le mot canal est entendu ici au sens dépression, puits de potentiel énergétique dans lequel des porteurs libres sont éventuellement présents. Ce canal est descendu (électrostatiquement) au niveau des réservoirs d’électrons source et drain, nous en reparlerons plus loin. 3/ Ce canal se remplit "instantanément" à partir des drains et source, ce qui explique la rapidité de commutation des transistors, alors que la formation de la couche d’inversion d’une structure MOS peut prendre plusieurs jours ! Avertissement (cf. Chapitre structure MOS)

Dans toutes les équations qui suivent, pour tenir compte des charges dans l’oxyde et de la différence des travaux de sortie il suffit de remplacer VG par VG-VFB

Il y a plusieurs manières d'établir les caractéristiques des transistors MOS. Nous en proposons deux, une très simplifiée, mais qui malgré tout donne la relation classiquement utilisée, et une seconde plus complète, qui,

basée sur le graphe ASC SQ ( )ψ (cf. Chapitre MOS), permet de visualiser l’effet de tous les paramètres, qu’ils

soient technologiques ou électriques.

Courant du TMOS avec U=RI et Q=CV Nous allons établir la relation la plus élémentaire possible que nous complèterons ensuite Le transistor peut se réduire à un condensateur dont l’isolant est un oxyde et dont la plaque inférieure ne possède comme porteurs libres que les électrons issus de la plaque supérieure Une différence de potentiel est appliquée aux extrémités de la "plaque" inférieure, qui est donc parcourue par un courant. Les signes sont ignorés : on se souviendra seulement que le courant conventionnel se déplace des potentiels élevés vers les potentiels plus faibles. Calcul de base (cf. fig. Grille oxyde et canal) Cette plaque inférieure est soumise, entre les 2 faces distantes de L, à une différence de potentiel VD. La loi d’ohm s’applique :

,

1

D

n

VI avec

RL L

R etSurface W e

q n

ρ ρ

ρµ

=

= = ,

=

où n est le nombre de porteurs par unité de volume, supposé constant pour simplifier.

Page 9: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

80

VDeL

W

VG

eox

Grille Oxyde et Canal

VDeL

W

VG

eox

VDeL

W

VG

eox

Grille Oxyde et Canal

Page 10: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

81

Ces 3 relation rassemblées conduisent à :

( )n D

WI V qne

Lµ=

où . .q n e représente la charge par unité de surface de la plaque considérée (C/m2). La simplification d’une

concentration volumique n=constante n'a donc aucune importance, c'est la charge par unité de surface qui compte, quelle que soit sa répartition. Nous allons la calculer simplement. Entre la grille et la couche conductrice du SC, la relation Q CV=

s’applique aussi, avec

oxox

LWC

eε= donc

ox Gox

LWQ V

eε=

La charge par unité de surface s'écrit

.ox

Gox

QV

LW e

ε= et par conséquent oxG

ox

qne Ve

ε=

En reportant cette charge surfacique dans l’expression du courant, il vient :

oxn G D

ox

WI V V

L e

εµ=

Cette relation contient déjà les propriétés essentielles du TMOS. En particulier, les effets de la géométrie et de l’oxyde sont parfaitement pris en compte. On retrouve la particularité très intéressante du TMOS, qui est qu’une réduction simultanée de la longueur L et de la largeur W ne change pas le courant, car W/L reste constant, alors que sa surface W.L, donc la surface occupée dans les circuits diminue (divisée par quatre pour un facteur 2 sur L et W). Prise en compte de la tension seuil. La conclusion de l’étude de la structure MOS (cf. Chapitre MOS) est que la charge par unité de surface de porteurs libres n’est pas :

oxG

ox

Ve

ε

mais :

( )oxG T

ox

V Ve

ε −

Où VT rend compte de la charge de la zone désertée. Donc le courant doit s’écrire :

( )oxn G T D

ox

WI V V V

L e

εµ= −

avec (cf. Chapitre MOS)

max

2 (1 2 )sc oxT b

ox

eV

l

εψε

= +

Page 11: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

82

Le courant et les tensions du TMOS canal n

n++ n++SOURCE Drain

VD

VG

SUBSTRAT

n++DRAINp +

-

+-

I=0

I

I=0

e-e- e-e- e-e-

e-e-

e- e-

e-e-

e-

e-

e-

Charge: effet tension drain

VD

VG

Différence VG

Différence VG-VD

En moyenne la différence de tension aux bornes de cette capacité un peu particulière est:

VG – VD/2

Page 12: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

83

Prise en compte de la tension de drain dans la char ge. (cf. fig. Charge: effet tension drain) A gauche, coté source, la différence de tension aux bornes du "condensateur" est

0G GV V− =

A droite elle est égale à

G DV V−

Il semble donc raisonnable de remplacer VG par VG-VD/2 tension moyenne aux bornes du "condensateur". NB : Compte tenu de VT, nous venons donc d’écrire que les |charges surfaciques| sont exprimées par :

( )oxG T

ox

V Ve

ε − côté source

( )oxG T D

ox

V V Ve

ε − − côté drain

Ceci sera important pour discuter du comportement du courant, cf. plus loin le pincement et la saturation. Courant élémentaire Pour terminer, nous mettrons un signe moins, car le courant conventionnel va du drain à la source, et le sens positif (y croissant) est généralement pris de la source vers le drain, sens de déplacement des porteurs.

( )2

ox Dn G T D

ox

VWI V V V

L e

εµ= − − − I élémentaire / approximation

Nous avons donc très simplement obtenu la relation la plus couramment employée pour les caractéristiques du TMOS. Le comportement I(VD) est curieux, puisqu’il est parabolique. Nous verrons plus loin, lors de l’étude du pincement du canal, que seule une partie de la parabole a une réalité physique. Un substrat type p requerrait un signe + : toutes les tensions seraient négatives, et I positif. Signification de cette relation L’expression du courant se lit mieux en la réécrivant

( )2

ox D DG T n

ox

V VI W V V

e L

ε µ = − −

Le premier terme est proportionnel à la charge transportée, et le second est simplement la vitesse du transport puisque VD/L est le champ électrique moyen dans la direction du déplacement des porteurs libres (voir annexe Champ et potentiel le long du canal).

Une autre expression, classique dans les études de transports consiste à l’écrire sous la formeQ

It

= :

Page 13: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

84

VD<VDSAT0

La largeur "représente"la charge par unité de surface

VGVG

00 VD=VDSAT

VG

VD=VDSAT

VG

0 VD>VDSAT

Ici, le potentiel Vc’est VDSAT

L’

Le cas VD>VDSATest strictement identique au cas VD=VDSAT

Il suffit de remplacer L par L’

Le potentiel V mentionné est à une constante prèségal au quasi niveau de Fermi.

Il est fixé par les connexions à 0 dans la source et VD dans le drain

VG

Transistor classique

saturé

VG

Transistor classique

saturé

Ici, moi l’électron, je suis collecté par le drain grâce au champ électrique

puisque VD (arrivée) > VDSAT (départ)

L

Régime ohmique

Pincement

Régime Saturé

Pincement du canal et saturation

+VG

Courant et concentration

Au point de pincement, et plus loin, il est difficile d’imaginer un courant sans charges!En fait il faut respecter l’équation toujours valable

J = q n vDe la source au point de pincement, la concentration de porteurs diminue, et pour compenser, leur vitesse augmente.

Au point de pincement, leur vitesse est proche de la vitesse limite (~100km/s), qu’ils conservent ensuite dans le champ accélérateur, entre le point de pincement et le drain.

Donc la concentration de porteurs n’est pas nulle, mais respecte:

J = q n vlimIl serait trop compliqué de prendre cet effet en compte dans les expressions analytiques.

+VD0

Page 14: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

85

( )2

/( )

ox DG T

ox

n D

VLW V V

eI

L V L

ε

µ

− −= Où le numérateur représente la charge totale des porteurs dans le canal, et

/( )n DL V Lµ le temps de transit qui varie donc comme2L .

