Predictive Localization estimate of the state

3
1 IAR - Dr. Sethu Vijayakumar 1 Predictive Localization Predictive Localization Overview Probabilistic State Estimation Kalman Filters Derivation of Kalman Filters Extended Kalman Filters IAR - Dr. Sethu Vijayakumar 2 Overall Goal Overall Goal To come up with an algorithm that produces an estimate of the state by processing data from a set of explainable measurements and incorporating some kind of plant model Sensor G 1 Sensor G 2 Sensor G n KF Plant Model k k k = + z Gθ Φw Measurement Model 1 ... k k k = + θ Fθ Bu Plant Model ˆ k θ State Estimate IAR - Dr. Sethu Vijayakumar 3 Probabilistic State Estimation Probabilistic State Estimation Recursive state estimation: Goal: Given estimate State/observation equations Initial: Prediction: Posterior: prior Refer to page 1 of derivation for details IAR - Dr. Sethu Vijayakumar 4 The Kalman Filter: Prediction The Kalman Filter: Prediction Assumes linear state/observation equations, and Gaussian noise distributions State/observation equations: State Estimation: Prediction: ( ) ( ) ( ) | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 1/2 /2 | 1 ( ; , ) : 1 1 ( ; ) exp 2 2 kk kk kk kk kk T kk kk kk kk kk n kk where θ θ θ π a P a ,P θ a P θ a P N N Final Prediction: k k-1 k k k k k k k k θ =Fθ + Φw w (w ;0,Q) z =Gθ + Ψv v (v ;0,R) N N | 1 | 1 1 kk kk k k k-1 + = T T a Fa Bu P FP F + ΦQΦ =

Transcript of Predictive Localization estimate of the state

Page 1: Predictive Localization estimate of the state

1

IAR - Dr. Sethu Vijayakumar 1

Predictive LocalizationPredictive Localization

Overview• Probabilistic State Estimation• Kalman Filters

• Derivation of Kalman Filters

• Extended Kalman Filters

IAR - Dr. Sethu Vijayakumar 2

1( , , )k k k kf −=θ θ u v

( , )k k kf=z θ w

Overall GoalOverall Goal

To come up with an algorithm that produces an estimate of the state by processing data from a set of explainable measurements and incorporating some kind of plant model

Sensor G1

Sensor G2

Sensor Gn

KF

Plant Model

k k k= +z Gθ ΦwMeasurement Model

1 ...k k k−= +θ Fθ BuPlant Model

ˆkθ

State Estimate

IAR - Dr. Sethu Vijayakumar 3

Probabilistic State EstimationProbabilistic State Estimation

Recursive state estimation:

Goal: Given estimate

State/observation equations

Initial:

Prediction:

Posterior:

prior

Refer to page 1 of derivation for details

IAR - Dr. Sethu Vijayakumar 4

The Kalman Filter: PredictionThe Kalman Filter: Prediction

Assumes linear state/observation equations, and Gaussian noise distributions

State/observation equations: State Estimation:

Prediction:

( )( ) ( )| 1

| 1 | 1 | 1 | 1

1| 1 | 1 | 1 | 1 | 11/ 2/ 2

| 1

( ; , ):

1 1( ; ) exp22 k k

k k k k k k k k

Tk k k k k k k k k kn

k k

whereθ θ

θπ −

− − − −

−− − − − −

⎧ ⎫≡ − − −⎨ ⎬⎩ ⎭

a P

a , P θ a P θ aP

∼ N

N

Final Prediction:

k k-1 k

k k

k k k

k k

θ = Fθ +Φww (w ;0,Q)z = Gθ +Ψvv (v ;0,R)

N

N

| 1

| 1 1

k k

k k k k

k -1−

− − +

= T T

a Fa Bu

P FP F +ΦQΦ

=

Page 2: Predictive Localization estimate of the state

2

IAR - Dr. Sethu Vijayakumar 5

The Kalman Filter: UpdateThe Kalman Filter: Update

Update:

( ; , )k k k kθ θ a P∼ N

State/observation equations:

Final Prediction:

k k-1 k

k k

k k k

k k

θ = Fθ +Φww (w ;0,Q)z = Gθ +Ψvv (v ;0,R)

N

N

State Estimation:

IAR - Dr. Sethu Vijayakumar 6

Kalman Filter: SummaryKalman Filter: Summary

The Kalman equations are given by:

| 1

| 1

k k k

Tk k k

ν−

+

= −

a a W

P P WKW

=

where the “innovation” ν is:

the “innovation covariance” K is given by:

and the Kalman Gain W is given by:

| 1k k kν −= −z Ga

k|k -1T TK = GP G +ψRψ

k|k-1T -1W = P G K

| 1

| 1 | 1

k k

k k k k

k-1−

− −

= T T

a Fa

P FP F +ΦQΦ

=Prediction :

“actual observation – predicted observation”

Update :

IAR - Dr. Sethu Vijayakumar 7

Kalman Filter: Prediction / Estimation CycleKalman Filter: Prediction / Estimation Cycle

Single prediction-estimation cycle

Multiple prediction cycles

IAR - Dr. Sethu Vijayakumar 8

Stimulus Tracking Stimulus Tracking -- FormulationFormulation

State:

State Transition:

For a linear, Gaussian system:

State transition matrix:

Observation matrix:

Page 3: Predictive Localization estimate of the state

3

IAR - Dr. Sethu Vijayakumar 9

Stimulus Tracking Stimulus Tracking -- ExamplesExamples

Tracking a target with temporary occlusion

Low deviation from linear system behavior

High deviation from linear system behavior

IAR - Dr. Sethu Vijayakumar 10

Kalman Filter with Control InputsKalman Filter with Control Inputs

| 1

| 1

k k k

Tk k k

ν−

+

= −

a a W

P P WKW

=

| 1k k kν −= −z Ga

k|k -1T TK = GP G +ψRψ

k|k -1T -1W = P G K

| 1

| 1 1

k k

k k k k

k -1−

− − +

= T T

a Fa Bu

P FP F +ΦQΦ

=Prediction : Update :

k k-1 k k

k k k

k k

k k

θ = Fθ +Φw + Buz = Gθ +Ψvw N(w ;0,Q)v N(v ;0,R)∼∼

Modified State Equations: Control inputs

There is very little change in the update equations with the addition of the control input

IAR - Dr. Sethu Vijayakumar 11

Implementing Kalman Filtering: Algorithm Implementing Kalman Filtering: Algorithm

new control uk ?

| 1

| 1 1

k k

k k k

k-1−

− −

=

a aP P

=

| 1

| 1 1

k k

k k k k

k -1−

− − +

= T T

a Fa Bu

P FP F +ΦQΦ

=

no yes

k = k +1

delay

new observation zk ?

| 1

| 1

k k k

k k k

−=

a aP P=

| 1

k|k -1

k|k -1

k k k kν −= −

T T

T -1

K = GP G +ψRψ

W = P G Kz Ga

| 1

| 1

k k k k

Tk k k

ν−

+

= −

a a W

P P WKW

=

no yes

Input to plant, e.g. steering wheel angles

Data from sensors enter here, e.g., compass

Estimate is last prediction

Prediction is last estimate

IAR - Dr. Sethu Vijayakumar 12

Extended (NonExtended (Non--linear) Kalman Filterlinear) Kalman Filter

Linearize state equations:

Linearize obs. equations:

Filter prediction-update: