Introduc2on to Par2cle Physics - Chapter 5 · PDF fileClaudio Luci – Introduc2on to...

40
Colour and QCD Claudio Luci – Introduc2on to Par2cle Physics – Chapter 5 1 Introduc2on to Par2cle Physics - Chapter 5 - Claudio Luci last update : 070117

Transcript of Introduc2on to Par2cle Physics - Chapter 5 · PDF fileClaudio Luci – Introduc2on to...

ColourandQCD

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 1

Introduc2ontoPar2clePhysics-Chapter5-

ClaudioLuci

lastupdate:070117

•  SymmetryoftheΔ++wavefunc2on•  Thecolour•  Experimentalevidencesofthecolour•  GluonsandtheQCD•  Asympto2cfreedom•  hadroniza2on•  Experimentalcross-checksoftheQCDpredic2ons

2ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 3

Δ++symmetry•  TheΔ++quarkcomposi2onis:• Wecanfactorizethewavefunc2onas:

•  L=0(baryon3/2oflowestmass).χandφarealsosymmetric,thereforethetotalwavefunc2onissymmetric,incontradic2onwiththePauli’sprinciple.

•  In1964Greenberg(thenHanandNambu)introducedanewinternaldegreeoffreedomthathecalledcolour,therefore:

•  ξ(colour)isan2symmetricandrestorestherightconnec2onspin-sta2s2cofthewavefunc2on.

Δ++ : JP = 3

2

+

⇒ u ↑ u ↑ u ↑

Ψ=ψ (spatial) ⋅ χ(spin) ⋅φ(flavour)

Ψ=ψ (spatial) ⋅ χ(spin) ⋅φ(flavour) ⋅ ξ(colour)

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 4

Thecolour•  Thebaseassump2onofthetheoryisthateveryquarkcanexistinthreedifferentstatesofcolour:

•  Thethreestatescanberepresentedascolourspinors:

andwecanrepeatwhateverwesaidbeforeaboutSU(3),butnowwearetalkingaboutcolourSU(3):

1.  wehave8generatorsofthesymmetrygroup;

2.  wecanpickout2diagonalgeneratorsthathavethecolourspinorsaseigenstates.

ξ =c r r , , ( ,g gree , b bed n lue)

⎛ ⎞⎜ ⎟⎜ ⎟⎜

⎛ ⎞⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎜⎟ ⎟

⎜ ⎟⎜ ⎟⎝ ⎝ ⎝ ⎠⎟⎠⎠

1

r= 0 ; ; 0

g 0

=0

b= 01

10

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 5

TheGell-mannmatrices

Rotation in the space of colour U = e

-12iϑn! ⋅λ"#

I3 = 12λ3 = 1

2

1 0 00 −1 00 0 0

⎜⎜⎜

⎟⎟⎟

I3 = colour isospin

Y = 13λ8 = 1

3

1 0 00 1 00 0 −2

⎜⎜⎜

⎟⎟⎟

Y = colour hypercharge

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 6

Thecolourquantumnumbers•  Thediagonaloperatorsareλ3andλ8,where:

•  Let’sintroduceacolourI3candacolourhyperchargeYc,definedas:• Withthisdefini2onwehavethefollowingquantumnumbers:

3 8 |r |r |1 1 ; ; etc... 2 3

r |rλ λ〉 〉 〉 〉= =

c c3 3 8

1I ; Y =3

λ λ≡ =

The values I3c and Yc are additive quantum numbers.

c c c c3 3

1 1 1 1r: r: - -2

quark antiquarkI

1 1 1 1g: - g:

Y I

2b:

0

-2

-

Y

3 2 3

3 2 3

3

2 b: 0 3

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 7

Colourconfinement• Withtheintroduc2onofthecolourhypothesisthenumberofquarksaremul2pliedbythree,thereforeweshouldhaveaprolifera2onofpar2cles;forinstancetheprotoncouldexistas:

buttheyhaveneverbeenseenanycoloredhadrons.

•  sowepostulatethatallfreehadronsobservedinnaturemusthave:thatistheymustbecoloursinglets.

