PhD student: S ø ren Enemark
-
Author
valentine-hyde -
Category
Documents
-
view
25 -
download
1
Embed Size (px)
description
Transcript of PhD student: S ø ren Enemark

PhD student: Søren Enemark
Supervisors: Prof. A. Redaelli Ing. S. Monica
Tubulin Monomer Mechanical Properties Obtained by Simulating Atomic Force Microscopy Experiments Using Molecular Dynamics

2
slide
Rot. + trans. symmetry
Introduction: What am I talking about?
αβ-tubulin dimer
Hetero dimer
α-Tubulin β-Tubulin
2 x ~450 residues
Microtubules (MTs)
Length ~ 1-10μm
Cylinder-shaped
Subunit in MTs
30 nm
18 nm
Lattice structure

3
slideIntroduction: What are microtubules good for?
MTs’ main functions:
• Structural elements
• Intracellular transport
• Cell division

4
slideModeling: Stress-strain directions
Lateral
Longitudinal
Compression Elongation
4 tests for each monomer
Single monomer mechanical properties
MT mechanical properties

5
slide
Atomic structure by K. Downing
Basic structure 1JFF.pdb
Fitted to MT structure data
Modeling: Stress-strain directions (cont’d)
Lateral interactions
End view on MTMonomer centre-of-mass (CM)
13.8°
Longitudinal interactions
Along straight line
Directions depend on the MT structure:
Along lines towards CM of lateral monomers

6
slideProcedure: Preparing the structure
Monomer structure extracted
MD Pull groups position restraints
1.
EM Steepest descent (1000 steps)3.
4.
Arrange in box w/ SPC water2.
Dodecahedron box
Twin-range cut-off
All-bonds constraints, Lincs
Berendsen thermostat Two groups: SOL monomer
tau= 0.1 psTref = 300 K
rvdw = 1.4 rcoulomb=1.4Parametersrlist= 0.8 nstlist = 5
System size ~ 37,000 (SOL)
+ 4,500 (monomer)

7
slidePreparing AFM-like MD
• residues < 8 Ǻ from interacting monomer
• In longitudinally tests: 731 and 675 atoms
• In laterally tests: 188 and 198 atoms
Pull groups:
Retain interface structure, butgenerate new configurations
0 ps 1000 ps
Position restraint pull groups

8
slideAFM-like MD – how to measure the stiffness
Pull group
P1
Pull group
P2
Spring S2Spring S1
v=5 10-3 nm/ps
0
0.1
0.2
0.3
-0.1
x (nm)
t (ps)
-0.2
-0.3
100 600500400300200
S
S’
P’
P
AFM-like Method Typical results (pulling)
S1
S2
P2
P1
Spring stiffness
Spring velocity
103 kJ/(nm2 mol) = 1.67 nN/nm
(7-11 simulations)

9
slideSingle monomer - MD results
F (nN)
l (nm)
v=5 10-3 nm/ps
Linear fit y(x) = a x + b
a= 4.6 nN/nm b= 0.2 nN
-tubulin – pulling - longitudinally
F (nN)
l (nm)
a= 5.2±0.4 nN/nm b= 0.4±0.1 nNv=5 10-3 nm/ps
1.25
1.00
0.75
0.1 0.2 0.3-0.1 0
0.1 0.2 0.3-0.1 0
1.25
1.00
0.75
0.50
0.25

10
slideSingle monomer - MD results
α-tubulin
β-tubulin
Longitudinally Laterally
Elongation Compression Elongation Compression
b -1.1± 0.5
a 5.8± 0.6
b 0.4± 0.1
a 5.2± 0.4
b 0.9± 0.1
a 6.6± 0.3
v=5 10-3 nm/ps
b 0.0± 0.1
a 6.4± 0.4
b -0.5± 0.3
a 5.4± 1.3
b 1.0± 0.3
a 3.8± 0.9
b 1.6± 0.2
a 3.2± 1.0
b -0.3± 0.1
a 3.7± 0.5
Monomer might be less rigid under elongation than compression
α-tubulin might be less rigid then β-tubulin longitudinally, but more rigid laterally
Monomers are more rigid longitudinally than laterally

11
slide
k
k
2k
CM
CM
k
k
CM
CM
k~
k~
k~
Simplified MT model – a bed of springs
Elastic constants
EST Marie Curie programme contract No. MEST-CT-2004-504465
Active BIOMICS STREP project contract No. NMP4-CT-2004-516989Funded
“Tubulin Monomer Interaction Study by Molecular Dynamics Simulation” Marco Deriu et al.
α-, and β-tubulin stiffness &
monomer-to-monomer interactions
Axial tests on 1 μm MT
MD
FEM
POSTER: