Non-standard pairing in asymmetric trapped Fermi...

24
Non-standard pairing in asymmetric trapped Fermi gases Michael Urban IPN Orsay

Transcript of Non-standard pairing in asymmetric trapped Fermi...

Page 1: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Non-standard pairing in asymmetric trappedFermi gases

Michael Urban

IPN Orsay

Page 2: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Outline

1. Standard (BCS) pairing

2. Breached pairing (Sarma phase)

3. LOFF (FFLO) phase

4. BdG equations and results

5. Non-standard pairing in a rotating trap

Page 3: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Hamiltonian of a dilute trapped Fermi gas

! Consider a Fermi gas with two “spin” states σ =↑, ↓(in atomic gases these are usually two hyperfine states)

! Mean distance between the atoms ∼ 10−7 mrange of the interatomic potential ∼ 10−10 m→ potential may be replaced by a contact pseudopotential

! Hamiltonian:

H =

∫d3r

[∑

σ

ψ†σ

(−∇2

2m+ Vtrap(r)

)ψσ + gψ†

↑ψ†↓ψ↓ψ↑

]

! Vtrap(r) = (approximately) harmonic trap potential

! Coupling constant related to scattering length by g =4πa

m! Here: consider attractive interaction (a < 0)

Page 4: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

BCS pairing (1)

! Consider a uniform gas (Vtrap = 0) with equal populations(µ↑ = µ↓), neglect Hartree potential VHartree σ = gn−σ

! BCS gap equation:

∆ = −g

∫ Λ d3p

(2π)3∆

2E(1 − 2f (E ))

where ξ =p2

2m− µ, E =

√ξ2 +∆2, f (E ) =

1

eE/T + 1! Divergence for Λ→ ∞! Solution: express g in terms of the scattering length

∆ = −4πa

m

∫ Λ d3p

(2π)3

(∆

2E(1 − 2f (E )) − ∆

)

→ finite result for Λ→ ∞

Page 5: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

BCS pairing (2)

! Occupation numbers:

n(p) =(1 − ξ

E

)(1 − f (E )) +

(1 +

ξ

E

)f (E )

= 1 − ξ

2E(1 − 2f (E ))

Page 6: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Sarma phase (breached pairing) (1)

! Consider now µ↑ > µ↓

! Define µ =µ↑ + µ↓

2, δµ = µ↑ − µ↓ > 0

! Gap equation:

∆ = −4πa

m

∫d3p

(2π)3

(∆

2E(1 − f (E+) − f (E−)) − ∆

)

where ξ =p2

2m− µ, E =

√ξ2 +∆2, E± = E ± δµ

2

! If ∆ <δµ

2, there are p1, p2 such that E− < 0 for p1 < p < p2

→ gapless superfluid

! At T = 0, if ∆ >δµ

2, the solution is the standard BCS

solution (n↑ = n↓) with µ = µ

Page 7: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Sarma phase (breached pairing) (2)

! Occupation numbers:

n↑(p) =(1 − ξ

E

)(1 − f (E+)) +

(1 +

ξ

E

)f (E−)

n↓(p) =(1 − ξ

E

)(1 − f (E−)) +

(1 +

ξ

E

)f (E+)

Page 8: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Phase separation [Bedaque et al., PRL 91, 247002 (2003)]

! Thermodynamic potential Ω at T = 0 for different δµ (µ fixed)

! Solutions of gap equation= extrema of Ω

! Trivial solution ∆ = 0

! Minimum at ∆BCS

(for δµ not too large)

! Maximum at ∆Sarma < ∆BCS

! First-order phase transition between from BCS to normal phase(phase separation)

! Sarma phase is always a maximum → unstable

! However, the Sarma phase can exist at finite temperature

Page 9: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Sarma phase in a trap (1) [Gubbels et al., PRL 97, 210402 (2006)]

! Local-density approximation (LDA): µσ(r) = µσ − Vtrap(r)

! Consider unitary limit |a| → ∞ (Feshbach resonance)Assume that mean-field theory is qualitatively correct

! Depending on polarization and temperature, there are twopossibilities called “phase separation” and “Sarma phase”:

! The Sarma-normal transition is second order→ no discontinuity in ∆(r) and density profiles

! The BCS-normal transition is first order→ discontinuity; possibly surface tension

Page 10: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Sarma phase in a trap (2)

! Phase diagram:

0.5

P

Sarma Phase

NormalPhase

a b c

T / T

c

0 10

0.5

1

Phase Separation

0.25

0.75

0.75

0.25

Page 11: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Experimental evidence [Partridge et al., PRL 97, 190407 (2006)]

! Density profiles of imbalanced 6Li gas at Rice University:

(d)(c)

(b)(a)

P=0.45T=0.2 TF

Sarma phase

T=0.05 T!n

"n

"!n!n

!n

"n

"!n!n

P=0.5phase separation(surface tension)

F

Page 12: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Fulde-Ferrel-Larkin-Ovchinnikov (FFLO/LOFF) phase

! In the Sarma phase the atoms around pF are unpaired

! Improve this situation by pairing to total momentum q (= 0→ oscillating order parameter

! With the simplest possible ansatz

∆(r) = |∆|e iq·r

the gap equation and occupation numbers can be writtenexactly as in the breached-pairing (Sarma) phase but with

ξ =p2

2m+

q2

8m− µ, E± = E ±

(δµ − p · q

2m

)

! Determine q by minimizing the energy(more precisely, by maximizing the pressure for fixed µ↑, µ↓)

! More complicated ansatze (superposition of several planewaves, e.g. ∆ ∝ cos q · r) result in lower energy→ necessary to solve Bogoliubov-de-Gennes (BdG) equations

Page 13: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

FFLO phase in the unitary limit[Bulgac and Forbes, PRL 101, 215301 (2008)]

! Mean-field theory not valid in the unitary limit (|a| → ∞)

! Use density-functional theory: “ASLDA” energy functionalfitted to quantum Monte-Carlo results

! The equations to be solved are similar to the BdG equations

! Spatial dependence of order parameter and densities fordifferent polarizations:

—— ∆(r)

······ n↑(r)—— n↓(r)

Page 14: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Bogoliubov-de Gennes (BdG) equations (1)

! In the case of a trapped system, there are two possibilities:! Local-density approximation (LDA): µσ(r) = µσ − Vtrap(r)! BdG equations (= HFB in nuclear physics)

! BdG equations can describe BCS, Sarma, and LOFF phases

! For ∆(r) = ∆∗(r) the BdG equations read

(−∇2

2m+ V↑(r) − µ↑

)u↑η(r) +∆(r)v↓η = E↑ηu↑η(r)

∆(r)u↑η −(−∇2

2m+ V↓(r) − µ↓

)v↓η(r) = E↑ηv↓η(r)

here we keep the Hartree field: Vσ(r) = Vtrap(r) + gn−σ(r)! Diagonalize BdG equations in a harmonic oscillator basis

! BCS: diagonal elements of ∆ij dominant! LOFF: important non-diagonal elements of ∆ij

Page 15: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Bogoliubov-de Gennes (BdG) equations (2)

! In practice, the basis has to be truncated at some energy Λ

! Regularization yields an effective coupling constant gΛ(r) suchthat ∆ is independent of Λ

∆(r) = gΛ(r)∑

η

v↓η(r)u↑η(r)f (E↑η)

(sum over positive and negative eigenvalues E↑η)

! Expressions for the densities:

n↑(r) =∑

η

|u↑η(r)|2f (E↑η), n↓(r) =∑

η

|v↓η(r)|2(1−f (E↑η))

! For simplicity, consider spherical symmetry:! Isotropic trap: Vtrap(r) = 1

2mω2r2

! In the case of LOFF phase: only oscillations in radial direction(pairing between different radial quantum numbers n)

Page 16: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

BdG results (1) [Castorina et al., PRA 72, 025601 (2005)]

! Trap units: [E ] = !ω, [l ] =√

!/mω, etc.! Here: µ = 32, g = −1 → N = 17000, kF a = −0.7! Gap in the trap center as function of δµ = µ↑ − µ↓

0 2 4 6 8 10 12 14 16#µ

0

1

2

3

4

5

6

7

$ (

0)

P=0.3

µ = 32N = 17000

P=0.15

BdG(BCS)

LDA

(LOFF)

Page 17: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

BdG results (2)

! r dependence of the gap and density profiles for P = 0.15(P = polarization = (N↑ − N↓)/(N↑ + N↓))

0 2 4 6 8 10r

0

4

8

12

16

%

−1

1

3

5

7

9

$

4 6 8 10−0.5

0

0.5

n

n"

!

N=17000P=0.15

BdG

LDA(BCS)

(LOFF)

Page 18: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

BdG results (3)

! Temperature dependence of the oscillation (P = 0.15)

4 5 6 7 8 9 10r

−0.3

−0.1

0.1

0.3$

T=0T=0.5T=1T=2

1

2

0.5T=0

N=17000P=0.15

Page 19: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

BdG results (4)

! r dependence of the gap for P = 0.3

0 1 2 3 4 5 6 7 8 9 10r

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5$

N=17000P=0.3

LDABdG

(LOFF)

Page 20: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Angular FFLO phase (1) [Yanase, PRB 80, 220510(R) (2009)]

! So far: radial oscillations of ∆(r)Pairing between different radial quantum numbers n

! What about pairing between different angular momenta l ?Angular oscillations of ∆(r)Spontaneous breaking of rotational symmetry

! Consider quasi-2D trap (ωz * ωr )

! Beyond-mean-field effects treated within “Real-spaceself-consistent T-matrix approximation (RSTA)”

! Angular FFLO phase requires repulsive potential in the trapcenter (toroidal trap)

Page 21: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Angular FFLO phase (2)

! Order parameter at different polarizations:

(a) P=0 (b) P=0.21 (c) P=0.39

-0.4 0 0.4 0.8 1.2 1.6 -0.4 0 0.4 0.8 1.2 1.6 -0.4 0 0.4 0.8 1.2 1.6

(d) P=0.44 (e) P=0.49 (f) P=0.69

-1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5

Page 22: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Non-standard pairing in a rotating trap (1)

Bausmerth, Recati, and Stringari, PRL 100, 070401 (2008):

! Consider a balanced gas (kF a → ∞, T = 0) in a rotating trap

! Increase angular velocity Ω adiabatically → no vortices

! Simple energetic arguments (pairing vs.centrifugal energy) → phase separation:

! Non-rotating superfluid core! Rotating normal fluid

! Discontinuity of the density profile!

Urban and Schuck, PRA 78, 011601(R) (2008):

! BCS theory + LDA: gap equation analogous to that in theSarma phase but with E± = E ± (Ω × r) · p

! Rotating intermediate phase where ∆ (= 0but some pairs (E± < 0) are broken

! Densities, ∆, and current are continuous

Page 23: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Non-standard pairing in a rotating trap (2)

! Spherical trap (ωz = ωr ), plotresults as functions of r⊥ in theplane z = 0

! r⊥ ≤ r⊥1: fully paired! r⊥1 < r⊥ < r⊥2: partially paired! r⊥2 < r⊥: unpaired

! Partially paired phase energeticallyfavored

-550

-450

-350

-250

9.8 10 10.2 10.4 10.6

&'µ%

(h_ (

l-3 ho)

r) (lho)

1/(kF a) = 0N = 400 000* = 0.45 (

full calculationpaired

unpaired

0 40 80

120 160

% (l

-3 ho)

1/(kFa) = 0N = 400 000

*/( = 0*/( = 0.45

0 20 40 60 80

100

$ (

h_ (

)

0

40

80

120

0 4 8 12 16

|j| ((

l-2 ho)

r) (lho)

r)1 r)2

Page 24: Non-standard pairing in asymmetric trapped Fermi gasesirfu.cea.fr/dphn/Espace_Theorie/Jun2010/talks/Urban.pdfHamiltonian of a dilute trapped Fermi gas! Consider a Fermi gas with two

Summary and conclusions

! Non-standard pairing in imbalanced trapped Fermi gases:Sarma and LOFF phases

! Sarma phase (breached pairing): can exist at higher T(at low T : phase separation between BCS and normal state)

! Experimental evidence for Sarma phase: discontinuity indensity profiles disappears at some temperature

! LOFF phase: predicted by several theories,could exist between BCS and normal state at low T

! So far, no experimental evidence for LOFF phase

! BdG equations for imbalanced trapped Fermi gas giveoscillating order parameter near the BCS-normal phaseboundary – LOFF phase or surface effect?

! Phenomenon similar to Sarma phase in rotating trap