NB : le calcul général du temps de transit s’obtient à partir de la relation locale J qnv= , valable quel que

soit le mode de transport. En supposant une surface traversée S(y):

( )( ) ( ) ( )

( ) ( ) ( )olumeqn dVdy qn y dy qn y S y dy dQ

tv J y S y J y I I

= = = = =∫ ∫ ∫ ∫ ∫ I Cte= => porteursQ

tI

=

Ce qui est somme toutes assez évident : penser à un écoulement de fluide dans un tuyau de section variable… et faire un dessin ! Troisième point de vue, qui rejoint la signification réelle du mot "transistor": résistance variable. En effet, le courant I résulte d’une tension VD appliquée à une résistance dont la valeur est modulée par VG , et un peu par VD il est vrai. Cette résistance s’écrit :

1

( )2

D

ox Dn G T

ox

VR

VWI V VL e

εµ= =

− −

Effet de la vitesse limite. Lorsque VD/L atteint des valeurs de plusieurs volts/µm, les porteurs atteignent leur vitesse limite vlim (de l’ordre de 100km/s), et le terme µVD/L doit être remplacé par vlim La caractéristique se simplifie alors sous la forme :

[ ]lim( )2

ox DG T

ox

VI W V V v

e

ε = − −

Pincement du canal et courant associé. Lorsque la tension VD croît, ou lorsque VG décroît, il existe une valeur pour laquelle il n’existe plus de charge dans le canal côté drain. C’est le classique pincement du canal, cf. Fig. Pincement du canal et saturation. Souvenons nous que nous avions écrit, dans le paragraphe prise en compte de la tension drain, que la charge du côté du canal était égale à :

( )oxG T D

ox

V V Ve

ε − −

Elle est donc nulle (cf. fig. Courant et concentration) lorsque D G TV V V= − . La tension VD

correspondante est dénommée VDSAT. Donc :

DSAT G TV V V= − Cette valeur a une signification particulière ; lorsqu’on examine l’expression du courant |I|(VG), c’est une parabole concavité tournée vers le bas, et la dérivée du courant

[( ) ] [ ]2 2

ox oxD Dn G T n G T D

D ox ox

I V VW WV V V V V

V L e L e

ε εµ µ∂

= − − − = − −∂

s’annule justement (voir figure Conductance) pour : D G TV V V= −

Page 15: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

86

|I |

VDVG - VT

Régime ohmique Régime saturé

( )2

ox Dn G T D

ox

VWI V V V

L e

εµ= − − 21( )

2 'ox

n G Tox

WI V V

L e

εµ= −

Diminution L’avec VD

Conductance

Ici, dérivée nulle de la parabole

du régime ohmique

Exemple

Données Na=1023m-3 T=300K (kT/q=25,85mV) eox=50Å ε0=8,8510-12F/m εr(SiO2)=3,9 εr(Si)=11,7 ni=1016m-3 µn=0,05m2/V/s

Calculs physiques

ab

i

NkTln

q nψ = =0,417V

2 2SC bmax

a

( )l

qN

ε ψ= = 1040Å 2 1 2 SC oxT b

ox max

eV ( )

l

εψε

= + =1,074V

Courant pour un transistor tel que W/L=1 et VG = 3V

VD = 0,1V VD = VDSAT = VG - VT = 1,926V

2

ox Dn G T D

ox

VWI (V V )V

L e

εµ= − − = 65µA 21

2

oxn G T

ox

WI (V V )

L e

εµ= − = 640µA

|I |

VGVT+VD

Régime ohmique

Régime saturé

( )2

ox Dn G T D

ox

VWI V V V

L e

εµ= − −

21( )

2 'ox

n G Tox

WI V V

L e

εµ= −

VT

Transistor bloqué

VT+VD/2

( )

( )

diffusion

sous le seuil

faible

I I

− −

=

Transconductance

Diminution de la mobilitéliée au fort champ électrique

transversal qui induit des chocs avec la surface

Page 16: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

87

Et le courant vaut alors :

21

2( )ox

SAT n G Tox

WI V V

L e

εµ= −

Que se passe-t-il si on augmente encore la tension drain ? Le point de pincement, initialement à la limite du drain va se déplacer vers la source. (cf. Fig. Pincement du canal et saturation). Pour bien comprendre, imaginer que VDSAT vaut 3V : si on applique 3V sur le drain, le point de pincement est à la limite du drain, mais si on applique 5V, il est naturel de penser que le point de tension 3V se rapproche de la source, qui est à 0V. Il faut alors distinguer deux zones: - de la source au point de pincement, nous avons à faire à un transistor ordinaire pincé. - du point de pincement au drain, les électrons sont soumis à un champ accélérateur positif car VD>VDSAT, et ils sont collectés par le drain, comme le sont les porteurs par le collecter d’un transistor bipolaire, et cette région n’intervient pas dans le calcul du courant. C’est un peu comme une cascade d’eau dont le débit est indépendant du niveau du bas de la chute. Conclusion : on retrouve entre la source et le point de saturation un transistor pincé, dont le courant est donné par l’expression ci-dessus, mais avec une longueur L’ plus courte.

2'

1

2( )ox

SAT n G Tox

WI V V

L e

εµ> = −

Le courant augmente donc un peu avec VD. L’effet est d’autant plus sensible que le transistor est court. La détermination de L’ sort du cadre de cet exposé. Les figures Conductance (I(VD)) et Transconductance (I(VG)) résument le comportement du courant lors de l’application des tensions. La transconductance n’est pas évidente à comprendre et sera beaucoup plus facile à percevoir lors de l’étude exhaustive.

On notera que la droite du régime ohmique coupe l'axe des tensions non pas en VT, mais en 2T DV V+ .

Les conductance et transconductance proprement dites sont les dérivées de ces courbes.

Courant du TMOS exhaustif …et illustrations Cette deuxième approche est l’approche classique, avec bien sûr des graphes inédits qui justifient ce document. Elle conduira à une caractéristique I(V) du transistor dont un développement limité nous ramènera à l’équation que nous venons d’établir:

( )2

ox Dn G T D

ox

VWI V V V

L e

εµ= − − −

Adaptation du graphe Q ψψψψ La question est : comment compléter le graphe Qψ pour faire "apparaître" le transistor. Pour éviter des considérations de quasi niveau de Fermi, pas toujours faciles à manipuler et peu parlantes, il faut absolument se plonger dans les figures à 3 dimensions (3D) qui ont été proposées par GROVE (épuisé) et SZE. Elles représentent le potentiel des bandes de valence et de conduction en fonction de la position dans le composant. Cette position est repérée par les coordonnées y (direction drain source) et x (profondeur dans le matériau).

Page 17: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

88

Ψs ~ 2Ψb

Faible différence de potentiel Ψs, => les électrons peuplent le canal

à partir de la source

z

y

x

z

y

x= lmax

Vbi=

canal

Côté source

source

substrat

Ψ

y

x

CONCLUSION

D’après figure A. S. GROVE . Physics and Technology of Semiconductor Devices. Wiley. New York. 1967 (épuisé)

NB: cette figure met bien en évidence la différence entre la tension appliquée (ici nulle ), et la différence de potentiel électrostatique (ici Vbi)

Page 18: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

89

z

y

x

Ψy

x

VDVD

Pas d’électrons dans le canal carétats énergétiques trop élevés

par rapport au drain.Idem cas (b) fig. côté source

(…un canal s’est pendu …Le plat pays, Jacques BREL)

Côté drain

drain

Faible différence de potentiel Ψs, => les électrons peuplent le canal

à partir du drain

Ψs ~ VD +2 Ψb

CONCLUSION

D’après figure A. S. GROVE . Physics and Technology of Semiconductor Devices. Wiley. New York. 1967 (épuisé)

z

y

x

z

y

x

Ψy

x

Ψy

x

VDVD

Pas d’électrons dans le canal carétats énergétiques trop élevés

par rapport au drain.Idem cas (b) fig. côté source

(…un canal s’est pendu …Le plat pays, Jacques BREL)

Côté drain

drain

Faible différence de potentiel Ψs, => les électrons peuplent le canal

à partir du drain

Ψs ~ VD +2 Ψb

CONCLUSION

D’après figure A. S. GROVE . Physics and Technology of Semiconductor Devices. Wiley. New York. 1967 (épuisé)

Page 19: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

90

De la source au drain

Ψs

y

VD faibleVG = 0

VD faibleVG > VT

VD élevéVG > VT+ ?

S

D

D’après figure S. M .SZE. Physics of Semiconductor Devices. Wiley. New York 1981

2Ψb 2Ψb+VD

Imaginer un torrent

De la source au drain

Ψs

y

VD faibleVG = 0

VD faibleVG > VT

VD élevéVG > VT+ ?

S

D

D’après figure S. M .SZE. Physics of Semiconductor Devices. Wiley. New York 1981

2Ψb 2Ψb+VD

Imaginer un torrent

Page 20: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

91

Les conclusions sont les suivantes :

Côté source (cf. fig. Côté source) Côté source, la polarisation source-substrat est nulle (zéro partout), et la répartition des charges QA

SC(ψs) n’est pas affectée par la présence de la source. Si le substrat est mis en état d’inversion (VG supérieur à VT), les électrons peuvent facilement passer de la bande de conduction de la source dans la bande de conduction en surface du substrat ; en effet, les états énergétiques de la source et du canal sont sensiblement au même niveau. Ceci est parfaitement visible sur les dessins 3D, et le petit calcul suivant permet de préciser ces niveaux : par rapport au niveau de la bande de conduction du substrat p, la bande de conduction de la source est plus basse ; cette différence est la barrière habituelle de la diode soit, si la source est non dégénérée :

. . 2ln a d

BC Source BC Substrati

N NkT

q nψ ψ

− =

Le potentiel de surface du canal quant à lui et égal à 2 bψ soit :

2

. . 22 ln lna a

BC Canal BC Substrati i

N NkT kT

q n q nψ ψ

− = =

Donc :

. . ln dBC Source BC Canal

a

kT N

q Nψ ψ

− =

Cette quantité est positive, mais faible, et comme de plus .BC Canalψ est supérieur à 2 bψ en forte inversion (cf.

annexe MOS: Tension seuil), on peut en conclure que les états énergétiques du canal pour les électrons sont vraiment à un niveau très proche, voire en dessous de ceux de la source.

Côté drain (cf. fig. Côté drain et fig. De la Source au Drain) Côté drain il n’en est pas de même : le niveau de la bande de conduction du drain est modifié de -qVD (énergie diminuée). Si la grille est maintenue à une valeur proche de VT, les états énergétiques disponibles dans le canal sont inchangés, et ils sont donc à une "hauteur" +qVD par rapport à la bande de conduction du drain (voir le cas (b) de la fig. côté drain). Il est certain que les électrons, qui ont le choix entre le drain et le canal, resteront forcément dans le drain dont les états énergétiques sont beaucoup plus favorables. Conclusion, il n’y a pas d’électrons dans le canal côté drain. Que faut-il faire pour qu’il existe ? Il faut bien évidemment "descendre" le canal au niveau du drain. Il faut donc augmenter le potentiel de surface (du canal) côté drain d’une quantité VD. La condition d’inversion n’est plus

2s bψ ψ=

mais 2s b DVψ ψ= +

Page 21: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

92

VG2Ψb 2Ψb+VD

εox/eox

-[2εscqN

aΨs] 1/2

QAsc

ψs

Graphe QΨ appliqué au TMOS

Inversion côté source

Inversion côté drain

VG2Ψb 2Ψb+VD

εox/eox

-[2εscqN

aΨs] 1/2

QAsc

ψs

Graphe QΨ appliqué au TMOS

Inversion côté source

Inversion côté drain

VG2Ψb+0 2Ψb+VD

εox/eox

-[2εscqN

aΨs] 1/2

Potentiel de surface localψs=2ψb+V

QAsc

ψs

Charge locale d’inversion

Qinv(Ψs)

Conditions locales d’inversion

VG2Ψb+0 2Ψb+VD

εox/eox

-[2εscqN

aΨs] 1/2

Potentiel de surface localψs=2ψb+V

Potentiel de surface localψs=2ψb+V

QAsc

ψs

Charge locale d’inversion

Qinv(Ψs)

Conditions locales d’inversion

Page 22: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

93

Si nous revenons sur le graphe Qψ, la solution est donc simple (cf. fig. Graphe QΨΨΨΨ appliqué au TMOS) : Côté source : la verticale de l’inversion est inchangée

2s bψ ψ=

Côté drain, la verticale se situe en

2s b DVψ ψ= +

Il faut donc aussi prolonger la courbe de désertion jusqu’à 2s b DVψ ψ= + . La zone désertée est effectivement

plus grande, ce qui est bien représenté sur les fig. 3D "Côté drain". NB : ceci est la traduction du fait que les distributions d’électrons sont gérées par le potentiel de la zone de type n la plus proche. La physique traduirait ceci en invoquant un quasi-niveau de Fermi des électrons fixé d’un côté par la source et de l’autre par le drain. Par contre, il ne faut absolument pas modifier la droite

( )A oxSC s G

ox

Q Ve

ε ψ= −

En effet, elle est toujours valable, car elle a été obtenue par des considérations strictement électrostatiques concernant uniquement le métal et de l’oxyde. Il est donc possible, côté source et drain de connaître la charge dans le canal. Ceci n’est pas suffisant pour calculer le courant, il faut connaître la charge sur toute la longueur du canal. En fait ceci ne pose pas de difficulté, il suffit de se référer à la figure Conditions Locales d'inversion: en chaque point, donc pour chaque tension ψs comprise entre 2ψb et 2Ψb+VD, la charge de porteurs libres est la charge qui est comprise entre la droite Qψ et la charge en racine carrée de la zone désertée. Relation générale L’hypothèse qui est classiquement faite, et qui est tout à fait vérifiée, est qu’en inversion forte, le courant est un courant de conduction. Ceci se comprend très bien en observant la figure De la source au drain. Le canal présente une pente dont la

valeur sd

dy

ψ− est le champ électrique local qui entraîne les porteurs.

Le calcul du courant s’effectue à partir de la loi d’ohm locale (cf. Annexe TMOS: Conduction d'une distribution de porteurs):

( )s

n inv y

dI W Q

dy

ψµ=

qui n’est autre que la loi d’ohm ( )n D

WI V qne

Lµ= établie précédemment (cf. calcul de base), où qne est

remplacé par la charge par unité de surface Qinv(y), et où le |champ moyen| VD/L devient le champ électrique local

sd

dy

ψ.

Page 23: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

94

VG

AQψψψψ

ψs

Courant du TMOS canal p

2Ψb

ASCQ

VD

ox

oxe

ε

I = µp AQψWLI = µp AQψWL

Le courant et les tensions du TMOS canal p

p++ n++SOURCE Drain

VD

VG

SUBSTRAT

p++DRAINn

-

+

+

I=0

I

I=0

t+t+

e-e-

e-e-e-

e-e-

e-

e-

e-

t+t+ t+t+

-

Recombinaison électrons-trous

VG2Ψb 2Ψb+VD

εox/eox

-[2εscqN

aΨs] 1/2

AQψψψψ

ψs

QAsc

Courant du TMOS par QΨ

n Q

WI A

L ψ µ =

Page 24: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

95

Le calcul consistera donc à intégrer le long du canal (cf. fig. Conditions locales d'inversion)

( )n inv y sI dy WQ dµ ψ =

en prenant comme variables y et ψs, sachant que Qinv(y) peut tout aussi bien s’écrire Qinv(ψs). L’intégration devient, en supposant une mobilité constante le long du canal, et compte tenu que le courant I est nécessairement constant :

( )drain drain

n inv S Ssource sourceI dy W Q dµ ψ ψ =∫ ∫

Courant en inversion forte sur toute la longueur du canal

Visualisation Q ψψψψ L’intégration à gauche est évidente ( .I L= ) et à droite la valeur de l’intégrale de inv SQ dψ est tout simplement

représentée sur la fig. Qψ par la surface comprise entre les 2 verticales source et drain, la droite Qψ et la racine carrée de la zone désertée.

Le courant du transistor est donc proportionnel à cette aire QA ψ :

n Q

WI A

L ψµ=

Sans aucun calcul, il est donc possible de visualiser l’influence de tous les paramètres, notamment les tensions de

grille VG et de drain VD. Remarque : QA ψ s’exprime en Joule/m2.

NB : ici la surface est négative, donc I l’est aussi, ce qui est exact pour un TMOS canal n.

Calcul analytique Pour effectuer le calcul analytique, les bornes d’intégration pour ψ sont naturellement 2ψb et 2ψb+VD . Nous prendrons le signe des charges en considération ; cela a relativement peu d’importance, il faut seulement bien veiller à soustraire la charge de la zone désertée à la charge totale, toutes deux négatives ici.

( ) 2oxinv G s sc a s

ox

Q V q Ne

ε ψ ε ψ

= − − − ⋅ ⋅ ⋅ ⋅

2

0 2( ) 2

b D

b

L Vox

n s G sc a s Sox

I dy W V qN de

ψ

ψ

εµ ψ ε ψ ψ+

= − +

∫ ∫

Le calcul est sans difficulté et conduit à :

( ) ( )3 3

2 222

2 2 22 3

sc aox Dn G b D D b b

ox ox ox

qNVWI V V V

L e e

εεµ ψ ψ ψε

= − − − − + −

Ou encore en utilisantmaxl :

( )3

22

max

42 2 1 1

2 3 2ox sc oxD D

n G b D box ox b

eV VWI V V

L e l

ε εµ ψ ψε ψ

= − − − − + −

[I exhaustif]

Sous cette forme, le TMOS canal p nécessite simplement un changement de signe du courant (et bien penser que ψb<0).

Page 25: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

96

2Ψb 2Ψb+VDsat

εox/eox

-[2εscqN

aΨs] 1/2

VG

VD<VDsatVG fixé

VD augmente

Qinv

QAsc

ψs

Charge d’inversion et tension drain

Qinv=0 � VD=VDSAT

2Ψb 2Ψb+VDsat

εox/eox

-[2εscqN

aΨs] 1/2

VG

VD<VDsatVD<VDsatVG fixé

VD augmente

Qinv

QAsc

ψs

Charge d’inversion et tension drain

Qinv=0 � VD=VDSAT

εox/eox-[2εscqN

aΨs] 1/2

VG2Ψb+VDsat

QAsc

ψs

Tension VDSAT exacte

Page 26: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

97

Cette relation est peu employée. Un développement limité au premier ordre de la quantité 3

2

12

D

b

V

ψ

+

~1+3

2 2D

b

V

ψ

dont il est évident que le résultat peut-être assez faux si VD est supérieur à 2Ψb, conduit à :

max

2 (1 2 )2

ox sc ox Dn G b D

ox ox

e VWI V V

L e l

ε εµ ψε

= − ⋅ − + −

Ce qui est très exactement la relation très rapidement établie dans le calcul élémentaire.

