MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8....

16
MA1: Stars and Stellar Explosion Models JINA-CEE NSF Physics Frontiers Center

Transcript of MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8....

Page 1: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

MA1: Stars and Stellar Explosion Models

JINA-CEE NSF Physics Frontiers Center

Page 2: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

How do the properties of our model stars vary with respect to the composite uncertainties?

∑ 𝜹 = ?Mass resolution

Time resolution

Isotope count

Reaction rates

Mass loss

Opacity

Mixing

Yields

Page 3: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

0100

300

Core

Mass

[%]

Solar Subsolar

-.5

0

.5

Lifetim

e

[%]

0

20

Tc

[%]

-500

50

150

ρ c [%]

-20

0

20

ξ 2.5

[%]

-3

-101

Y

He NeH C O

e

[%]

-50

0

50

Mass fra

ction

[%] 14

N22

Ne16

O16

O32

S

Fields et al 2018, 1000 MESA Monte Carlo models

See Michael Wiescher’s talk, especially on 12C(α,γ)16O

See Benoit Côté’s talk on chemical evolution.

Page 4: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

Property 15M 20 M

M = 0 M = 0 M = 0 M

Hecore [M ]a,b 2.822.822.79 2.772.78

2.72 4.674.704.59 4.

Ccore [M ] 2.512.582.49 2.442.53

2.43 4.194.754.04 4.

Ocore [M ] 1.411.431.35 1.401.42

1.32 1.542.471.43 1.

Sicore [M ] 1.151.381.02 1.151.39

1.08 1.381.651.30 1.

Yec,Heb 0.5050.505

0.505 0.5050.5050.505 0.5050.505

0.505 0.

Yec,C 0.4990.5000.499 0.4990.500

0.499 0.4990.5000.499 0.

Yec,O 0.4990.5000.498 0.4990.500

0.498 0.4990.5000.498 0.

Yec,Si 0.4860.4980.475 0.4860.498

0.475 0.4880.4980.483 0.

∑ 𝜹 = ?

We don’t know the full answer yet, but we have useful partial answers.

Page 5: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

Windhorst et al 2018

Pop III with JWST

! ! !"#!"#

!"#$%%&'

((((()*%+

100,000 50,0001

10

100

1,000

10,000

1 million

100,000

10 million

20,000 10,000 6,000 3,000

Temperature (K)

Lu

min

osi

ty (

L⊙)

Main Sequence

Sun with only

Hydrogen and

Helium

Hertzsprung-Russell Diagram

for the First Stars

1 M⊙

1.5 M⊙

2 M⊙

3 M⊙

5 M⊙

10 M⊙

15 M⊙

20 M⊙

30 M⊙

50 M⊙

100 M⊙

300 M⊙

1000 M⊙

6.4 Gyr

1.7 Gyr

0.7 Gyr

0.2 Gyr

70 Myr

Supernova with Black Hole

Neutron Star

White Dwarf

Supernova without Black Hole

19 Myr

11 Myr

8 Myr

6 Myr

4 Myr

3 Myr

2 Myr

2 Myr

STScI Press Release 25Apr2018

See Tim Beer’s stellar abundances talk.

Page 6: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

Collapse after H-exhaustion

GR collapse during H-burning

Hydrostatic limit for H-burning monolithic stars

Hydrostatic limit for He-burning monolithic stars

fin

al m

ass (

10

5 M

)

accretion rate (M yr-1

)

0.3

0.4 0.5 0.6

0.8 1

1.5

2

3

0.01 0.1 1 10

Woods et al 2017Haemmerlé et al 2018a, 2018b

Page 7: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Radiative ignition → BH

Convective ignition → NS

16 17 18 19 20 21

Me

tall

icit

y

Mass ZAMS [M ] Petermann et al 2018

Carbon ignition

Impacts the LIGO/GAIA derived compact object initial mass function.

Page 8: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

8 7 6 5 4 3 2 1 0

log10 FV

Ritter et al 2018

Oxygen-carbon shell mergers

3D hydro simulation → 1D diffusion coefficient → post-processing of stellar models → galactic chemical evolution.

O-shell ingestion events can be a robust site for P, Cl, K ,Sc and p-process species.

See Falk Herwig’s i-process talk.

Page 9: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

Probing the isotopic evolution

Patton et al 2017

A ~20 kt liquid scintillator detector would typically observe ~10’s of ν in the final hours of a star’s life at 1 kpc, with ~30% from β processes.

AAS Journal highlight publication on 20Apr2018.

10 4

10 6

10 8

1010

30 M ,νe , NH, 1kpc 30M , νe, NH, 1kpc

10 4

10 6

10 8

10 10

0.010.1

Flu

xa

tE

art

h(M

eV

−1s−

1cm

−2

)F

lux

at

Ea

rth

(Me

V−1

s−1

cm−

2)

Energy (MeV)

30 M , νe , IH, 1kpc

0.010.1Energy (MeV)

30M , νe , IH, 1kpc

solarreactor

geo ν

2 h24 m

3 m2.9 m7.7 s

41 msCC

Page 10: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

Grefenstett et al 2017

Cas A NuSTAR +

Chandra

1.5 x 10-4 M⊙

Core-Collapse SN: Low-order mode engines

Page 11: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

Photodisintegration

αp-rich

Chasm

Normal freezeout

1D/3D Cas A

2D rotating

1D hypernova

2D MHD collapsar

α-rich freezeout

Si-rich

X(44Ti)

Peak Temperature (T9)

4104

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

105

106

107

108

109

1010

5 6 7 8 9 10

Pe

ak

De

nsi

ty (

g c

m-3

)

Magkotsios et al 2010

Page 12: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

Electron-captures in supernovae

A JINA-CEE led, comprehensive library of weak reaction rates for astrophysical models.

Sullivan et al 2016

Titus et al 2018~70 nuclei in the diamond-shaped region at N~50 are drivers for changes in the p/n ratio during core-collapse. New experimental efforts are aimed at these nuclei.

See Fernando Montes’s radioactive ion beam talk.

See Sanjay Reddy’s dense matter physics talk.

0 20 40 60 80 100 120

Neutron Number

0

10

20

30

40

50

60

70

Pro

ton

Num

ber

FFN

ODA

LMP

LMSH

Approx.

No rate

2

2

8

8

20

20

28

28

50

50

82

N Z=

Stable

Number

50

Page 13: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

R-process in jet driven supernovae

Kink unstable 3D models predict the third r-process peak is under produced.

Mösta, Roberts, et al. 2018

1600 km

See Ani Aprahamian’s r-process talk.

See Anna Frebel’s r-process talk.

Page 14: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

Gravitational wave signals from supernovae

Morozova et al. 2018

Between ~200 and ~400 ms after bounce, the GW signal represents a g-mode. After ~400 ms the dominant GW signal is the quadrupole oscillation (l = 2, f-mode). High-frequency noise in GW spectrograms above the main signal are p-modes .

19 M⊙

Page 15: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

Citations: 1,907

Citations to papers

that cite MESA: 19,014

Larger Science Community

MESA

InfluenceRadius ≈10 C

itations

0

150

300

450

600

2011 2012 2013 2014 2015 2016 2017 2018

MESA I 2011

MESA II 2013

MESA III 2015

MESA IV 2018

Total Citations: 1907 as of 23Apr2018

Data from SAO/NASA ADS

MESA I : Top 10 - 2011 MESA II : Top 15 - 2013 MESA III: Top 10 - 2015 MESA IV: Top 50 - 2018 $3M NSF

Page 16: MA1: Stars and Stellar Explosion Modelscococubed.asu.edu/talks/jina_iac_2018.pdf · 2019. 8. 22. · 0 100 Core Mass 300 [%] Solar Subsolar-.5 0 Lifetime .5 [%] 0 20 T c [%]-50 0

Pulsations:

GYRE

Stars:

Pulsations:

Adipls

MESA

Support:

MESASDK

Nuclear:

WeakLib

Cyberhub:

NuGrid

Nuclear:

StarLib

Nuclear:

AZURE3D hydro:

ENZO3D hydro:

Castro

3D hydro:

FLASH

3D hydro:

MAESTRO

3D hydro:

PPMStar

3D hydro:

Changa

3D hydro:

ATHENA

GAMMA

PyMESA

HYPATIA VMESA

MESA-Script

Support:

Data:

Support:

GCE:

Ports:

SYGMAYields:

Data:OMEGA

GCE:

Support:

JINABaseMESA-

Test

3D hydro:

Phantom

Radiation:

STELLA

N-Body:

AmuseN-body:

Amp

3D hydro:

StarCrash

Education:

MESAWeb

Support:

MESA-

Docker

Stars:

Dstar

Nuclear:

JINA

Reaclib

GAIA LSST LCO JWST NuSTAR

Isochrones:

MIST

NSCL FRIB CASPAR SECAR St. George

Critical community-driven software and data infrastructure for NSF and NASA science.