Reflection and Refraction at an Interface, Total Internal Reflection,...

of 15 /15
Ch03_ReflctnRefrctn_2007.ai Professor David Attwood Univ. California, Berkeley Reflection and Refraction at an Interface, Total Internal Reflection, Brewster’s Angle z Refracted wave Reflected wave Incident wave x kk′′ k φ′ φ′′ φ n = 1 – δ + iβ Vacuum n = 1 incident wave: refracted wave: reflected wave: (3.30a) (3.30b) (3.30c) (1) All waves have the same frequency, ω, and |k| = |k′′| = (2) The refracted wave has phase velocity ω c ω c ω′ kc n V φ = = , thus k= |k| = (1 – δ + iβ) Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

Embed Size (px)

Transcript of Reflection and Refraction at an Interface, Total Internal Reflection,...

  • Ch03_ReflctnRefrctn_2007.aiProfessor David AttwoodUniv. California, Berkeley

    Reflection and Refraction at an Interface, Total Internal Reflection, Brewster’s Angle

    z Refractedwave

    ReflectedwaveIncident

    wave

    x

    k′

    k′′k

    φ′

    φ′′φ

    n = 1 – δ + iβVacuum

    n = 1

    incident wave:

    refracted wave:

    reflected wave:

    (3.30a)

    (3.30b)

    (3.30c)

    (1) All waves have the same frequency, ω, and |k| = |k′′| =(2) The refracted wave has phase velocity

    ωc

    ωc

    ω′k′

    cnVφ = = , thus k′ = |k′| = (1 – δ + iβ)

    Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_BndryConditns.ai

    Boundary Conditions at an Interface

    • E and H components parallel to the interface must be continuous

    (3.32a)

    (3.32b)

    (3.32c)

    (3.32d)

    • D and B components perpendicular to the interface must be continuous

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_SpatialContin.ai

    Spatial Continuity Along the Interface

    Continuity of parallel field components requires

    (3.34a)

    (3.33)

    (3.34b)

    (3.35a)

    (3.35b)∴

    (3.36)

    (3.38)

    Conclusions:Since k = k′′ (both in vacuum)

    k = and k′ = =

    sinφ = n sinφ′

    The angle of incidence equalsthe angle of reflection

    Snell’s Law, which describesrefractive turning, for complex n.

    z

    xk′

    k′ sinφ′

    k′′ sinφ′′k sinφ

    k k′′

    φ′

    φ′′φ

    n = 1 – δ + iβVacuum

    n = 1

    ωc

    ω′c/n

    nωc

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_TotalExtrnlRflc1.ai

    Total External Reflectionof Soft X-Rays and EUV Radiation

    Snell’s law for a refractive index of n 1 – δ, assuming that β → 0

    Consider the limit when φ′ →

    Glancing incidence (θ < θc) andtotal external reflection

    π2

    1 = sin φc1 – δ

    The critical angle for totalexternal reflection.

    (3.41)

    (3.39)

    (3.40)

    φ′ > φ

    θ + φ = 90

    φ′

    φθ

    θ < θcθc

    Critical ra

    yTotallyreflectedwave

    Exponential decay of the fields into the medium

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_TotalExtrnlRflc2.ai

    Total External Reflection (continued)

    The atomic density na, varies slowly among the naturalelements, thus to first order

    (3.41)

    (3.42a)

    (3.42b)

    where f1 is approximated by Z. Note that f1 is a complicatedfunction of wavelength (photon energy) for each element.

    0 0

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_TotalExtrnlReflc3.ai

    Total External Reflection with Finite b

    Glancing incidence reflectionas a function of β/δ

    . . . for real materials

    • finite β/δ rounds the sharp angular dependence• cutoff angle and absorption edges can enhance the sharpness• note the effects of oxide layers and surface contamination

    1

    0.5

    00 0.5 1 2 31.5 2.5

    θ/θc

    ABC

    D E

    A: β/δ = 0B: β/δ = 10–2

    C: β/δ = 10–1

    D: β/δ = 1E: β/δ = 3

    Ref

    lect

    ivity

    100

    (Henke, Gullikson, Davis)

    1,000 10,000

    100

    0

    100

    0

    10080604020

    80604020

    80604020

    0

    10080604020

    0

    Ref

    lect

    ivity

    (%)

    Ref

    lect

    ivity

    (%)

    Ref

    lect

    ivity

    (%)

    Ref

    lect

    ivity

    (%)

    Photon energy (eV)

    Gold (Au)

    Aluminum Oxide(Al2O3)

    Aluminum (Al)

    Carbon (C)30 mr

    30 mr

    30 mr

    80 mr

    80 mr

    80 mr(4.6) (1.7)

    80 mr

    30 mr

    (a)

    (b)

    (c)

    (d)

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_NotchFilter.ai

    The Notch Filter

    • Combines a glancing incidence mirror and a filter• Modest resolution, E/∆E ~ 3-5• Commonly used

    Mirrorreflectivity(“low-pass”)

    Absorptionedge Filter

    transmission(“high-pass”)

    Photon energy

    1.0

    Filter/reflectorwith responseE/∆E 4

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_ReflecInterf1.ai

    Reflection at an Interface

    E0 perpendicular to the plane of incidence (s-polarization)

    tangential electric fields continuous(3.43)

    (3.44)

    (3.45)

    tangential magnetic fields continuous

    Snell’s Law:Three equations in three unknowns(E0, E0, φ′) (for given E0 and φ)′ ′′

    H′′ cosφ′′H cosφ

    H′ cosφ′

    z

    x

    H′

    E′

    E′′E

    H′′H

    φ′

    φ′

    φ′′φ

    φ φ′′

    n = 1 – δ + iβn = 1

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_ReflecInterf2.ai

    Reflection at an Interface (continued)

    E0 perpendicular to the plane of incidence (s-polarization)

    The reflectivity R is then

    With n = 1 for both incident and reflected waves,

    Which with Eq. (3.46) becomes, for the case of perpendicular (s) polarization

    (3.47)

    (3.46)

    (3.48)

    (3.49)

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_NormIncidReflc.ai

    Normal Incidence Reflection at an Interface

    Normal incidence (φ = 0)

    For n = 1 – δ + iβ

    Example: Nickel @ 300 eV (4.13 nm)From table C.1, p. 433f1 = 17.8 f2 = 7.70δ = 0.0124 β = 0.00538

    R⊥ = 4.58 × 10–50 0

    Which for δ

  • Ch03_GlancIncidReflc.ai

    Professor David AttwoodAST 210/EECS 213Univ. California, Berkeley

    Glancing Incidence Reflection (s-polarization)

    For

    For n = 1 – δ + iβ

    where

    (3.49)

    A: β/δ = 0B: β/δ = 10–2C: β/δ = 10–1D: β/δ = 1E: β/δ = 3

    E. Nähring, “Die Totalreflexion derRöntgenstrahlen”, Physik. Zeitstr.XXXI, 799 (Sept. 1930).

    1

    0.5

    00 0.5 1 2 31.5 2.5

    θ/θc

    ABC

    D E

    Ref

    lect

    ivity

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_ReflecInterf3.ai

    Reflection at an Interface

    E0 perpendicular to the plane of incidence (p-polarization)

    (3.54)

    (3.55)

    (3.56)

    The reflectivity for parallel (p) polarization is

    which is similar in form but slightly differentfrom that for s-polarization. For φ = 0 (normalincidence) the results are identical.

    E′′ cosφ′′E cosφ

    E′ cosφ′H′

    z

    x

    E′

    E′′

    H′′H

    E

    φ′

    φ′

    φ′′φ

    φ φ′′

    n = 1 – δ + iβn = 1

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_BrewstersAngle.ai

    Brewster’s Angle for X-Rays and EUV

    For p-polarization

    (3.56)

    (3.58)

    (3.59)

    (3.60)

    There is a minimum in the reflectivitywhere the numerator satisfies

    Squaring both sides, collecting like termsinvolving φB, and factoring, one has

    or

    the condition for a minimum in the reflectivity,for parallel polarized radiation, occurs at an anglegiven by

    For complex n, Brewster’s minimum occurs at

    or

    k′

    E′

    n = 1 – δ + iβ

    sin2Θradiationpattern

    n = 1

    k′′

    k

    0

    E 0

    φB

    E′′ =

    00

    90

    S

    P

    W4.48 nm

    0

    Ref

    lect

    ivity

    45 90

    1

    10–2

    10–4

    10–6

    Incidence angle, φ

    (Courtesy of J. Underwood)

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_FocusCurv.ai

    Focusing with Curved, Glancing Incidence Optics

    The Kirkpatrick-Baez mirror system

    • Two crossed cylinders (or spheres)• Astigmatism cancels• Fusion diagnostics• Common use in synchrotron radiation beamlines• See hard x-ray microprobe, chapter 4, figure 4.14

    (Courtesy of J. Underwood)

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007

  • Ch03_Determining.ai

    Determining f1 and f20 0

    • f2 easily measured by absorption• f1 difficult in SXR/EUV region• Common to use Kramers-Kronig relations

    (3.85a)

    (3.85b)

    • Possible to use reflection from clean surfaces; Soufli & Gullikson• With diffractive beam splitter can use a phase-shifting interferometer; Chang et al.• Bi-mirror technique of Joyeux, Polack and Phalippou (Orsay, France)

    as in the Henke & Gullikson tables (pp. 428-436)

    0

    0

    Professor David AttwoodUniv. California, Berkeley Reflection and Refraction at an Interface,Total Internal Reflection, Brewster’s Angle, EE290F, 1 Feb 2007