Thisthehypothesisofcolourconfinement

b b b br grg gp= ; u d u d u u ; ; etcd u u ....

c c3I = 0 ; Y =0

N.B. The charge conjugation transforms a red quark in an antired antiquark with opposite values of I3c e Yc

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 8

Thehadrons•  Theonlypossibili2estohavea“white”hadronare:

Ø combiningthreequarkstogether;Ø combiningaquarkandanan2quark;

butwemustnothavecombina2onsliketheseones:

•  Inprinciplewecouldhavethesecombina2ons:(recentlytheyhavebeenfoundresonancesthatcanbeinterpretedas4quarksstates)

baryons = qqq mesons = qq

g gbr r bp= ; p= ; etc.... = u u

rr + u u

g d

bgd

+ bπ

qq ; qqq ; qqqq ; e tc ....

qqqq ; qqqqq

TheSU(3)symmetryofcolourisanexactsymmetry,contrarytotheSU(3)symmetryofflavourthatisanapproximatesymmetry.

Hencequarkswithdifferentcolourhaveexactlythesamemass.

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 9

Collidere+e-

1970 1990 (anni)

3

10

30

100

200 √s(GeV)

Collider e+ e-

BEPC SPEAR

DORIS VEPP CESR

PEP PETRA

TRISTAN

SLD LEP

Pros of an e+e- collider:

•  It is more difficult to reach high energies (with respect to a proton collider) because of the synchrotron radiation; •  Lower luminosity with respect to a fixed target experiment.

•  initial state completely defined (pointlike particle); •  √s defined = 2xEbeam

e+

e-

f

f

g/Z

dNdt

= L ⋅σ

ADA – 1961 - LNF

√s = 500 MeV

Cons of an e+e- collider:

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 10

Experimentalevidenceofthecolour•  Oneofthemostconvincingevidenceoftheexistenceofthecolourcomesfromthecomparisonofthecross-sec2onsofthetwofollowingprocesses:

•  Ifwedonottakeintoaccountthequarkhadroniza2on,andassumingthat√s isbiggerthanthefermionmasses,theamplitudesofthetwographsdifferonlybecauseoftheelectricalchargeofthefermionsinthefinalstate.

µ µ+ − + − + −→ →e e e e qq

( )( )

2

1

σ

σ µ µ

+ −

+ − + −=

→= =

→ ∑n

ii

e e qqR Q

e e•  Without the existence of the colour:

1/2

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 11

Experimentalevidenceofthecolour2/2

With the colour:

If the colour exist, R must be multiplied by 3 because the number of colours of the quarks is 3

Without colour:

R

R is a function ofi √ s . A b o v e t h e t h r e s h o l d o f b production we have:

2 2 2 2 21 2 1 2 1 33[( ) ( ) ( ) ( ) ( ) ] 3.673 3 3

33 3 9

= ⋅ − + + − + + − = =R

119

=R

( )s GeV

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 12

Massofthequarks(PDG2010)

Quark Mass Q I3 s c b tu 1.7 – 3.3 MeV 2/3 1/2 0 0 0 0

d 4.1 – 5.8 MeV -1/3 -1/2 0 0 0 0

s 80 – 130 MeV -1/3 0 -1 0 0 0

c 1.18 – 1.34 GeV 2/3 0 0 +1 0 0

b 4.13 – 4.37 GeV -1/3 0 0 0 -1 0

t 172 ± 1.6 GeV 2/3 0 0 0 0 +1

23

Q e=

13

Q e= −

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 13

ExerciseQuestion: what is the value of R in an e+e- collider having √s = 6 GeV?

•  N.B.: the collider always produce qq pair;

•  They are produced only the pairs such that:

•  Then if the collider has a center of mass energy of 6 GeV, they are produced pairs of quark uu, dd, ss, cc but NOT bb or tt

2 qs m>

2 2 2 2 2

1

1 2 1 2 30[( ) ( ) ( ) ( ) ] 3.333 3 3 3 9

3 3n

ii

R Q=

= = ⋅ − + + − + = =∑

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 14

π0decay1949-50 The decay π0à γγ calculated and measured by Steinberger. 1967 Veltman calculates the π0 decay rate using modern field theory and finds that the π0 does not decay! 1968-70 Adler, Bell and Jackiw “fix” field theory and now π0 decays but decay rate is off by factor of 9. 1973-4 Gell-Mann and Fritzsch (+others) use QCD with 3 colors and calculate the correct π0 decay rate.

π0

γ

γ

u, d

u, d

u, d

Triangle Diagram Each color contributes one amplitude. Three Colors change the decay rate by 9.

Γ π 0 → γγ( ) = 7.73N

c

3

⎝⎜

⎠⎟

2

eV predicted⎡⎣ ⎤⎦

Γ π 0 → γγ( ) = 7.7 ± 0.6 eV measured⎡⎣ ⎤⎦

= ±c N 2.99 0.12

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 15

ques/on•  Whyinthera2oR

weneedtomul2plyRby3inordertotakeintoaccountthenumberofcolours,whileintheπ0 decay we have to multiply the probability of the decay (Γtot) by a factor 9?

( )( )σ

σ µ µ

+ −

+ − + −

→=

e e qqR

e e

π0

γ

γ

u, d

u, d

u, d

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 16

GluonsandQCD•  Thetheorythatdescribesthestronginterac2onsintheStandardModeliscalledQuantumChromoDynamics(QCD).

•  TheQCDissimilartotheQED,itsproper2escanbederivedfromthegaugeinvarianceofthetransforma2onsintheSU(3)spaceofcolour.

•  Fromthisinvariancederivesthatthestronginterac2onsaremediatedby8neutralbosonsofspin1andmasszerothatarecalledgluons.Thegluonsarerelatedtothe8generatorsoftherota2onsintheSU(3)space.

•  TheQEDisinvariantforagaugetransforma2onU(1).Thisisanabeliansymmetry,thereforethephoton,thatcouplestotheelectricalcharge,doesnotcarryanelectricalcharge(itisnotcharged)sothatthephotonsdonotinteractwitheachother.

•  SU(3)isanonabeliansymmetry,thereforethegluons,thatcoupletothecolourcharges,docarryacolourcharge(actuallyacolourandanan2colour),thereforetheycancoupleamongthemselves.Thisfeaturegivesrisetoverteceswiththreeorfourgluons.Theseverteceshaveasaconsequencethecolourconfinementandtheasynto2cfreedom.

•  Gluonsdonotdis2nguishthequarkflavours,hencethestronginterac2onsareinvariantforrota2onsintheSU(3)spaceofflavour.

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 17

Colourofthegluons1/2

•  Inanalogywiththemesonsoctet,wecanrepresenttheeightgluonsinthefollowingway(n.b.thisonlyoneofthemanypossiblerepresenta2ons):

•  N.B.g7eg8are“colorless”buttheyarenotcoloursinglets.•  Laninethcombina2on(3x3)isacoloursingletanditcannotbeamediatorbetween“colored”quarks.Ifitexistswewouldhavestronginterac2onbetweencolorlesshadronwithinfiniterange.

( ) ( )− −

1 2 3 4 5 6

7 8

g = , g = , g = , g = , g = , R R R R

RR

G G G G

GG

g = ,

1 1 g = , g RR= +GG 22 6

B B B B

BB

Remember, the gluons too are “colored” and the can interact among themselves.

( )G1 RR+3

G BB+

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 18

Colourofthegluons•  electricalchargeàcolourcharge•  32-1=8matrices/operatorsà8gluons•  quarkshavecoloursRGB•  Thecolourisexchangedby8«bicoloured»gluons

In this vertex the gluon BR transforms the quark RàB (by removing the quark R and leaving the quark B, which is balanced by the component B of the gluon)

In every vertex we must conserv the colour.

α s = c o u p l i n g constant of the strong interactions.

e

ee

e

g

√α

√α q

qq

q

√αs

√αs

R

B R

B

RB

2/2

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 19

Ques/ons

• Arethequarks“real”?Whatistheirspin?

• Whydonotobservefreequarks?

• Dotheyexistthegluons?

• Whatisajetofpar2cles?

• Whatcomputa2onswecandowithQCD?

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 20

runningofαQED1/2

•  Inclassicalelectromagne2smthepoten2alenergyofanelectroninthefieldgeneratedbythesameelectron(self-energy)isequalto:

•  Theself-interac2oninthefieldtheoryisdescribedasphotonsthatareemitedandthenareabsorbedagainbythesamecharge:

•  Thepositronis“atracted”bytheelectronanditwill“screen”thechargeoftheelectroninasuchawaythatitseffec2vevaluediminishes.

•  Themoreyougointothepositron“cloud”thelesserwillbetheshieldingeffect,sotheelectroneffec2vechargeincreases.

πε=

2

0

14

eUr

The potential energy goes to infinity since r goes to zero.

e- e-

e-

e+ Vacuum polarization

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 21

runningofαQED2/2

•  Let’sconsidertheinterac2onbetweentwoelectrons:e-

e-

e-

e-

The interaction is modified by the vacuum polarization

e+ e-

e- e-

e- e-

•  A consequence of the vacuum polarization is that the charge of the electron becomes a function of the energy of the “probe” (that is of the other electron). The positrons “screen” the charge e-; the nearer we get to the charge the lesser the “screening” is and the effective charge “increase”.

Mea

sure

d ch

arge

of t

he e

-

1/137

distance

low energy probe

High energy probe

« vacuum polarization » - - - -

- - - -

- -

- - - - -

- - -

- +

+ +

+ + + + + +

+ + + +

e- +

probe

( )α = 1128Zm

( ) ( )( )α µ

αα µ

π µ

=

22

2 2

21 log3

QQ µ: scale factor

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 22

discoveryoftheasympto/cfreedominQCD:1973

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 23

runningofαs1/4

•  Let’sconsiderthestronginterac2onbetweentwoquarks:

(like QED)

q

q q

q gluon

√αs

q

q q

q q

q √αs

√αs √αs

The production of virtual qq pair in the gluon propagator produces the same screening effect of the colour charge as in QED, hence the charge should diminish at the increase of the distance (that is at low momentum transfer).

But since the gluons are “coloured” they exist also diagrams like this one that modify the interaction and p r o d u c e a n e f f e c t o f “antiscreening”

q q

q q

[ a fermions loop has opposite sign with respect to a bosons loop]

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 24

runningofαs2/4

•  Theeffectofthegluonself-interac2onissuchthat:

f = number of quarks with 4m2<Q2 Λ= scale (~200 MeV with f=4)

Q2~ Λ2 strong coupling perturbation approach Q2>> Λ2 weak coupling perturbation approach

αs(Q2)

Asymptotic freedom

Confinament barrier αs >1

1fm distance

( )( )

πα =⎛ ⎞

− ⎜ ⎟Λ⎝ ⎠

2

2

2

12

33 2 logs Q

Qf

At high momentum transfer (that is at small distances) αs is small and we can do QCD calculation with the perturbative method. At low momentum transfer the constant is big and we can not use the perturbative method.

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 25

Measurementoftherunningofαs3/4

•  ThecouplingconstantαshasbeenmeasuredbyseveralexperimentsatvariousrangeofQ2.ForinstanceatLEPhasbeenfound:

The data confirm the running of as

N.B. We are at energies much higher than ΛQCD

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 26

Measurementoftherunningofαs4/4

•  Othermeasurementsofαs:

( )( )

πα =⎛ ⎞

− ⎜ ⎟Λ⎝ ⎠

2

2

2

12

33 2 logs Q

Qf

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 27

QCDpoten/al1/2

•  Thepoten2alenergyofthesta2cinterac2onbetweenaquark-an2quarkpair(asinacoloursingletlikeameson)canbesummarizedinthefollowingway:

Ø Atshortdistancebetweenthequarks(<0.1fm)isdominanttheexchangeofasinglegluon(becauseαsis“small”)andthepoten2aloftheinterac2onissimilartotheQEDpoten2alduetoaphotonexchange:

Ø Withtheincreaseofthedistancealsoαsincreaseandwedonothaveanylongertheexchangeofasinglegluonbutweenterinanonperturba2veregime,wherewecanonlydonumericalcalcula2ons.Theseareconsistentwithapoten2alatlargedistancesthatcanbeparametrizedinthefollowingway:

4( )3

sV rrα= −

( )V r kr=

-11 GeV fmk ≈ ⋅

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 28

QCDpoten/al2/2

•  Whenthetwoquarksrecedefromeachother,thelineartermofthepoten2albecomesdominant“trapping”theenergyinsidethesystem(asithappenswhenyoustretchaspring).

This kind of potential allows to explain the excited states of a heavy quark-ant iquark pair, l ike the charmonium (cc bound states) or the bottomonium (bb bound states)

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 29

charmoniumspectra1/2

[orbital momentum]

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 30

boRomoniumspectra2/2

[orbital momentum]

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 31

hadroniza/onAconsequenceoftheasympto2cfreedomisthequarkconfinementwithinahadron.

a) b)

c)

d)

a)  The quarks are close and their interaction energy is small.

b)  The quarks move apart and their interaction energy increases (αs increases with the distance).

c)  At a certain moment, for distances of the order of one fm, it becomes energetically convenient to break the “tube”, producing a new quark-antiquark pair at the two new ends. We have now a second meson, which is colour neutral.

d)  The process (a non perturbative one) called hadronization continues untill we have all “white” hadrons in the final state.

The hadrons in the final states keep “memory” of the initial momentum of the quark and give origin to a jet of particles

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 32

spinofthequark• Wecanmeasurethespinofthequarksfromthejetangulardistribu2ons.•  Thedifferen2alcross-sec2onoftheprocesse+e-→µ+µ- is:

•  If the quarks are fermions of spin ½ , the differential cross-section of the process e+e-→qq must have the same behaviour.

2(1 cos )cosd Ad

σ θθ

= +e−

e+

µ −

µ+

ϑ

quarks have spin ½

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 33

discoveryofthegluon•  Thegluonwasdiscoveredin1979atPetra,ane+e-colliderof√s=27GeVatDesy(Hamburg)

e+

e-

f

f

g/Ze+

e-

f

f

g/Z gluon

•  From the quarks in the final state can be radiated a gluon. Whenever this gluon has enough energy, it can hadronize in its own way independently from the quarks, and it gives rise to a third jet of particles. •  People were looking for events with 3 jets in the transverse plane with respect to the beam axis, where the sum of the quadrimomentum must be zero. (A jet is made by a group of hadrons whose total quadrimomentum is equal to the quark quadrimomentum that gave origin to the jet).

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 34

spinofthegluon•  Thespinofthegluoncanbededucedfromthedifferen2alcross-sec2onwithrespecttotheangleφ between the gluon and the axis oftheothertwojets,inthecenterofmassframeofthetwojets.

gluons have spin 1

scalar gluons

QCD, vector gluons

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 35

hadroniza/on•  Theini2alquarksarecoloured.Thefinalhadronsarewhite.•  Theforma2onprocessofthehadronsiscalledhadroniza2on.Ithappensforenergies“around”1GeVandtheprocessisnotperturba2ve,soitcanbedescribedonlybyphenomenologicalmodels.

1/2

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 36

Comparisonbetweenhadroniza/onmodels2/2

• Thedegreeof“goodness”ofthevarioushadroniza2onmodelscanbededucedfromthecomparisonofMontecarlopredic2onswithexperimentaldataforseveralquan22esthatcharacterizeahadronicevent.Forinstance:

Average number of charged particle in a jet as a function of the center of mass energy of the system e+e-.

For instance the MC Jetset 7.4 ME and Cojets 6.23 do not reproduce the data well enough at high energy.

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 37

OZIruleandtheQCD1/2

• Byusingtheasympto2cfreedomwecanexplaintheOZIrule:

•  Inthediagrama)theemitedgluonsare“soz”,thatistheycarryasmallmomentum,thereforetheircouplingconstantisbig.

•  Onthecontraryintheprocessb)thegluonsare“hard”becausetheycarrythemomentumnecessarytoformthehadronsinthefinalstate,hencetheircouplingconstantissmall.Thereforetheamplitudeofthisprocessisreducedwithrespecttothepreviouscase.

0) b) a K K π π π+ − + −Φ → Φ →

OZI rule: if the diagram can be divided in two pieces cutting only gluon lines (without cutting the externa lines), the process is suppressed.

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 38

OZIrule:whythreegluons?2/2

• Theini2alstateandthefinalstatearecoloursinglet,thenthetwostatesmustbeconnectedbyagluoncombina2onthatisacoloursinglet.Theminimumnumberofgluonstodoitistwo.

•  Theφ,aswellastheJ/ψ,hasthesamequantumnumbersofthephoton,includingC=-1.Thegluontoohaschargeconjuga2onequalto=-1,thenthenumberofexchangedgluonshastobeodd(mul2plica2vequantumnumber).

Thereforetheminimumnumberofgluonsexchangedisthree.

ClicktoeditMaster/tlestyle

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 39

Exercise•  Inanasymmetrice+e-collider,theelectronbeamhasenergy4.5GeVandthepositronbeamhas2.0GeV.a)  Computethecenterofmassenergy;b)  determinewhichquarkpairscanbeproducedinthee+e-annihila2on:

4.5 GeVe− = 2 GeVe+ =

The center of mass energy is equal to √s.

( )2( ) ( )s p e p e+ −= +( )( )( ) ;

( ) ;0

0,0

,0,

,p e E

p E

E

e E− −

+

+ +⎧ =

=

−⎪⎨⎪⎩

4 s 2 2 4.5 2 6 GeVs E E E E+ − + −⇒ = ⋅ ⇒ = = ⋅ =

In this collider we can produce dd, uu, ss and cc pairs, but not bb because the mass of the quark b is about 4.5 GeV

ClicktoeditMaster/tlestyle

Endofchapter5

ClaudioLuci–Introduc2ontoPar2clePhysics–Chapter5 40

End