( )2

ox Dn G T D

ox

VWI V V V

L e

εµ= − − −

Avec

max

2 (1 2 )sc oxT b

ox

eV

l

εψε

= +

expression que nous avions démontrée dans l’étude de la structure MOS. Rappelons qu’à partir de cette relation simplifiée, I(VG) est une droite, et I(VD) une parabole dont nous avons vu que seule la partie ascendante a une signification. Il est à noter, que ce développement limité revient à bloquer la charge de la zone désertée à sa valeur du coté de la source, ce qui équivaut sur la figure Qψ, non pas à prolonger la racine carrée entre la source et le drain, mais à

tracer une horizontale QZD=Cte.= 2 (2 )sc a bqNε ψ− . Cf. Annexe TMOS : approximation charge de zone

désertée constante. NB : 1/ Bien que ce régime soit baptisé ohmique, car dérivé de la loi d’ohm, le courant ne varie pas linéairement avec la tension appliquée VD, à cause de la raréfaction des électrons côté drain créée par la polarisation VD. A noter que du fait que la conduction se déroule en surface, la mobilité des porteurs libres est environ 3 fois plus faible qu’en volume. 2/ Bien évidemment la vitesse limite à aussi son mot à dire, généralement prise en compte par une mobilité effective, décroissante avec la tension VD. Pincement du canal et courant associé. Lorsque la tension VD croît, ou lorsque VG décroît, il existe une valeur pour laquelle il n’existe plus de charge dans le canal côté drain. C’est le classique pincement du canal (cf. fig. Charge d'inversion et tension drain vue précédemment). La figure Tension VDSAT exacte permet de visualiser, et calculer, la valeur de VD appelée VDSAT. Cette tension VDSAT doit respecter :

[ ] 2 [2 ]2 sc a b Dsat

G b Dsatox ox

qN VV V

e

ε ψψ

ε+

= + +

NB : Pour l’interprétation physique, 2 b DsatVψ + représente la variation de potentiel dans la zone désertée,

tandis que 2 [2 ]sc a b DsatqN Vε ψ + représente la charge de la zone désertée côté drain, qui divisée par

oxε donne le champ dans l’oxyde, qu’il reste à multiplier par oxε pour obtenir la différence de potentiel dans

l’oxyde.

Page 27: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

98

2Ψb

VD fixéVG augmente

2Ψb+VD

QAsc

ψs

VG : Bloqué VG : Saturé VG : Ohmique

Apparition couche inversion

côté source

Apparition couche inversion

côté drain = Pincement

Aucune inversion Inversion partielle Inversion totale

Séquences de transconductance

2Ψb

VD fixéVG augmente

2Ψb+VD

QAsc

ψs

VG : Bloqué VG : Saturé VG : Ohmique

Apparition couche inversion

côté source

Apparition couche inversion

côté drain = Pincement

Aucune inversion Inversion partielle Inversion totale

Séquences de transconductance

2Ψb

εox/eox

-[2εscqN

aΨs] 1/2

VG

La surface ne varie pasLa surface ne varie pas

VG fixéVD augmente

2Ψb+VDsat

QAsc

ψs

La courantne varie pasLa courantne varie pas

Courant du TMOS : saturation

Page 28: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

99

Si VG est fixé, la détermination de VDSAT requiert une équation du second degré (il est plus commode de se donner VDSAT et de calculer VG ). Il suffirait de porter cette valeur de VDSAT dans l’expression du courant [I exhaustif] pour connaître le courant correspondant. En fait on utilise le plus souvent l’approximation qui résulte de l’étude élémentaire et qui rappelons-le conduit à.

DSAT G TV V V= − et donc, pour le courant de saturation, à ;

21

2( )ox

SAT n G Tox

WI V V

L e

εµ= −

L'annexe TMOS : approximation charge de zone désertée constante montre que cette approximation revient à supposer la charge de zone désertée égale à celle côte source sur toute la longueur du transistor. Courant de saturation pour VD>VDSAT Sur la courbe QΨ (cf. fig. Courant du TMOS: Saturation), dès que VD dépasse VDsat, l’aire AQψ ne varie plus, donc dans l’intégration de

( )n inv y sI dy WQ dµ ψ =

l’intégrale du terme de droite .inv SQ dψ∫ reste constante.

Ceci ne veut pas dire que le courant ne varie pas car si l’intégration sur y part toujours de la source, elle s’arrête à l’endroit où le canal est pincé, avant le drain (retourner à la Fig. Pincement du canal et saturation) Il ne varie donc finalement avec la tension drain VD que par l’intermédiaire de 'L , comme dans l’analyse élémentaire que nous avions faite : le terme de gauche vaut I .L' . Evolution en fonction de VG (transconductance) La même étude peut être faite en bloquant VD et en modifiant VG. La figure séquences de transconductance présente le comportement correspondant du TMOS. Le comportement du courant en fonction de VG se comprend très bien :

- si VG<VT, la surface QA ψ est nulle. Il n’y a pas de courant de conduction (seul un faible courant de

diffusion, courant sous le seuil, est présent).

- pour des tensions juste en dessus de la tension seuil VT, le régime est dit saturé. La surface QA ψ se

réduit à un pseudo triangle, dont les dimensions sont proportionnelles à VG-VT, et le courant varie donc de manière quadratique : retourner éventuellement sur la figure transconductance.

- pour des tensions VG telles que le transistor possède une inversion sur toute la longueur, la surface QA ψ

augmente linéairement avec VG. Ce qui est curieux avec la tension grille, c’est que le courant passe de zéro (ou presque, cf. paragraphe suivant), au régime saturé, puis seulement au régime ohmique.

Page 29: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

100

VG 2Ψb 2Ψb+VD

εox/eox

[2εscqNaΨs] 1/2

QAsc

ψsψs

TMOS sous le seuil

Conclusion:Ψs = Cte

VG 2Ψb 2Ψb+VD

εox/eox

[2εscqNaΨs] 1/2

QAsc

ψsψs

TMOS sous le seuil

Conclusion:Ψs = Cte

Fenêtre d’énergie(distribution de Boltzmann)

Propriété bien connue, l’intégrale est égale

à la surface du rectanglehauteur*sous-tangente

Vu la rapide décroissance de l’exponentielle, intégrer à partir de zéro ou de moins l’infini ne change pratiquement rien.

n0 exp(qΨs/kT)

n0 exp(qΨ/kT)

kT/q

Ψ

n(Ψ)0

Ψs

n0

0 0exp( ) [ exp( )][ ]S Sq q kTn d n

kT kT q

ψ ψ ψψ−∞

=∫

Ceci est équivalent à une distribution constante

n0 exp(qΨs/kT)sur un intervalle de potentiel

kT/q(ou d’énergie kT)

Il est commode de parler d’une fenêtre d’énergiekT

Page 30: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

101

Régime sous le seuil ( VG<VT) Il est clair (cf. fig. TMOS sous le seuil) que lorsque VG<VT, quelle que soit la polarisation drain, il y a un, et un

seul, point d’intersection de la droite ASC ox ox S GQ ( e )( V )ε ψ= − avec la courbe Qsc(ψs). Le potentiel ψs est

donc constant, de la source jusqu’au drain, fixé par VG.

La profondeur ψs du canal Sψ est donc constante, il n’existe aucun champ électrique ( 0sd dyψ = ). Ceci

correspond au cas (b) de la figure Côté drain (figure3D) Par conséquent, si un courant existe, ce ne peut être qu’un courant de diffusion. Le calcul se fait en 2 temps : nous allons tout d’abord établir la surface traversée par les porteurs, puis la densité de courant.

Surface traversée : Les porteurs se raréfient très rapidement à partir de la surface suivant une loi en exp(-énergie/kT), calculons la densité surfacique N de porteurs, en appelant n0 la concentration dans le substrat neutre :

00exp( )

qN n dx

kT

ψ∞= ∫ qui, avec un champ sensiblement constant près de la surface ( sE ), devient :

00

1exp( )

S

s

qN n d

E kT

ψ ψ ψ= ∫

L’intégrale (voir figure Fenêtre d’énergie) est équivalente à des charges en concentration constante (celle de la surface) rassemblées sur une hauteur kT/q : le physicien parle d’une fenêtre d’énergie kT:

00[ exp( )][ / ]

s s sqn kT q

kT

ψ ψ ψ−∞

≈ = ∫ ∫

Ce potentiel kT/q correspond à une distance dans la profondeur du solide LS telle que :

Ss

kT qL

E= Cf. fig. Canal sous le seuil

Le champ électrique SE se calcule facilement à partir de la valeur de D en surface :

2s

ASC sc a sD Q qNε ψ= = (cf. Théorème de Gauss 1D, Chapitre MOS). D’où :

2s sc a s scE qNε ψ ε=

Le courant passe donc sur une surface Sdiff. produit de la largeur W du transistor par Ls :

.2

diff

sc a s sc

kT qS W

qNε ψ ε=

NB : Cette surface a été obtenue de manière classique, sans tenir compte de la mécanique quantique qui ne tolèrerait pas un maximum de concentration au pied d’un mur de potentiel (celui de l’oxyde). En fait les calculs qui couplent les équations de Poisson et de Schrödinger, conduisent à une distribution d’électrons différente (cf. annexe MOS Couche d'inversion: effets quantiques), mais ceci affecte peu le courant. Le point important est que Sdiff. est constant puisque ψs est constant. D’autre part, le courant I est obligatoirement conservatif tout le long du canal. Conclusion : puisque I=J Sdiff., la densité de courant J est constante

Page 31: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

102

Ψ

Ψs

x

....

Ψ

Ψs

x

....Parabole de la zone désertée,peu affectée par les

électrons libres, de charge négligeable par rapport aux dopants

kT/q

Pente =

champ en surface Es

Ls=(kT/q)/Es

Es

Canal sous le seuil

..Ls

Ls est la profondeur du canal suivant x, l’épaisseur physique de silicium

sur laquelle se déplacent les électrons

.

Le canal peut être considéré comme rempli d’électrons en concentration constante, égale à celle de surface

y

Ψs

Ψs=Cte=> pas de conduction

VD

Pas de polarisationsource =>

idem structure MOS n(0) = n0 exp(qΨs/kT)

n(L) = n0 exp(qΨs/kT) exp(-qVD/kT)

Différence de concentrations =>

courant de diffusion

L0

Raréfaction des électrons imposée par le drain

(cf. atmosphère)

Concentration le long du canal (sous le seuil)

Source

Drain

Page 32: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

103

Densité de courant J

Utilisons alors la relation classique du courant de diffusion

n

dnJ qD

dy= qui s’écrit aussi : nJ dy qD dn =

Nous avons montré que J est constant. Donc en intégrant de la source au drain :

( )n drain sourceJ L qD n n = −

Mais de quelle concentration parlons nous ? Conformément au modèle de la fenêtre d’énergie, que nous venons de voir, nous n’avons à évaluer que les concentrations de surface. Il nous faut donc maintenant mener une discussion sur les concentrations, semblable à celle de l’évaluation du potentiel de surface en inversion forte (cf. fig. Concentration le long du canal).

• Côté source, il n’y a aucune différence de potentiel appliquée entre la source et le substrat, et la concentration d’électrons en surface est égale à la concentration d’équilibre dans le SC type p (cf.

Chapitre MOS), 2

20

bq

kTi A An n N N e

ψ−

= = multipliée par l’exponentielle de la répartition énergétique

des porteurs exp(-énergie/kT) où l’énergie est égale à - qψs : 2

( )b s

source A

q qkT kTn N e e

ψ ψ

− +

=

• Côté drain le canal est à la même hauteur que côté source (puisque ψs est constant), mais à proximité il y a le drain, réservoir d’électrons qui présente une énergie qVD plus basse. Ceci contribue à raréfier exponentiellement les électrons dans le canal (loi de l’atmosphère locale, gérée par le drain) d’où :

DqV

kTdrain sourcen n e

=

D’où finalement : ( 2 )1

(1 )s b Dq qV

kT kTn aJ qD N e e

L

ψ ψ− −

= − −

Courant I En tenant compte de la relation d’Einstein ( )n nD kT q µ= , et de la surface traversée :

2 ( 2 )

(1 )2sc a

ns

s b Dq qVkT kTqNW kT

I e eL q

ψ ψεµψ

− −

= − −

Relation qui est exactement celle établie classiquement par d’autres voies. Quelques remarques sur ce courant de diffusion : 1/ I est effectivement négatif, en sens inverse des électrons qui circulent bien évidemment de la source vers le drain, polarisé positivement. Il serait positif pour un TMOS canal p. 2/ Comme le courant ohmique, il dépend du rapport W/L, et n’est donc pas affecté par une réduction simultanée des 2 dimensions. 3/ Il ne dépend plus de VD à partir du moment où VD est supérieur à qq. kT/q. En effet, dans la différence nsource – ndrain, à partir du moment où ndrain<< n source, la valeur de ndrain ne joue plus aucun rôle. Rappelons nous l’image de la chute d’eau que nous avions utilisée pour le courant ohmique lorsque VD>VDSAT

Page 33: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

104

VG

0

Vsub

VD

VG-Vsub

0

-VsubVD-Vsub

Qψ?

VG -Vsub2Ψb-Vsub

2Ψb+VD -Vsub

εox/eox

-[2εscqNaΨ′s] 1/2

Ψ′s

QAsc

VsubVG2Ψb 2Ψb+VD

εox/eox

-[2εscqNa(Ψ

s-Vsub)] 1/2

Vsub=0

Ψs

QAsc

0

Vsub

VD

VG

Polarisation substrat

transposition

transpositioninverse

Courant sous le seuil: ΨSsolution mathématique indésirable

2Ψb

-[2εscqNaΨs’]1/2

Ψs

QAsc

oxS G

ox

( V )e

ε ψ − C’est elle

2oxS G SC A S

ox

( V ) qNe

ε ψ ε ψ− = −

Conduit à une équation du second degréLa solution physiquement raisonnable exige

(Vrai en valeur absolue pour matériau type n)

2oxS G SC A S

ox

( V ) qNe

ε ψ ε ψ− = −

Conduit à une équation du second degréLa solution physiquement raisonnable exige

(Vrai en valeur absolue pour matériau type n)

GV

s GVψ <

Page 34: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

105

4/ Il dépend essentiellement de ψs par l’exponentielle sq

kTeψ

En se reportant au Chapitre MOS, fig. Ψs(VG) on se rend facilement compte que ψs varie de manière sensiblement linéaire avec VG : il varie un peu moins vite, à cause du pont diviseur de tension constitué par la capacité de l’oxyde de grille et celle de la zone désertée, qui est variable (cf. Chapitre Capacité MOS). Malgré tout, sur un petit domaine de variation de la tension grille VG, le courant varie exponentiellement avec VG. Il est évident sur la figure et pour tout électricien (même sans figure) que plus l’oxyde de grille est mince, plus ψs est proche de VG et suit donc d’autant mieux ses variations. A la limite, pour une diode Schottky, ψs = VG.

Effet de la polarisation du substrat Par convention, c’est la source qui sert habituellement de référence de potentiel (Vsource=0). Il est évidemment possible de polariser le substrat. De façon à ne pas générer de courant indésirable, une seule polarisation est

utilisée, celle qui laisse les jonctions substrat-source et substrat-drain en inverse, soit une tension subV négative

pour un substrat de type p. Avertissement Cet effet n’est du tout pas trivial, car il est exactement opposé à celui que l’on obtiendrait en polarisant négativement le substrat d’une structure MOS (sans source ni drain) de type p. Pour fixer les idées, prenons une telle structure MOS, et appliquons une tension positive VG>VT, qui assure la création d’une couche d’inversion. Remplacer la tension nulle du substrat par une tension négative revient à augmenter la différence de potentiel entre le métal et le SC, donc à augmenter la charge d’inversion. Nous allons voir que dans les mêmes conditions, pour un transistor MOS, la charge d’inversion diminue ! Modifications de la représentation Qψψψψ Sur la figure nous nous trouvons dans une configuration inhabituelle, le substrat ayant toujours été considéré comme potentiel de référence. Par contre nous savons traiter le cas où un potentiel est appliqué sur le drain, et la source joue un rôle tout à fait semblable à celui du drain. Pour retrouver notre configuration habituelle, nous pouvons donc transposer le problème (cf. fig. Polarisation substrat) et ramener le potentiel du substrat à la valeur zéro en retranchant à toutes les connexions, ainsi qu’au potentiel de surface une valeur Vsub (cf. figure). Nous obtenons alors un schéma Qs

sc(ψ’ s) où ψ’ s =ψs-Vsub sur lequel : • les courbes d’accumulation et de désertion correspondent au cas habituel d’une structure MOS dont le

potentiel du substrat est à zéro • nous retrouvons exactement nos discussions précédentes sur le positionnement des verticales

d’inversion, en ψ’ s =2Ψb+0-Vsub côté source, et en ψ’ s =2Ψb+VD-Vsub côté drain. Toutefois, il n’est pas très commode de raisonner avec toutes les tensions décalées. Il est plus intéressant d'opérer la transposition inverse (cf. fig. Polarisation substrat).

Page 35: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

106

Vsub

VG2Ψb 2Ψb+VD

εox/eox

Vsub=0

Ψs

Qssc

Polarisation substrat: charges

Charge locale totale: indépendante de Vsub

Charge locale d’inversion

Charge locale zone désertée

Vsub

VG2Ψb 2Ψb+VD

εox/eox

Vsub=0

Ψs

Qssc

Polarisation substrat: charges

Charge locale totale: indépendante de Vsub

Charge locale d’inversion

Charge locale zone désertée

Vsub (<0)VG2Ψb 2Ψb+VD

εox/eox

-[2εscqNA(Ψ

s-Vsub)] 1/2

Vsub=0

Ψs

Qssc

Effet de la polarisation substrat

Diminution de la surface,

donc du courant avec Vsub

Page 36: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

107

Sur la figure Effet de la polarisation substrat la conclusion est parfaitement claire : l'application de la tension substrat augmente la charge de la zone désertée du substrat et diminue la charge d’inversion, donc le courant. Il est inutile de réécrire toutes les relations. La figure effet de la polarisation substrat permet de visualiser, et calculer si nécessaire, les nouvelles caractéristiques. En fait, dans toute relation impliquant la charge de la zone

désertée, il faudra ajouter .subV à sψ . D’où, finalement

( ) ( )3 3

2 2. .

