Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER...

36
Modeling and simulation of 3D ultrasound imaging systems with integrated μ-beamforming electronics Dipartimento di Ingegneria Industriale e dell’Informazione Università degli Studi di Pavia Giulia Matrone 1 Giulia Matrone 07/06/2013 [email protected] Università degli Studi di Pavia Bioengineering Lab.

Transcript of Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER...

Page 1: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Modeling and simulation of 3D ultrasound imaging systems with

integrated μ-beamforming electronics

Dipartimento di Ingegneria Industriale e dell’InformazioneUniversità degli Studi di Pavia

Giulia Matrone 1

Giulia Matrone

07/06/2013

[email protected]

Università degli Studi di Pavia

Bioengineering Lab.

Page 2: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

3D Ultrasound imaging

Giulia Matrone 2

Università degli Studi di Pavia

Page 3: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

3D Ultrasound imaging

Giulia Matrone 3

Università degli Studi di Pavia

3D ultrasound technology: state of the art

• 2D phased-array probes

• The beam is electronically (no more mechanically)

steered and focused in 3D (azimuth + elevation directions)

• Digital beamforming

Open challenges :• transducers interconnection and arrangement

• front-end electronics integration inside the probe

• power constraints

• very low noise reception front-end

• high dynamic range and frame rate (e.g. for real-time applications)

• A fully-wired array would require many electronic leads connected to each element in the array (e.g. 64x64 array 4096 coaxial cables!). This could also reduce SNR!

CMUT

μ-beamforming

Page 4: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Objective

Giulia Matrone 4

Ultrasound System Simulator• Complete system analysis (US field & transducer & front-end electronics) in a

single versatile environment (Matlab)

• Quick system-level feedback for improved electronics design

• Simulated signals and images ↔ System performances ↔ Design parameters

• (micro-)Beamforming algorithms development and test

Ultrasound System

Probe

Propagation Medium(Human body / water tank / ...)

simulations!

Università degli Studi di Pavia

Page 5: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

5

RECEIVER

1TRANSMITTER

TRANSDUCER

2

4

3US FIELD

Ultrasound system model

Giulia Matrone 5

TX digital Beamformer

RX digitalBeamformer

T/R

switch

HV

pulser

LNA VGA

CW Beamformer

ADC

ADC

DAC

Processingunit

BeamformerControl

display

Università degli Studi di Pavia

Page 6: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

1TRANSMITTER

Ultrasound system model

Giulia Matrone 6

TX digital Beamformer

RX digitalBeamformer

T/R

switch

HV

pulser

LNA VGA

CW analogBeamformer

ADC

ADC

DAC

Processingunit

BeamformerControl

display

Università degli Studi di Pavia

Page 7: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

focus

1- Transmission model

Giulia Matrone 7

Università degli Studi di Pavia

Model inputs = real/synthetic waveforms

Input Parameters:

• PW (n° of cycles) / CW

• Frequency

• Rise/fall times

• Amplitude (e.g. ±100V)

• Pulse Repetition Frequency (PRF)

(e.g. 1-10 kHz, 1/depth)

• Focusing delays

Page 8: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

TX Beamforming

Giulia Matrone 8

RX

Università degli Studi di Pavia

TX

TRANSMIT

BEAMFORMER

Maximum delay channel

Minimum delay channel

PulserHV

transmitter

Every beam

reach the

point in the

same time

Transducers

RECIEVE

BEAMFORMER

Maximum delay channel

Minimum delay channel

ADCLNA

Every beam reach the

receiver in the same

time

Transducers

Transmission chain Reception chain

Page 9: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

TX Beamforming

Giulia Matrone 9

Università degli Studi di Pavia

Page 10: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

TRANSDUCER

2

4

Ultrasound system model

Giulia Matrone 10

TX digital Beamformer

RX digitalBeamformer

T/R

switch

HV

pulser

LNA VGA

CW analogBeamformer

ADC

ADC

DAC

Processingunit

BeamformerControl

display

Università degli Studi di Pavia

2

4

2

Page 11: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

2/4- Transducer

Giulia Matrone 11

The piezoelectric transducers in the US probe operate signals electro-acoustic (TX) and acousto-electric (RX) conversion

Equivalent electric models

Università degli Studi di Pavia

Mason’s Model

Redwood’s Model

KLM Model

v

F

DC

BA

I

V

Page 12: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

CMUT

Giulia Matrone 12

A 16x16 2D CMUT array

with integrated front-end

electronics

Architecture of an endoscopic 3D

ultrasound imaging probe

Università degli Studi di Pavia

Capacitive Micromachined Ultrasonic Transducers (CMUT)

Advantages: • microfabrication• wide bandwidth • high sensitivity• CMOS compatibility • batch fabrication → low cost

Page 13: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

CMUT

Giulia Matrone 13

MOVINGMEMBRANE

SUBSTRATE

Top electrode

Bottom electrode

VDC

CMUT CELLParallel plate capacitor

Voltage → electrostatic force → membrane deformation (non-linear relation)

System linearization → Bias voltage (VDC)

An AC voltage is superimposed to VDC during TX operation

Università degli Studi di Pavia

Page 14: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

CMUT electro-mechanical model

Giulia Matrone 14

CMUT mechanical model: lumped element approach

))1(12/(

/192

84.1

23

20

2

EtD

rDk

trm

m

m

)27/(8 3

00 epi AgkV

2

/0

0

mkf

Resonance frequency (@VDC=0)

Parameters

re/Ae electrode radius/area

rm/Am membrane radius/area

g gap (electrodes distance)

t membrane thickness

E Young’s modulus

v Poisson’s ratio

ρ density

m membrane mass

k0 spring elastic constant

D membrane flexural stiffness

ε dielectric coefficientPull-in/collapse voltage

membrane (rigid plate)restoring vs electrostatic force

substrate

Usually VDC < Vpi

Università degli Studi di Pavia

Staticanalysis

Page 15: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

CMUT electro-mechanical model

Giulia Matrone 15

CMUT equivalent electric model (small signals): Mason’s model

gNAC

gVA

VV

e

pie

piDC

/

/

/

2

Parameters

VS/IS

VL/IL

Voltage/current at the electricside during tx and rx

v vibration velocity

F=APR force (pressure)

C CMUT capacitance

φ electro-mechanical turns ratio

Zm mechanical impedance

ZR radiation impedance

ZL load impedance during rx

Transmission and Reception impulse responses (P/V, v/V, P/I, v/I and V/P, V/v, I/P, I/v )

ZIN T/R Switch + LNA

Università degli Studi di Pavia

P ↔Vv ↔ I

CMUT operating point

TX

RX

ACOUSTIC SIDEELECTRIC SIDE

Page 16: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

3US FIELD

Ultrasound system model

Giulia Matrone 16

TX digital Beamformer

RX digitalBeamformer

T/R

switch

HV

pulser

LNA VGA

CW analogBeamformer

ADC

ADC

DAC

Processingunit

BeamformerControl

display

Università degli Studi di Pavia

Page 17: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

ar

Pr

3- US field linear model

Giulia Matrone 17

Hypotheses:• isotropic, homogeneous, non-dissipative medium

• transducer: infinite rigid baffle, flat surface, no re-radiations

• LINEAR SYSTEM

Università degli Studi di Pavia

rp = observation point ra = active aperture (transducer)

Page 18: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Spatial Impulse Response

Giulia Matrone 18

The impulse response depends on the relative position of the transducer and the observation point

Spatial Impulse Response (SIR) in rp:

S

P dSr

crttrh

2

/),(

Università degli Studi di Pavia

ar

Prr

c

rt

Huygen’s principle

Acoustic impulse response

The SIR is found by observing the

pressure waves at a fixed point rp

over time. All the spherical waves

pass the point rp and are summed.

Page 19: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Pressure field

Giulia Matrone 19

The pressure at point rp is given by the Rayleigh integral:

where vn is the normal surface vibration velocity and S is the aperture surface and ρ is medium density.

S

anP dS

t

crtrv

rtrP

/,1

2),(

Università degli Studi di Pavia

ar

Prr

S T

aaaan

P

PS

an

P

dSdtr

crtttrvtr

t

tr

t

dSr

crtrv

trP

2

/,),(

),(

/,

2),(

Page 20: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Pressure field

Giulia Matrone 20

If we assume that vn is uniform over the aperture, then:

Università degli Studi di Pavia

ar

Prr

S

nP dSr

crttvtr

2

/*),(

h(rP,t)

Pressure field in rp:

),(*)(

),( trht

tvtrP P

nP

t

trtrP P

P

),(),(

Page 21: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Discrete representation

Giulia Matrone 21

Discrete representation:• The probe consists of N transducers (phisical elements)• Each transducer is divided into M mathematical elements

• Apodization weights and focusing delays can be included in the SIR:

N

i

PiP trhtrh1

),(),(

Ni S

rr

crrttrh

M

j

ij

ijP

ijP

Pi ...12

/),(

1

M

j

ij

ijP

iijP

iPi Srr

dcrrtwtrh

1 2

/),(

Università degli Studi di Pavia

Apodization

Page 22: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Received signal

Giulia Matrone 22

Received signal: ),(*)(*)(),( trhrftvtrV per

mt

perx

3

3

2

)(*)(

2)(

t

tvtE

ctv n

tmpe

Pulse-echo impulse (transducer excitation + electro-mechanical impulse response during RX/TX)

c

rcrrfm

)(2)()(

Inhomogeneities in the tissue, which give rise to the scattered signal

),(*),(),( trhtrhtrh rxtxpe

Pulse-echo spatial impulse response

perturbations

electro-mechanical impulse response

Università degli Studi di Pavia

The received signal is the scattered pressure field integrated over the transducer surface and convolved with the transducer electromechanical response.

Page 23: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Scatterer

1x64 linear array

z

x

Example - TX

Giulia Matrone 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-50

0

50

excitation s

ignal [V

]

time [us]

Università degli Studi di Pavia

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1.5

-1

-0.5

0

0.5

1

1.5x 10

13

time [us]

TX

im

pu

lse

re

sp

onse

V->

A [

(m/s

2)/

V]

TX Impulse response

HV input @3MHz (V)

55 55.5 56 56.5 57 57.5-1.5

-1

-0.5

0

0.5

1

1.5x 10

6

time [s]

Pre

ssure

@fo

cus [

MP

a]

),(*)(

),( trht

tvtrp P

nP

FOCUS

TX pressure

min

Focusing delays profile1 64

max min

Page 24: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Example - RX

Giulia Matrone 24

Università degli Studi di Pavia

Beamforming

Vout

Beamformed RX signal (V)

60 80 100 120 140 160 180-1.5

-1

-0.5

0

0.5

1

1.5x 10

-4

time [s]

RX

sig

na

l [V

]

Page 25: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

5

RECEIVER

Ultrasound system model

Giulia Matrone 25

TX digital Beamformer

RX digitalBeamformer

T/R

switch

HV

pulser

LNA VGA

CW analogBeamformer

ADC

ADC

DAC

Processingunit

BeamformerControl

display

Università degli Studi di Pavia

Page 26: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

5- Reception

Giulia Matrone 26

Università degli Studi di Pavia

1) Amplification with variable gain is used to compensate for attenuation effects (Time Gain Compensation)

Gain

Amplified signals

Echoes amplitude

Distance from the probe

Medium Attenuation coefficient (dB cm-1 MHz-1)

Water (20°C) 0.002

Fat 0.66

Blood 0.2

Muscle 1.5

Bone 20

Soft tissue (average) 0.7

Page 27: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Reception

Giulia Matrone 27

Università degli Studi di Pavia

RXTX

2) BeamformingAmplified signals are re-aligned and coherently summed

• analog BF or• digital BF

μ-Beamforming

Page 28: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Dynamic focusing

Giulia Matrone 28

Università degli Studi di Pavia

• During reception, the focusing delays profile can be continuosly adjusted to track the travelling wave-front

• Improved focusing and resolution but a more sophisticated beam-forming electronics is required

Page 29: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Receiver model

Giulia Matrone 29

Università degli Studi di Pavia

Variable-gain amplification

M-channel µ-beamforming architecture

ADC

LNA C-Matrix1MM

LNA C-Matrix1MM

LNA C-Matrix1MM

...

...

