IDMRCS8 2017 TUT nonlin -...

39
Ranko Richert non-linear basics experimental techniques summary of effects chemical effects energy absorption electroviscous effects Tutorial organized by "International Dielectric Society" Wisła, Poland 23 July 2017 Non-linear approach to complex dynamics

Transcript of IDMRCS8 2017 TUT nonlin -...

Page 1: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

Ranko Richert

► non-linear basics► experimental techniques► summary of effects► chemical effects► energy absorption► electroviscous effects

Tuto

rial o

rgan

ized

by

"Int

erna

tiona

l Die

lect

ric S

ocie

ty"

Wisła

,Pol

and

23Ju

ly20

17

Non-linear approach to complex dynamics

Page 2: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

E ε ε D 0

0 E 0 E

T kμE B

dielectric relaxation: static permittivity

fieldelectric

E dV

A

I

AQ D

ntdisplacemedielectric t

00

R. R

ichert, Adv. C

hem. P

hys. 156 (2015) 101

Q

V

+

constitutive equation:

Page 3: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

Nonlinear Basics

P. Debye, Polar Molecules, Chemical Catalog Company, 1929:

"Here we see that the mean moment is not a linear function for largevalues of the argument, and for such values the dielectric constant

would not be a true constant but would depend upon the field intensity."

Page 4: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

limits to linear dielectric behavior

linear

pola

rizat

ion

P

field E

cos cos

EP

E

E MNP

el

or

orelA

1cos

non-linear

pola

rizat

ion

P

field E

1cos

A real dipolar system is

limited to:

Page 5: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

dielectric saturation for non-interacting dipolesP

. Debye, P

olar Molecules (C

hemical C

atalog Com

pany, 1929)

753

4

cos4

cos

94502

9452

451

31

1cotanhcos

: ,function Langevin

coscos

aaaaaL

aLa

a

kTEa

de

dekTE

kTE

0.1 1 10

0.1

1

L(a)a / 3

cos = 1

L(a) a/3

a = E / kT

cos

Langevin saturation effect(for dipole gas)

Page 6: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

non-linear dielectric effects: static limit

linear

'saturation'

po

lariz

atio

n P

field E

10

E P

0

5533

0

EEEP

Page 7: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

beyond the static limit: ac- versus dc-field approachR

. Richert, P

hys. Rev. E

88 (2013) 062313

linear

'saturation'

Pdc

+ac(t

)P

ac(t)

pola

rizat

ion

P

field E

Edc+ac(t)Eac(t)

Eacdcn tEE ,,,ˆ

Page 8: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

gauging deviation from linear dielectric response

pola

rizat

ion

resp

onse

time

pola

rizat

ion

resp

onse

time

pola

rizat

ion

resp

onse

time

low field Plo(t)

high field Phi(t) = P1(t) + P3(t)high field Phi(t) P1(t)high field Phi(t)

Page 9: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

Experimental Techniques(polar viscous liquids)

Page 10: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

experimental techniques: high field impedanceU

. Pathak, R

. Richert, C

olloid Polym

. Sci. 292 (2014) 1905

GEN

V-1

V-2

SI-1260 PZD-350(350 V, 200 mA)

100

100

Buffer Amp.Vin 500 Vp 800 kHz

Zs() 1

Csam

E0 650 kV/cmμE 0.1 kT

= 0.1 Hz ... 350 kHz

-1 0 1 2 3 4 5 6

101

102

103

| Z s | /

log10( / Hz)

Cblock(for DC)

Page 11: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

experimental techniques: time resolved techniquesU

. Pathak, R

. Richert, C

olloid Polym

. Sci. 292 (2014) 1905

GEN

Ch 1

Ch 2

DS-345

200

200

R

Sigma-100

Trig Csam

SRS DS-345:Arbitrary Waveform

Signal Generator(16300 points, 12 bit)10 Hz 30 MHz

Nicolet Sigma 100:Digital Storage Oscilloscope4 channels, 100 MS/svertical: 14 bithorizontal: 106 points

PZD-700(700 V, 100 mA)