222 2 2

2 3sc aox D

n G b D D b sub b suboxox

ox

qNVWI V V V V V

L ee

εεµ ψ ψ ψε

= − − − − + + − +

Tous les régimes de fonctionnement du transistor sont modifiés et en particulier la tension seuil est augmentée (en valeur absolue bien sûr pour les substrats type n !). Conséquences physiques de la polarisation substrat Mentionnons la possibilité physique très intéressante fournie par Vsub : en régime d’inversion, il est possible de changer la charge, donc la concentration des porteurs dans le canal, sans modifier le champ électrique local de surface, en modifiant simplement Vsub. En effet : VG étant fixé, lorsque Vsub varie, la charge totale QA

sc ne varie pas, (voir figure Polarisation substrat: Charges) donc il n’y a pas de modification du champ en surface du SC (th de Gauss 1D). Par contre, la charge de la zone désertée augmente lors de l’application de Vsub et par conséquent la charge dans le canal diminue. Ce changement de charge s’effectue donc effectivement sans modification du champ en surface. Une autre conséquence, tout à fait visible sur la figure, est que le potentiel de surface ψs ne varie pas avec Vsub. Physiquement, ceci s’explique aisément car, en inversion, le canal garni de porteurs constitue un excellent conducteur dont le potentiel est fixé aux extrémités par les potentiels de source et drain : son potentiel n’a donc aucune raison de varier avec le potentiel du substrat. En fait la structure peut alors être considérée verticalement comme deux composants en série :

- une capacité d’oxyde dont les charges sont fixées par les tensions appliquées sur la grille et l’ensemble source drain

- une diode Schottky dont la zone désertée est gérée par la tension source-drain et la polarisation substrat. Cette remarque nous conforte dans l’idée que le champ en surface du SC ne varie pas avec Vsub car si ψs n’est pas fonction de Vsub, le champ électrique dans l’oxyde

G sox

ox

VE

e

ψ−=

est lui aussi constant ainsi que le champ en surface du SC du fait de la continuité du vecteur D :

ox ox SC SC int erfaceE Eε ε −=

Page 37: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

108

Vsub

VG2Ψb 2Ψb+VD

εox/eox

-[2εscqNa(Ψ

s-Vsub)] 1/2

Vsub=0

AQψ

I = µn AQψWL

ψs

QAsc

RESUME: TMOS et QΨeffet de tous les paramètres physiques et électriques

Vsub

VG2Ψb 2Ψb+VD

εox/eox

-[2εscqNa(Ψ

s-Vsub)] 1/2

Vsub=0

AQψ

I = µn AQψWLI = µn AQψWL

ψs

QAsc

RESUME: TMOS et QΨeffet de tous les paramètres physiques et électriques

Page 38: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

109

NB : Ici encore nous nous rendons compte que la gestion des concentrations des porteurs est bien opérée par les matériaux du type correspondant (ce qui correspond à la notion de quasi niveaux de Fermi): - la tension drain, type n, modifie l’emplacement de la verticale d’inversion des électrons - la tension de substrat, type p, modifie le courbe d’accumulation des trous et la profondeur de la zone désertée (désertion du matériau par des trous)

Résumé La figure RESUME: TMOS et QΨΨΨΨ rassemble l’ensemble des conclusions de cette étude. Cette présentation graphique ne sous-entend évidemment pas une approche qualitative : elle contient en

substance les équations. En exploitant le graphe Qψ pour intégrer inv SQ dψ , le courant s’écrit bien :

( ) ( )3 3

2 2. .

222 2 2

2 3sc aox D

n G b D D b sub b suboxox

ox

qNVWI V V V V V

L ee

εεµ ψ ψ ψε

= − − − − + + − +

L’utilité du graphe Qψ est double :

• il visualise très facilement l’impact des paramètres physiques et électriques sur le comportement d’une structure MOS ou d’un TMOS, plus facilement en tous cas que la relation ci-dessus. De surcroît, il donne la ou les raisons physiques de l’influence des paramètres.

• d’autre part il permet d'évaluer la pertinence des approximations très couramment opérées qui conduisent, sans polarisation substrat, à :

2ox D

n G T Dox

VWI V V V

L e

εµ = − − −

Il suffit pour cela de supposer que, de la source au drain, la charge de la zone désertée est constante.

Page 39: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

110

w

x

y

y y+dy

xx+dx n(x,y)

Distribution à deux dimensions: conduction

Courant I

Ψ Ψ+dΨ

dI

w

x

y

y y+dy

xx+dx n(x,y)

Distribution à deux dimensions: conduction

Courant I

Ψ Ψ+dΨ

dI

Page 40: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

111

Annexe TMOS: Conduction d'une distribution de porteurs (cf. fig. Distribution à deux dimensions: conduction) La loi d'ohm appliquée à la tranche W dx dy conduit à:

dyd dI

W dx

ρψ =

où ρ s'écrit:

1

( , ) ( , )q x y n x yρ

µ=

Pour retrouver tout le courant, il faut intégrer sur toute la profondeur du matériau:

0 0( , ) ( , ).

IW d x y q n x y dx dy dI I dyψ µ

∞ = = ∫ ∫

Sans hypothèse supplémentaire, il est impossible d'aller plus loin. Il est commode de supposer une mobilité constante (ou de définir une mobilité efficace ( )yµ

0

0

( , ) ( , )( )

( , )

x y n x y dxy

n x y dx

µµ

=

d'où:

0( ) ( , )qW y d n x y dx I dyµ ψ

∞ = ∫

L'intégrale représente le nombre de porteurs par unité de surface "vue de dessus" (cf. NB), et multipliée par q ,

elle représente exactement la charge par unité de surface (toujours vue de dessus).

0( , ) ( )Aq n x y dx Q y

∞ =∫

Donc finalement:

( ) ( )AW y Q y d I dyµ ψ =

Cette relation est suffisante pour nos applications. Dans certains cas il est commode de définir une résistance élémentaire entre y et y dy+ par:

( ) ( )A

d dydR

I W y Q y

ψµ

= =

NB: Le nombre total de charges comprises entre y et y dy+ est donné par l'intégrale sur x :

0 0( , ) [ ] ( , )totdN n x y W dy dx W dy n x y dx

∞ ∞= = ∫ ∫

et donc le nombre de charges par unité de surface "vue de dessus" (direction x) est bien:

0( , )totdN

n x y dxW dy

∞=

Page 41: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

112

ψa

y

l

j

Conduction: Gauss, Ohm et vitesse limite

ψa

y

l

j

Conduction: Gauss, Ohm et vitesse limite

Page 42: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

113

Annexe TMOS : Conduction : Gauss, Ohm et vitesse limite. Diffusion / Conduction Gauss, Ohm et vitesse limite. Balistique Il faut toujours faire attention à respecter le théorème de Gauss, même dans un simple problème de conduction. Il se traduit à 1 dimension par :

dD dyρ= soit si ε est constant dE dyρ ε= (avec toujours E d dxψ= − )

Nous donnons ici l’expression de densité de courant dans plusieurs cas de figures. Nous décomposons tout d’abord la charge d’espace en deux parties distinctes : les donneurs et les porteurs libres

( )Dq N nρ += −

et nous allons considérer les deux cas classiques

DN n+ = matériau neutre (SC neutre, métaux en général)

DN n+ << forte injection (SC)

Puis nous allons calculer la densité de courant de conduction d’électrons dans les deux cas typiques : j qn Eµ= Loi d’ohm

limj qnV= Vitesse limite

Pour simplifier, nous négligerons les signes et les constantes d’intégration.

j qn Eµ= limj qnV=

DN n+ = DN n+ << DN n+ = DN n+ <<

0

0

a

a

dE dy

E Cte

qnj

E

l

l

µψ

ρ

ψ

==

==

=

Loi d’Ohm

[ ][ ]

[ ][ ]

[ ][ ]

2

1 12 2

3

2

2

3

12

( )

/

2

8

2

2 2 3

9 a

qn

dE qn dy

dE j E dy

EdE j dy

E j y

E j

y

j

y

j

l

ρεµ εµε

µε

µε

ψ µε

µεψ=

==

=

=

=

=

=

Limité par charge d’espace

limj qnV=

[ ][ ]

[ ][ ]

lim

lim

2lim

lim2

( )

( )

