New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j...

31
New method for precise determina2on of top quark mass at LHC Sayaka Kawabata (Tohoku University) in collabora2on with Y. Shimizu (Tohoku Univ.) Y. Sumino (Tohoku Univ.) H. Yokoya (Toyama Univ.)

Transcript of New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j...

Page 1: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

New  method  for  precise  determina2on  of  top  quark  mass  at  LHC

Sayaka  Kawabata  (Tohoku  University)

in  collabora2on  with    Y.  Shimizu  (Tohoku  Univ.)                    Y.  Sumino  (Tohoku  Univ.)                    H.  Yokoya  (Toyama  Univ.)

Page 2: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

1.     Introduc2on  

2.     Weight  func2on  method  

3.     Top  mass  reconstruc2on  

4.     Summary  and  future  work

Outline

Page 3: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

1.  Introduc2on

•  EW  precision  tests  for  SM  

•  beyond  SM  

•  SM  vacuum  stability

w    Heaviest  elementary  par2cle  mt  〜  173  GeV

Top  quark  and  its  mass

Mo2va2on  to  measure  the  top  mass

w    Top  mass  is  an  important  input  parameter  to

w    One  of  the  fundamental  parameters  of  the  SM

Page 4: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Snowmass  2013

EW  precision  tests  for  SM

Radia2ve  correc2ons

Radia2ve  correc2ons  are  oUen    sensi2ve  to  the  top  quark  mass

It  is  important  to  test  for  devia2ons    from  SM  predic2ons  in  the  EW  sector

Page 5: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Beyond  SM   For  example,  SUSY

Feng  et  al.,  PRL  111,131802(2013)

The  predic2ons  beyond  the  SM  oUen  depend    strongly  on  the  value  of  the  top  quark  mass.

Page 6: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

SM  vacuum  stability  

Precision  measurements  of  mt  ,  αs  ,  mH  are  needed.  

Degrassi  et  al.  ’12

Is  the  SM  vacuum  stable  or  metastable  ?

Stable Meta-­‐stable

Buaazzo  et  al.  ’13

Page 7: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Tevatron Main  produc2on  process              :  a  pair  produc2on

•  pp  collider  •  discovered  the  top  quark  in  1995  •  shut  down  in  2011

Top  quarks  at  Tevatron  and  LHC

LHC

•  pp  collider  •  ended  data  taking  at  √s  =  7,  8  TeV  •  restart  in  2015  at  √s  =  13/14  TeV

σ(a)  〜  8pb

σ(a)  〜  900pb  (  √s  =  14  TeV)

Page 8: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

t

t

b

b

ννννν

W+

W-­‐

l + ν l - ν

l + ν j j

j j j j

a  decay  channel

Cross  sec2on S  /  N

Dilepton Lepton+jets All  hadronic

Small  Medium  Large  

Very  good  Good  

Not  good  

All  hadronic

Lepton+jets Dilepton

44%

a  branching  ra2o

Page 9: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Main  method  to  measure  the  top  mass Template  Method :  compare  some  distribu2ons  of  data  with  templates  from  MC

1.  Reconstruct  invariant  top  mass  (mtreco,  mt

reco(2))              and  invariant  W  mass  (mjj)  in  each  event

2.  Create  MC  distribu2ons  at  discrete  values  of  mt  and              correc2on  factor  of  JES  (templates),  and  interpolate

3.  Fit  the  MC  distribu2on  to  data

t

t

b

b

l ν j j

mtreco mjj  (  j  :  non-­‐b-­‐tagged  jet  )   mt

reco(2)

Example

Page 10: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Current  status  of  top  mass  measurements (direct  measurement)

0.4%  precision!

Tevatron+LHC  mt  combina2on arXiv:1403.4427

Page 11: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Measured  mass  :  mtPythia

jets

Signal  modeling  in  MC

w  Measurements  use  jet  momenta          and  fit  the  data  with  MC

�    Assume  some  model

�    Cannot  be  treated  within            perturba2ve  QCD

w  Hadroniza2on  in  MC

The  measured  mass  is  hadroniza2on-­‐model  dependent  (mtPythia)

mtPythia  ≠  mt

pole

Cannot  evaluate  the  difference  between  mtPythia  and  mt

pole

PYTHIA

Page 12: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

 Top  quark  mass?

Far  from  a  fundamental  param.

�  mtpole  :  Top  quark  has  a  color,  so  the  physical  

                               on-­‐shell  quark  cannot  exist              

Known  as  a  good  parameter  in  pert.  QCD

�  mtMS  :   Short-­‐distance  mass  

Free  from  IR  contamina2on

� mtPythia  :  Not  a  parameter  defined  in  perturba2ve  theory

Important  to  determine  mtMS  accurately

Page 13: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Measurement  of  MS  mass  (and  pole  mass)   (  from  a  cross  sec2on  )

MS  mass  (Tevatron)

The  measured  MS  mass  s2ll  has  a  large  error

pole  mass  (CMS)

=

�  The  sensi2vity  of  σa  to  mt  is  not  so  strong  

� Theore2cal  uncertain2es  〜  1.5  -­‐  2  GeV

Page 14: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

2.  Weight  func2on  method SK,  Y.Shimizu,  Y.Sumino,  H.Yokoya,  PLB  710,  658  (2012) SK,  Y.Shimizu,  Y.Sumino,  H.Yokoya,  JHEP  08,  129  (2013)

A  new  method  to  measure  the  mass  of  parent  par2cle.

�  Only  lepton  energy  distribu2on  is  needed  Free  from  the  ambiguity  of  hadroniza2on  models

Independent  of  produc2on  process  of  top  quark  

�  Does  not  depend  on  the  veloci2es  of  top  quarks

We  can  determine  the  MS  mass  of  top  quark

t

b

l +

jet

ν

Page 15: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Weight  func2ons  and  the  weighted  integrals D(El):実験室系でのレプトンエネルギー分布

I (m) ≡!!!

dEl D(El)W (El,m)

W (mtrueH ) ≡

!!!dEl D(El)W (El,m

trueH ) = 0

W (El ,m) =

!!!dE D0(E ;m)

1

EEl×( ρの奇関数 )|eρ=El/E

D0 (E ;m) : ヒッグス(質量m )の静止系でのレプトンエネルギー分布

W exp

W MC

W (m)

W (m) = 0

2

Weight  func2on

Lepton  energy  distribu2on  in  the  lab.  frame

There  exist  an  infinite  number  of  weight  func2ons  which  sa2sfy

t

b

l +

ν

I  (  m  =  mttrue  )  =  0    for  an  arbitrary  velocity  distribu2on  of  top  quarks

160 165 170 175 180 185!4

!2

0

2

4

m !GeV"

106"I

W (m) = 0

D(El) (1)

W (El,m) =!

dE D0(E, m)1

EEl× ( ρの奇関数 )|eρ=El/E (2)

t t + Wt, WW+ jets

t t, Wt, WW+jets

t t + Wt, WW + jets

mtruet (3)

3

large  velocity

small  velocity

I  (m)

Page 16: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

!1.0 !0.5 0.0 0.5 1.0!3

!2

!1

0

1

2

3

Ρ

ρ = ln (El / E0 )

Explicit  form  of  weight  func2ons

Lepton  energy  distribu2on

0.0 0.5 1.0 1.5 2.0 2.50.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

El ! E0

The  rest  frame  of  X

A  boosted  frame 1ΓdΓdEl

(X  is  scalar  or  unpolarized) For  a  two-­‐body  decay  :    X                l  +  Y    

Page 17: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

 Explicit  form  of  weight  func2ons (X  is  scalar  or  unpolarized) For  a  two-­‐body  decay  :    X                l  +  Y    

ρ = ln (El / E0 )

Lepton  energy  distribu2on

0.0 0.5 1.0 1.5 2.0 2.50.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

El ! E0

The  rest  frame  of  X

A  boosted  frame 1ΓdΓdEl

!!!dEl D(El)W (El,m

trueH ) = 0

!!!dρ ( ρの偶関数 ) × ( ρの奇関数 ) = 0

D0 = δ(E − E0)

dρ ∝ e−ρdEl

W (El,m)

W (m = mtrueH ) = 0

D(El):実験室系でのレプトンエネルギー分布

W (m) ≡!!!

dEl D(El)W (El,m)

W (mtrueH ) ≡

!!!dEl D(El)W (El,m

trueH ) = 0

1

!!!dEl D(El)W (El,m

trueX ) = 0

!!!dρ ( ρの偶関数 ) × ( ρの奇関数 ) = 0

D0 = δ(E − E0)

dρ ∝ e−ρdEl

W (El,m)

W (m = mtrueH ) = 0

D(El):実験室系でのレプトンエネルギー分布

W (m) ≡!!!

dEl D(El)W (El,m)

W (mtrueH ) ≡

!!!dEl D(El)W (El,m

trueH ) = 0

1

!1.0 !0.5 0.0 0.5 1.0!3

!2

!1

0

1

2

3

Ρ

Page 18: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Can  be  expressed  as  a  superposi2on  of    lepton  distribu2on  for  a  two-­‐body  decay

(X  is  scalar  or  unpolarized) For  a  many-­‐body  decay  :    X                l  +  anything    

0.0 0.5 1.0 1.5 2.0 2.50.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

El ! E0δ  -­‐func2on

two-­‐body  decay

A  weight  func2on  would  be  also  a  superposi2on  of  that  for  a  two-­‐body  decay

Explicit  forms  of  weight  func2ons

Lepton  energy  distribu2on  in  the  rest  frame  of  X  

0 20 40 60 80 1000.000

0.005

0.010

0.015

0.020

El !GeV"

Page 19: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

n = 2n = 3n = 5n = 15

m = 173GeV

0 20 40 60 80 100 120 140!1.0!0.8!0.6!0.4!0.2

0.00.2

El !GeV"

103 "

W m  =  173  GeV

Examples  of  weight  func2ons For  a  top  quark  decay  :  t              Wb              l νb

Page 20: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Summary  of  the  weight  func2on  method

2.  Use  the  lepton  energy  distribu2on  measured  by  experiment  as  D(El)

1.  Construct  weight  func2ons  for  the  process

Lepton  energy  dist.  in  the  rest  frame  of  parent  par2cle,  which  can  be  calculated  in  pert.  QCD

160 170 180 190!1.0

!0.5

0.0

0.5

1.0

m !GeV"

I

I

mtrue

I (m)

I  (  m  =  mtrue  )  =  0

3.  Obtain  the  zero  of  I (m)  as  mtrue

★  We  can  use  this  method  if  parent  par2cle  is  scalar  or  unpolarized              to  determine  any  parameter  which  enter

Page 21: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

3.  Top  mass  reconstruc2on  (Simula2on  analysis:  LO)

arXiv:1405.2395  [hep-­‐ph]

Page 22: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

�  Weight  func2ons  used  in  this  analysis

n = 2n = 3n = 5n = 15

m = 173GeV

0 20 40 60 80 100 120 140!1.0!0.8!0.6!0.4!0.2

0.00.2

El !GeV"

103 "

W

Setup  of  the  analysis

t

t

b

b

νl +

j j

a  events,  Lepton(μ)+jets  channel LHC  √s  =  14  TeV

�  Signal

Small  weight  at  El 〜  0

�  Background        W+jets,  other  a  events  

The  polariza2on  of  top  quarks  at  LHC  ? Almost  unpolarized

SM:  B  〜  0.003, ATLAS:  compa2ble  with  zero                (ΔB〜0.08)

Page 23: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Weight  func2on  W(El ,m)

n = 2n = 3n = 5n = 15

m = 173GeV

0 20 40 60 80 100 120 140!1.0!0.8!0.6!0.4!0.2

0.00.2

El !GeV"

103 "

W

In  principle,  our  method  works  

0 50 100 150 200 250 3000

50000

100000

150000

200000

250000

300000

350000

El !GeV"

Events#5Ge

V

Lepton  energy  distribu2on  at  parton  level  (signal)

Parton  level  analysis

n = 3n = 5n = 15

n = 2

160 165 170 175 180 185!3

!2

!1

0

1

2

3

m !GeV"10

6"

I

input  mt

Δmt  ≈  +0.7GeV  

Effect  of  Γt  :  +0.34GeV  MC  stat.  error  :  0.4GeV  Consistent  with  expecta2on

Page 24: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Effect  of  lepton  cuts

In  prac2ce,  event  selec2on  cuts  and  backgrounds  deform    the  lepton  distribu2on.  

160 165 170 175 180 185!20

0

20

40

60

80

m !GeV"106"I

Before  lepton  cuts    (×10)

AUer  lepton  cuts

0 50 100 150 200 250 3000

50000

100000

150000

200000

250000

El !GeV"

D

The  major  effect  is  from  the  lepton  cuts  :      pT(l)  >20  GeV,  |η(l)|  <  2.4  

Page 25: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

0 10 20 30 400

20000

40000

60000

80000

pTHlL HGeVL

Eventsê0.5

8GeV

Compensated  MC  events

0 50 100 150 200 250 3000

50000

100000

150000

200000

250000

300000

350000

El HGeVL

Eventsê5G

eV

Compensated  MC  events  with  mtc

Events  aUer  lepton  cuts    with  mt

input  =  173GeV

We  compensate  for  the  loss  using  MC  events. A  solu2on  to  the  problem  of  lepton  cuts

�  To  fix  the  normaliza2on  of  the  added  events,        perform  a  χ2  fit  so  that  pT(l)  distribu2ons  are        connected  smoothly

�  We  need  to  assume  some  value  for        mt  of  the  compensated  MC  events

Page 26: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

A  solu2on  to  the  problem  of  lepton  cuts

176 GeV 179 GeV

mt = 167 GeV

173 GeV 170 GeV

160 165 170 175 180 185!3

!2

!1

0

1

2

3

4

m !GeV"

106"

I

c

n=2

The  weighted  integrals  with  various  mtc

The  zeros  of  I(m)  come  close  to    the  input  mass  (mt

input  =  173GeV)

166 168 170 172 174 176 178 180

!5

0

5

10

mtMC !GeV"

mtrec!mtMC!GeV

"zero  of  I(m

)  −  m

tc

mtc  (GeV)

Δmt  =  +0.5GeV  

mtc  =  mt

input    ⇒    zero  of  I(m)    =  mtc

mtc  ≠  mt

input    ⇒    zero  of  I(m)    ≠  mtc (guess)

Page 27: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Event  selec2on  cuts

Cross  sec2on  aUer  all  cuts

t

t

b

b

ννννν

W+

W-­‐

l + ν j j

�  1  muon  with  pT  >  20GeV,  |η|  <  2.4    (lepton  cuts)

�  At  least  4  jets

�  At  least  1  b-­‐tag  with  the  b-­‐tag  efficiency  0.4  independent  of  pT  and  η

�  pT(j1)  >  55,  pT(j2)  >  25,  pT(j3)  >  15,  pT(j4)  >  8GeV

In  addi2on  to  lepton  cuts,  we  impose  the  following  cuts  to  events:

We  do  not  use  cuts  concerning  missing  momenta.

Signal  (mt=173GeV) W+jets  BG Other  a  BG

22.4  pb 1.8  pb 5.7  pb

Page 28: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Top  mass  reconstruc2on    (aUer  event  selec2on  cuts)

176 GeV 179 GeV

mt = 167 GeV

173 GeV 170 GeV

160 165 170 175 180 185

!2

0

2

4

m !GeV"

106"

I

n=2

c

The  weighted  integrals  with  various  mtc

mtc  =  mt

input    ⇒    zero  of  I(m)    =  mtc

mtc  ≠  mt

input    ⇒    zero  of  I(m)    ≠  mtc (guess) 166 168 170 172 174 176 178 180

!5

0

5

10

mtMC !GeV"

mtrec!mtMC!GeV

"zero  of  I(m

)  −  m

tc Δmt  =  1.2GeV

mtc  (GeV)

Page 29: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Sensi2vity  of  mass  determina2on

Signal  stat.  error μF  scale JES BG  stat.  error n  =  2 0.4 +1.5/-­‐1.6 +0.0/-­‐0.1 0.4

3 0.4 +1.5/-­‐1.5 +0.1/-­‐0.3 0.4

5 0.5 +1.4/-­‐1.4 +0.2/-­‐0.4 0.5

15 0.5 +1.5/-­‐1.3 +0.2/-­‐0.6   0.6

�  Assuming  that  the  error  of  electron          mode  is  the  same  as  the  muon  mode

�  At  100  �-­‐1

�  Lepton(e,μ)+jets  channel

Uncertain2es  [GeV]

Can  be  improved  by  including  NLO

n = 3n = 5n = 15

n = 2

165 170 175 180160

165

170

175

180

185

Input top mass !GeV"

mtre

c!GeV

" mtrec  =  mt

input n=2  

Page 30: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

�  The  es2mated  stat.  error  is  about  0.4GeV  with  100�-­‐1.        Major  systema2c  uncertain2es  are  under  good  control.

�    More  precise  measurements  of  mt  are  needed.

� We  performed  a  simula2on  analysis  of  top  mass            reconstruc2on  with  lepton+jets  channel  at  LO.

�    The  problem  of  the  lepton  cuts  can  be  solved            by  compensa2ng  lepton  distribu2on  with  MC  events.

�    We  proposed  a  new  method  to  measure            a  theore2cally  well-­‐defined  top  quark  mass  at  LHC.  

4.  Summary  and  future  work

Page 31: New$method$for$precise$determinaon$ …of$the$analysis t t b b ν l + j j a$events,$Lepton(μ)+jets$channel LHC$√s$=14$TeV "$Signal Small$weightatE l 〜0 "$Background$$$$W+jets,$other$a$events$

Future  work

★  NLO,  NNLO

�    Include  NLO,  NNLO  correc2ons  to  the  top  decay  process            in  weight  func2ons.

�    Include  NLO  correc2ons  to  the  top  produc2on  process              in  MC.

★  Effects  of  top  off-­‐shellness

mtpole,  mt

MS

μF  scale  uncertain2es  can  be  reduced