Page 12: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

00

22

2

2

22

2

2

cos , sin

arctan

cos

sin

arctan

cos

sin

2 : periodeach for analysisFourier

CAAte

CAAte

IIIIA

tdtItI

tdtItI

VVVVA

tdtVtV

tdtVtV

tt

V

VII

V

VII

I

It

t

t

t

V

Vt

t

t

t

L.-M. W

ang, R. R

ichert, Phys. R

ev. Lett. 99 (2007) 185701

W. H

uang, R. R

ichert, J. Phys.C

hem. B

112 (2008) 9909adding time-resolution capabilities to high-field technique: ac

t = 0

curre

ntI(t

)

time

volta

geV

(t)

time

2 tt

Page 13: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

S. S

amanta, R

. Richert, J. C

hem. P

hys. 142 (2015) 044504adding time-resolution capabilities to high-field technique: dc

t = 0

curr

ent

I(t)

time

volta

geV

(t)

time

00

22

2

2

22

2

2

cos , sin

arctan

cos

sin

arctan

cos

sin

2 : periodeach for analysisFourier

CAAte

CAAte

IIIIA

tdtItI

tdtItI

VVVVA

tdtVtV

tdtVtV

tt

V

VII

V

VII

I

It

t

t

t

V

Vt

t

t

t

2 tt

Page 14: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

S. S

amanta, R

. Richert, J. C

hem. P

hys. 142 (2015) 044504adding time-resolution capabilities to high-field technique: dc

t = 0

curr

ent

I(t)

time

volta

geV

(t)

time

-2 0 2 4 6 8 10

-600

-400

-200

0

200

400

600

T = 213 K = 4 kHz

glycerol

EB = 225 kV/cm

EB = 225 kV/cm

I 0 / A

time / ms

componentsFourier even all eliminates2

, 2

tItItI

tVtVtV negposnegpos

Page 15: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

NDE Summary( AC / DC )

Page 16: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

NDE summary: dielectric saturationR

. Richert, J. P

hys.: Condens. M

atter (in press)10-2 10-1 100 101 1020

2

4

6

8

10

12

14DC

''hi

'hi

''lo

'lo

log10( / max )

' , ''

10-2 10-1 100 101 1020

2

4

6

8

10

12

14AC

''hi

'hi

''lo

'lo

log10( / max )

' , ''

DC: amplitude reduction at all frequenciesAC: amplitude reduction fades for > max

(depending on number of Tfic for structural recovery)

Page 17: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

NDE summary: chemical effectR

. Richert, J. P

hys.: Condens. M

atter (in press)10-2 10-1 100 101 1020

2

4

6

8

10

12

14DC

''hi

'hi

''lo

'lo

log10( / max )

' , ''

10-2 10-1 100 101 1020

2

4

6

8

10

12

14AC

''hi

'hi

''lo

'lo

log10( / max )

' , ''

DC: amplitude enhancement at all frequenciesAC: amplitude enhancement can fade for > max

(depends on nature of chemical effect)

Page 18: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

NDE summary: energy absorptionR

. Richert, J. P

hys.: Condens. M

atter (in press)10-2 10-1 100 101 1020

2

4

6

8

10

12

14DC

''hi

'hi

''lo

'lo

log10( / max )

' , ''

10-2 10-1 100 101 1020

2

4

6

8

10

12

14AC

''hi

'hi

''lo

'lo

log10( / max )

' , ''

DC: no energy absorbed from static fieldAC: reduction of relaxation times for > max

Page 19: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

NDE summary: electroviscous effect (entropy reduction)R

. Richert, J. P

hys.: Condens. M

atter (in press)10-2 10-1 100 101 1020

2

4

6

8

10

12

14DC

''hi

'hi

''lo

'lo

log10( / max )

' , ''

10-2 10-1 100 101 1020

2

4

6

8

10

12

14AC

''hi

'hi

''lo

'lo

log10( / max )

' , ''

DC: increased relaxation times for all frequenciesAC: increased relaxation times only for < max(always combined with dielectric saturation)

Page 20: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

Chemical Effect(Monohydroxy Alcohols)

Page 21: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

special case of 5-methyl-3-heptanolA

. R. Y

oung-Gonzales, R

. Richert, J. C

hem. P

hys. 145 (2016) 074503

low

tem

pera

ture

1Kg

1Kg

high

tem

pera

ture

cos1 zgK

W. Dannhauser, J. Chem. Phys. 48 (1968) 1911

10-1 100 101 102 103 104 105 1060

1

2

3

4

5

T = 215 K

T = 180 K

''

/ Hz

5-methyl-3-heptanol

180190200210

0.5

1.0

1.5

g K

T / K

EfxxK

ring

chainrc E

Page 22: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

special case of 5-methyl-3-heptanolA

. R. Y

oung-Gonzales, R

. Richert, J. C

hem. P

hys. 145 (2016) 074503

101 102 103 104 105-2

0

2

4

6

8

10

max

ED = 11.0 %ElnD = 12.6 %

5-methyl-3-heptanolT = 203 K

EB = 171 kV/cm

100

( 'hi

' lo

) / (

'lo

)

/ Hz

101 102 103 104 1050

5

10

15

20

25

max

ED = 11.0 %ElnD = 12.6 %

5-methyl-3-heptanolT = 203 K

EB = 171 kV/cm

100

( '' hi

'' lo )

/ '' lo

/ Hz

100 101 102 103 1040

1

2

3

4170 kV/cm28 kV/cm

T = 195 K5-methyl-3-heptanol

''

[Hz]

4

6

8 '

''

'

L.P. Singh, R. Richert, Phys. Rev. Lett. 1009 (2012) 167802

Page 23: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

time resolved changes: structural recoveryA

. R. Y

oung-Gonzales, R

. Richert, J. C

hem. P

hys. 145 (2016) 074503

0 2 4 60.0

0.5

1.0

0.0 2.5 5.0 7.50.00.51.01.5

0 4 8 120.0

1.0

2.0

1.27 %

= 8.0 kHz = 0.24 ms

t / ms

1.56 %

= 6.4 kHz = 0.24 ms

100

( e'' hi

'' lo ) /

'' lo

T = 203 K D= 0.18 ms EB = 171 kV/cm

= 4.0 kHz = 0.24 ms

2.30 %

5-methyl-3-heptanol

-8 0 8 16 24 32 40 48

0

2

4

6

8

10

8.75 %

5-methyl-3-heptanol

T = 203 KD = 0.18 ms

EB = 171 kV/cm = 1.0 kHz

10

0

( e'' hi

'' lo )

/ '' lo

t / ms

Origin of Debye peak D

Page 24: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

Energy Absorption

Page 25: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

I

V

volta

ge ,

cur

rent

time

I

V

volta

ge ,

cur

rent

time

I

V

volta

ge ,

cur

rent

time

5

1

2

2 4

3

3

-2 -1 0 1 2 3 4 5

''

log10()

1

23

4

5

30 sin)( tEtE

p=VI

R. R

ichert, Eur. P

hys. J. Special Topics 189 (2010) 223

energy absorption with heterogeneous dynamics

B. Schiener, R. Böhmer, A. Loidl, and R. V. Chamberlin, Science 274 (1996) 752

Page 26: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

101 102 103 1040

5

10

15

20

25

30

glycerol

E0 = 14 kV/cm

T = 213 K

E0 = 283 kV/cm

''

/ Hz

glycerol(E0 = 283 kV/cm)

propylene carbonate(E0 = 177 kV/cm)

100 101 102 103 104

0.00

0.10

0.20

0.30

/ Hz

'' (b)

ln

0.0

0.2

0.4

( Tcfg T

) / K

0.00

0.10

0.20

'' (a)

PCT = 166 K

ln

''

R. R

ichert, S. W

einstein, Phys. R

ev. Lett. 97 (2006) 095703

W. H

uang, R. R

ichert, J. Chem

. Phys. 130 (2009) 194509

high field impedance of glycerol and propylene carbonate

Page 27: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

0.00 0.02 0.04 0.06 0.08

0

1

2

3

4

5

0

1

2

3

4

5

PCT = 166 K

ln(tan )

ln

(tan )

1

00

time / s = 1000 Hz

measured atconstant temperature

propylenecarbonate

(E0 = 177 kV/cm)

time resolved increase of fictive

temperature,

at isothermal conditions

W. H

uang, R. R

ichert, J. Chem

. Phys. 130 (2009) 194509

agreement between experiment and model

Page 28: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

S. S

amanta, R

. Richert, J. C

hem. P

hys. 140 (2014) 054503observations at high frequencies

not yet steady stateafter 30 000 periods

t

e

0 100 200 3000.00

0.05

0.10

0.15(c)

= 100 Hz = 105 s

= 0.61

PC

E0 = 283 kV/cmT = 155 K

time / s

0 200 400 600 8000.000.100.200.300.40 (b)

= 1 Hz = 105 s

= 0.61

PCE0 = 283 kV/cm

T = 155 K (

'' hi

'' lo

) /

'' lo 0 200 400 600 8000.000.050.100.150.20

(a)

= 1 Hz = 25 s

= 0.61

PCE0 = 200 kV/cm

T = 156 K

time correlation function of ’s is structural recovery :

not seen in linear response experiments, homogeneous in excess wing.