(

2

) 2

a

qn

dE qn dy

dE j V dy

E j V y

j

Vj

l

V y

ρε

εε

ψ ε

ε ψ

==

=

=

=

=

Page 43: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

114

Diffusion et Conduction

y

y

ψ

y+dy

ψ+dψ

n n+dn

dnDiffusion n

dConductionkT q

ψ=

Diffusion + conduction = 0(courant nul)

diff . n cond . n y

diff . p cond . p y

kT dnélectrons J q( ) J qn E

q dy

kT dptrous J q( ) J qp E

q dy

µ µ

µ µ

= =

= − =

Diffusion / conduction

0

0

n n y

y

kT dnq( ) qn E

q dy

det E

dy

kTdn nd

q

et

qkT

qkT

n e

p e

µ + µ

ψ

− ψ

ψ

ψ

=

= −

⇒ =

⇒ ∝

Un courant nul impose une distribution exponentielle de porteurs, et réciproquement

Conduction par électrons et trous: analogie hydraulique

Les électrons se comportent (un peu) comme des billes et les trous comme des bulles.Une excellente illustration du transport dans les SC peut être présentée avec deux tubes, l’un contenant une goutte, et l’autre une bulle.Il devient alors parfaitement évident en inclinant les éprouvettes qu’un déplacement de la bulle (des trous du SC)n’est qu’un déplacement d’eau par échange de place disponible entre l’eau et la bulle (une histoire d’énergie).On constatera bien évidemment que la goutte et la bulle se déplacent en sens inverse, mais aussi qu’elles ne se déplacent pas à la même vitesse: la goutte va plus vite … comme dans le silicium.D’autre part, et c’est très visible avec la bulle, lorsqu'on incline les tubes, la vitesse :- est sensiblement constante: frottement eau-tube = notion de mobilité dans les matériaux- croit avec l’inclinaison: effet d’un champ électrique croissant

Page 44: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

115

Nous voyons ici la grande diversité des expressions des courants qui varient avec le potentiel appliqué de 0aψ à

2aψ et de 0l à 3l − . D’autre part une loi en 1

aψ ne signifie pas forcément loi d’Ohm ! La méfiance est de rigueur

… Pour compléter le tableau, on pourrait encore rajouter le transport balistique, sans interaction, (lorsque le libre parcours moyen des porteurs est supérieur à la longueur l ), qui respecte

2max

1

2amV qψ= qui conduit à des vitesses ( 2moyenne maxV V /= ), donc des courants, en aψ .

Ne pas oublier à ce sujet que dans ce cas la notion de mobilité et les grandeurs associées perdent tout leurs sens. Rappel : le libre parcours moyen est relié au temps de relaxation par :

.pm thl V τ= ( thermiqueV ~100km/s à T ambiante).

Le temps τ est lui-même relié à la mobilité par q mµ τ=

Diffusion / Conduction Pour savoir qui de la diffusion ou de la conduction gère localement le transport, il faut comparer la diffusion

.diff

dnj qD

dy=

à la conduction

.condj qn Eµ=

Compte tenu de la relation d’Einstein ( )D kT q µ= et de la définition du potentiel électrostatique

E d dyψ=

( )

Diffusion dn n

Conduction d kT qψ=

C’est donc, entre deux zones y et y dy+ , le rapport de deux grandeurs elles-mêmes sans dimensions :

- la variation relative de concentration - la variation de potentiel comparée à kT/q,

qui permettra de décider du transport effectif. Rappelons ici que la vitesse limite s’applique aux deux types de transport, les processus de dissipation d’énergie étant les mêmes. Relation toujours valable Quel que soit le type de transport (conduction balistique ou non, diffusion), ne pas oublier que la relation

J qnv=

est toujours vérifiée. En profiter pour vérifier qu’en conduction non balistique et en diffusion la vitesse limite n’est pas dépassée. NB : En transformant la charge q en masse m, c’est la relation J vρ= de la mécanique des fluides (débit en

kg/m2/s)

Page 45: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

116

y

EC(y)

EFn(y)-qψ(y)+Cte

-qφ(y)

( ( ).exp[ ]

( )( ) F nc

c

E yN

E yy

kn

T

−= −

Définition du quasi niveau de Fermi des électrons

n(y)

Ec(y) suit les variations du potentiel électrostatique

du matériau

Quasi niveau de Fermi des électrons EFn(y)

E

y

EC(y)

EFn(y)-qψ(y)+Cte

-qφ(y)

( ( ).exp[ ]

( )( ) F nc

c

E yN

E yy

kn

T

−= −

Définition du quasi niveau de Fermi des électrons

n(y)

Ec(y) suit les variations du potentiel électrostatique

du matériau

Quasi niveau de Fermi des électrons EFn(y)

E

BC

BV

type n (1) type p type n (2)

Gestion exponentielledes électrons par n (2)

Gestion exponentielledes électrons par n (1)

Respect des lois de transport

Courant d’électrons dans une structure n-p- n: principes de base

BC

BV

BC

BV

type n (1) type p type n (2)

Gestion exponentielledes électrons par n (2)

Gestion exponentielledes électrons par n (1)

Respect des lois de transport

Courant d’électrons dans une structure n-p- n: principes de base

Gestiondes trous

par lematériau p

BC

BV

BC

BV

type n (1) type p type n (2)

Gestion exponentielledes électrons par n (2)

Gestion exponentielledes électrons par n (1)

Respect des lois de transport

Courant d’électrons dans une structure n-p- n: principes de base

BC

BV

BC

BV

type n (1) type p type n (2)

Gestion exponentielledes électrons par n (2)

Gestion exponentielledes électrons par n (1)

Respect des lois de transport

Courant d’électrons dans une structure n-p- n: principes de base

Gestiondes trous

par lematériau p

Page 46: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

117

Synthèse diffusion/conduction : quasi niveaux de Fe rmi L’approche différentiée diffusion/conduction n’est pas toujours très satisfaisante. Par exemple, dans une pièce sans aucun courant d’air, il doit y avoir a un violent courant d’air ascendant puisque la concentration au sol est supérieure à celle du plafond (diffusion), et c’est bien ce qu’indique un altimètre. Il existe aussi un violent flux descendant car la pesanteur joue son rôle (conduction). Il doit donc y avoir une notion plus subtile qui prend en compte ces deux phénomènes. Pour les transports d’électrons, c’est le quasi niveau de Fermi FnE des électrons. Il est repéré

par rapport à la bande de conduction, et prend en compte les propriétés du matériau et la concentration locale d’électrons n(y) :

( ( ).exp[ ]

( )( ) F nc

c

E yN

E yy

kn

T

−= −

généralisation de la relation qui gère la concentration d’électrons dans un matériau neutre :

.exp[ ]c Fc

E En N

kT

−= −

La densité de courant globale s’écrit :

n n n

dnJ qD qnµ E

dy= + [pour les trous, on aurait :p p p

dpJ qD qpµ E

dy= − + ]

Compte tenu de ( )n nD kT q µ= , et de E d dxψ= − elle devient :

[ ]n n

kT dn n dJ qµ n

q dy dy

ψ= −

Or, d’après la définition du quasi niveau de Fermi des électrons, en différentiant le logarithme :

( ) ( ) ( ) ( )c F n F n

dnkT dE y dE y qd y dE y

nψ= − + = +

qui, reporté dans l’expression du courant conduit finalement à l’expression très simple: ( )Fn

n n

dE yJ µ n

dy=

ou encore en associant un potentiel φn au quasi niveau de Fermi : ( )n

n n

d yJ qµ n

dy

φ= −

Une relation semblable pourrait être écrite pour pJ : ( )p p FpJ µ n dE y dy=

Une conséquence importante est que, dans un conducteur ou un SC (n non nul), si le courant est nul, le quasi niveau de Fermi est constant. Toute la difficulté du calcul des courants dans les diodes, et donc aussi dans les transistors, est que l’on suppose des distributions exponentielles de porteurs dans les traversées de zones désertées, par exemple pour les électrons dans la bande de conduction [d’énergie Ec(y)]. Ceci impose un quasi niveau de Fermi constant (voir la définition du quasi niveau de Fermi). Or s’il est constant le courant est nul, et c’est justement lui que l’on veut calculer ! En fait, dans la traversée d’une zone désertée, la variation deFnE est faible, de l’ordre de kT.

Page 47: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

118

2.

VDV VG TVD

L V V VG T D

− −

− −

V(y)

yL

|E(y)|

yL

2.

VDV VG TVD

L V VG T

− −

Pente VD /L

VD

VD/2

Source Canal Drain

( )( )( )

2

( )2

yTG y

DT DG

VV V Vy

VL V V V

− − ⋅=

− − ⋅

( )

2.D

TG

TG y

D

VV V

V V VV

EL

− −

− −= VD/L

00

00

Champ et potentiel le long du canal

Remarque: Ψs(y) = 2Ψb+V(y)Comparer V(y)à Ψs(y)de la figure De la source au drain

2.

VDV VG TVD

L V V VG T D

− −

− −

V(y)

yL

|E(y)|

yL

2.