ADC

1

1

1

MAIN BEAMFORMER

ADC

The N-element transducer array is divided in M-element subapertures. Signals received by each sub-aperture are processed by a M-channel μ-beamformer

Page 30: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Receiver model: VGLNA

Giulia Matrone 30

)(0

))()(()()(0)('

tVG

tVtchtG tanhtVGtV

offsetiLNA

i

Università degli Studi di Pavia

The Variable-Gain Low-Noise Amplifier model includes:

• a white gaussian noise source (LNA noise)• an amplification stage

−non-linear gain & saturation → tanh function−variable gain

• a signal derivative limiter (Slew-Rate)• a BP filter → LNA finite bandwidth

LNA C-Matrix11616

VIN

VOUT

0 10 20 30 40 50 60 70 80 90

14

16

18

20

22

24

26

Time (µs)G

ain

(dB

)O

utp

ut sig

na

l

Page 31: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Receiver model: C-matrix

Giulia Matrone 31

Università degli Studi di Pavia

• 16-channels µ–beamforming unit (delay and sum)

• Matrix of digitally controlled capacitors that sample and store the received signals

• A series of shift registers and switches activate the write/read/clear phase

Signal distorsions may be due to:

• delays quantization • parasitic capacitances

• capacitances non-linearity• bandwidth limitations

LNA C-Matrix11616

Page 32: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Delays pattern

µ-BMF

BMF

Test 1 - Linear array

Giulia Matrone 32

Università degli Studi di Pavia

C-matrixLNA

Page 33: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Delays pattern

µ-BMF

BMF

Test 1 - Linear array

Giulia Matrone 33

• Validation of the receiver model: mixed simulations --> Matlab vs. Eldo

• Input = 16 2-cycle sinusoids @3MHz

Università degli Studi di Pavia

MATLAB ELDO

Page 34: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Results - Linear array

Giulia Matrone 34

Università degli Studi di Pavia

Image formation

Page 35: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

Results - Linear array

Giulia Matrone 35

Università degli Studi di Pavia

Page 36: Modeling and simulation of 3D ultrasound imaging systems ... · Transducers RECIEVE B EAM F ORM ER M ax im um delay channel M inim um delay channel ... Studi di Pavia Capacitive Micromachined

References

Giulia Matrone 36

Università degli Studi di Pavia INTRODUCTION

•T. Szabo, “Diagnostic Ultrasound Imaging: Inside Out”, Elsevier Academic Press, 2004.•J. Powers, F. Kremkau, “Medical Ultrasound Systems,” Interface Focus, 2011.•A. Thrush, T.Hartshorne, “Peripheral Vascular Ultrasound: How, Why and When,” Elsevier Academic Press, 2005.•P. Rako, “Diagnostic ultrasound gets smaller, faster, and more useful”, Electronics Design, Strategy, News (EDN), pp. 20-28, June 2009. http://www.edn.com/article/CA6666227.html

CMUT•I. O. Wygant et al., "Analytically Calculating Membrane Displacement and the Equivalent Circuit Model of a Circular CMUT Cell,“ Proc. IEEE Intl. Ultrason. Symp. 2008.•http://www-kyg.stanford.edu/khuriyakub/opencms/en/research/ultrasonic/3D_Imaging/index.html•A. Savoia, G. Caliano and M. Pappalardo, “A CMUT Probe for Medical Ultrasonograpy: from Microfabrication to System Integration,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 2012.

SPATIAL IMPULSE RESPONSE•J. A. Jensen, "FIELD a program for simulating ultrasound systems”, Proc. Nordic-Baltic Conf. on Biomedical Imaging, 1996.•J. A. Jensen, “A model for the propagation and scattering of ultrasound in tissue", J. Acoust. Soc. Amer., 1991. •J. A. Jensen, “Linear description of ultrasound imaging systems”, Notes for the Intl. Summer School on Advanced Ultrasound Imaging, Technical University of Denmark, 2001.

PUBLISHED WORKS•G. Matrone, M. Terenzi, A. S. Savoia, G. Caliano, G. Magenes, D. Ronchi, and F. Quaglia, "An Ultrasound System Simulation Tool for Advanced Front-End Electronics Design," Proc. IEEE Intl. Ultrason. Symp., 2012.•G. Matrone, F. Quaglia, G. Magenes, “Simulating Ultrasound Fields for 2D Phased-Array Probes Design Optimization,” Proc. IEEE Intl. Conf. Eng. Med. Biol. Soc., 2011.•G. Matrone, F. Quaglia, G. Magenes, "Modeling and Simulation of Ultrasound Fields Generated by 2D Phased Array Transducers for Medical Applications," Proc. IEEE Intl. Conf. Eng. Med. Biol. Soc., 2010.