VDV VG TVD

L V VG T

− −

Pente VD /L

VD

VD/2

Source Canal Drain

( )( )( )

2

( )2

yTG y

DT DG

VV V Vy

VL V V V

− − ⋅=

− − ⋅

( )

2.D

TG

TG y

D

VV V

V V VV

EL

− −

− −= VD/L

00

00

Champ et potentiel le long du canal

Remarque: Ψs(y) = 2Ψb+V(y)Comparer V(y)à Ψs(y)de la figure De la source au drain

Page 48: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

119

Annexe TMOS: Champ et potentiel le long du canal. Le canal n’étant pas homogène de la source au drain, il est certain que le champ électrique ne sera pas constant. Une manière simple d’explorer E(y) et V(y) consiste à repartir de l’expression classique du courant ohmique :

( )2

ox Dn G T D

ox

VWI V V V

L e

εµ= − − −

Cette relation s’écrit aussi :

( )2

ox Dn G T D

ox

VI L W V V V

e

εµ = − − −

Elle résulte en fait de l’intégration de y de 0 à L (à gauche) et de V de 0 à VD (à droite) de l’équation différentielle:

( ) ( )( )oxn G T y y

ox

WI dy V V V dV

L e

εµ = − − − qui est la loi d’ohm locale au point y.

Pour trouver V(y), il suffit d’arrêter l’intégration en un point y ou le potentiel est égal à V(y) :

( )( )( )

2yox

n G T yox

VWI y V V V

L e

εµ = − − −

En effectuant le rapport entre cette dernière équation et la deuxième de ce paragraphe nous sommes conduits à une relation qui lie le potentiel à la position y.

( )( )( )

2

( )2

yG T y

DG T D

VV V Vy

VL V V V

− − =

− − .

Pour le calcul du champ, nous utilisons le résultat démontré dans ce chapitre qui stipule que Ψs(y)=2Ψb+V(y). Donc le champ électrique est donné indifféremment par dΨs/dy ou dV/dy : le courant étant un courant de conduction, le quasi niveau de Fermi est parallèle au potentiel électrostatique. La différenciation de y(V) donne donc le champ électrique :

( )

2.

DG T

D

G T y

VV VV

EL V V V

− −= −

− −

Et la figure Champ et potentiel le long du canal donne l’allure de ces variations. Attention : ne pas utiliser ces relations pour un transistor en saturation. En effet, dans ce modèle, la charge de porteurs est alors nulle au point de saturation, ce qui implique un champ infini pour assurer le courant ! Il

faudrait reprendre le problème, et utiliser la relation toujours valable J qnv= , en supposant que la vitesse v

est proche de la vitesse limite lv (environ 100km/s dans les SC) pour estimer la concentration de porteurs. Cette

approche est aussi utilisée pour calculer le courant de diffusion dans la base d’un transistor bipolaire, où, côté collecteur, l’approche classique suppose une concentration quasi nulle de porteurs.

Page 49: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

120

2Ψb

ε ox/eox

VG

VT

2Ψb+VDSATapproximation

ε ox/eox

Triangles identiques=>

VG – (2Ψb + VDSAT) = VT - 2Ψb

Soit

VDSAT = VG - VT

QAsc

ψs

Tension VDSAT: exacte et approximation

2Ψb+VDSATexact

Approximation: QZD constante au lieu d’être en racine carrée

Approximation

2Ψb

ε ox/eox

VGVT

ε ox/eox

QAsc

ψs

Courant ohmique: approximation

Approximation: charge QZD constante

VD

n QW

IL

A ψµ=

AQΨ = rectangle ABCD - triangle CDE (*)

1

2

ox oxQ D G T D D

ox ox

A V (V V ) V Ve eψε ε= − −

2ox D

n G T Dox

VWI (V V )V

L e

εµ − − =

QA ψVDVD

E

B

C

QA ψ

A

VG - VTVG - VT

Dox oxeε

(*) Ce triangle représente la diminution de la charge due à l’application de la tension drain

QZD réelle

Page 50: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

121

Annexe TMOS: approximation charge de zone désertée constante En supposant une charge de zone désertée constante et égale à cette qui existe côté source, le graphe Qψ proposé nous ramène aux expressions élémentaires classiquement utilisées.

Tension DSATV

La figure Tension VDSAT exacte et approximation rappelle que la détermination de DSATV nécessite de résoudre

l’équation :

[ ] 2 (2 )2 sc a b Dsat

G b Dsatox ox

qN VV V

e

ε ψψ

ε+

= + + Equation du second degré en VDSAT.

En supposant une charge de zone désertée constante de la source au drain, cette figure montre que la tension de saturation répond à la relation élémentaire :

DSAT G TV V V= − .

Cette valeur approchée de DSATV est une valeur par excès.

NB : Bien que ce ne soit pas classique, on pourrait parler de VGSAT comme de VDSAT : en fait les couples de valeur VD

et VG qui vérifient (en première approximation)

D G TV V V= −

conduisent au pincement du canal côté drain. Il est plus simple encore une fois de consulter le graphe Qψ qui montre parfaitement le couplage de VG et VD .

Courant La formulation la plus complète, fournie par le graphe Qψ nous avait conduit à la relation :

( )3322

222 2 2

2 3sc aox D

n G b D D b boxox

ox

qNVWI V V V

L ee

εεµ ψ ψ ψε

= − − − + −

En supposant encore une fois une charge de zone désertée constante, il est très facile d’établir à partir de ce même graphe (cf. Figure Courant ohmique : approximation) l'expression beaucoup plus usitée:

( )2

ox Dn G T D

ox

VWI V V V

L e

εµ= − −

Un seul coup d’œil sur cette figure permet de visualiser l’erreur liée à cette approximation, qui surestime le courant. Rappelons qu’un développement limité permet d’opérer cette transformation. L’intérêt du graphe Qψ est d’en

expliciter la raison physique.

Page 51: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

122

Diode : équilibre

Charge

[ ] ( )2

.4 qkTm kT

q kT eh h

π Φ− =

Densitéd’état 2D

(électrons bloqués dans une dimension)

Fenêtre d’énergie

Probabilitéde sauterla barrière

depuis Fermi

Fréquence d’essai

q

EkTe dE

Φ

Energie

EFEF

2 2

3

4m SC SC m

qkTmk T

J J q eh

π→ →

Φ− = =

Jmétal->SC= JSC->Métal

Courant global nul

SCM

EC

Emax

Courant global nul

JSC-> Métal: Barrière diminuée de qV

Diode : polarisation

Energie

EF

EF

2 2

3

4 qkTmk T

q eh

π − Φ

qV

q(φ−V)

Jmétal->SC: Inchangé par rapport à l’équilibre

2 2

3

( )4 qkT

Vmk Tq e

h

π − Φ−

2 2

3

41

q qkT kT

Vmk TJ q e e

h

π − Φ = −

I

SCM

V

Inchangé

Emax

Ici, polarisation directe (- sur SC type n)J(V) reste valable en inverse

Un petit bémol, puisqu’il y a un courant, ceci signifie que le niveau de Fermi dans le SC est pas constant,

et donc que la loi exponentielle de répartition des électrons n’est pas valable. En fait il est possible de montrer que, dans une grande partie

de la zone de charge d’espace du SC la variation de ce niveau de Fermi est de l’ordre de kT, ce qui ne perturbe pas fondamentalement leur distribution énergétique.

Ceci est peu ou pas du tout signalé dans le littérature qui calcule un courant en faisant l’hypothèse d’un niveau de Fermi constant … qui suppose un courant nul.

Page 52: TRANSISTOR MOS Approches imagées des propriétés des ...physique.belledonne.monsite-orange.fr/electronique/2-Transistor_MO… · 72 Cette page est destinée à faciliter l’affichage

123

Annexe TMOS: Courant dans une diode Les figures Diode : Equilibre et Diode : Polarisation reconstituent l'expression du courant à partir de considérations simples: concentration d'électrons, probabilité de saut d'une barrière et fréquence d'essai. Une précision sur un point: on pourrait s'attendre à ce que la probabilité de passage des électrons de la bande de conductions soit en exponentielle de la hauteur de la barrière qui les sépare du métal, moins élevée que qφ . En

fait, la probabilité de saut est bien en qkTeφ−

car la probabilité pour qu'ils soient dans la bande de conduction fait

déjà intervenir l'exponentielle de probabilité de présence des électrons dans la bande de conduction, FCE E

kTe−−

. Donc :

maxFC C Max FE E E E E E qkT kT kT kTe e e e− − − Φ− − − −

= = A noter : la fameuse tension seuil d’une diode n’existe pas. La variation du courant en fonction de la tension

appliquée est parfaitement monotone, il n’y a qu’à tracer ln J en fonction de V en direct pour s’en convaincre :

c’est une droite dès que V dépasse qq. kT/q. Cependant un tracé en coordonnées linéaires fait apparaître un courant qui évolue rapidement en fonction de la tension V appliquée. En partant à l’envers, depuis le courant maximum que peut supporter la diode, le courant diminue rapidement lorsque V décroit et on peut se fixer une valeur "seuil" par exemple 5% du courant maximum, pour une tension qui serait inférieure de 3kT/q à la tension maximum tolérée.