Page 29: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

Electroviscous Effects

Page 30: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

dc-field induced change of entropy at constant temperatureG

. P. Johari, J. C

hem. P

hys. 138 (2013) 154503 log (frequency)

di

elec

tric

loss

,

''

EB >> 0 EB = 0

2ET

SV

sE

ln&ln

E

E

high vs. low

bias electric field EB

++

TTSks

cfgB

Ec

AG

*

expG. Adam and J. H. Gibbs, J. Chem. Phys. 43 (1965) 139

Page 31: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

field induced 'entropy effect': CPDES

. Sam

anta, O. Y

amam

uro, R. R

ichert, Thermochim

. Acta 636 (2016)57

100 101 102 103 1040

1

2

3

4

5

6

7

max = 40 Hz

CPDET = 335 K

= 15.0CD = 5.8 msCD = 0.67

''

/ Hz

330 340 350

16.5

17.0

17.5

18.0

18.5

s / T = 0.073 K-1

s

T / K

cresolphthalein-dimethylether (CPDE)

2

,

0

2E

TS

VE

sE

%75.0ln%72.0ln

E

E

101 102 103

-1.5

-1.0

-0.5

0.0

0.5

100 E

ln(

)

/ Hz

101 102 103

-0.5 %

0.0 %

0.5 %

1.0 %

EB = 217 kV/cm

CPDET = 335 K

( '' hi

'

' lo ) / '

' lo

sa

t

/ Hz

1K 073.0

p

s

T

Page 32: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

field induced change: entropy effectS

. Sam

anta, R. R

ichert, J. Chem

. Phys. 142 (2015) 044504

0

cosCA

AeV

VII

-4 -2 0 2 4 6 8 10 129.20

9.25

9.30

9.35

9.40

9.45

9.50

9.55 T = 213 K = 4 kHz

EB = 174 kV/cm

glycerol

pos neg avg

e'

'

t / ms

Page 33: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

'heat'-corrected results: glycerol A. R

. Young-G

onzales, S. S

amanta, R

. Richert, J. C

hem. P

hys. 143 (2015) 104504

-2 0 2 4 6 8 10 12-1.5

-1.0

-0.5

0.0

0.5

1.0

1.38 %

-process: = 0.34 ms = 0.65

= 0.58 ms = 0.65

= 0.58 ms = 0.65

T = 213 K = 4 kHz

EB = 174 kV/cm

glycerol

100

( e'' hi

'' lo )

/ '' lo

t / ms

t

ǀEBǀ

0

Page 34: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

explaining the rise/decay asymmetry A. R

. Young-G

onzales, S. S

amanta, R

. Richert, J. C

hem. P

hys. 143 (2015) 104504

20 2 B

sE E

TMS

22

22 1

1

D

D

D

D

tdecay

trise

tdecay

trise

etR

etR

etR

etR

B

sE

EP

tPT

MtS

0

2

0

0 2

""

0 2 4 6 8 100.0

0.5

1.0

t' = t 6

Rdecay(t') = exp(t' / )

Rrise(t) =1 exp(t / )

R2decay(t') =

[ exp(t' / ) ] 2

R2rise(t) =

[ 1 exp(t / ) ] 2

R

(t) ,

R2 (t)

t /

Page 35: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

Higher Harmonics

Page 36: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

experimental techniques: higher harmonicsP

. Kim

, A. R

. Young-G

onzales, R. R

ichert, J. Chem

. Phys. 145 (2016) 064510

GEN

V-in

SRS-830 PZD-350(350 V, 200 mA)

100

Buffer Amp.Vin 500 Vp 3.45 kHz

Rs

1

Csam

E0 650 kV/cmμE 0.1 kT

= 1 Hz ... 102 kHz

lock-in amplifierset to nth

harmonic

Page 37: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

third harmonic susceptibility 3 : glycerolP

. Kim

, A. R

. Young-G

onzales, R. R

ichert, J. Chem

. Phys. 145 (2016) 064510

101 102 103 1040.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E0 = 135 kV/cmglycerol

T = 210 K T = 213 K T = 216 K

T = 180 K

100

3 E

02

/ Hz

10-210-1100 1010.0

0.5

1.0

1.5E0 100 kV/cm

/ max

experiment model

101 102 103 1040.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5glycerol T = 210 K

T = 213 K T = 216 K

100

3 E

02

/ Hz

Page 38: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

advertisementR

. Richert, J. P

hys.: Condens. M

atter (in press)

Page 39: IDMRCS8 2017 TUT nonlin - the-dielectric-society.orgthe-dielectric-society.org/sites/default/files/IDMRCS8 TUT Richert.pdf · D ε ε 0 E E 0 E 0 μE k B T dielectric relaxation:

Different sources of non-linear behavior can be separted by ac vs.dc or by frequency.

Time resolved non-linear techniques provideinformation on dynamics of structural recovery, analogous to physical aging.

Effects that can be studied are: Dielectric saturation; Field induced shifts of chemical potentials; High resolution structural recovery;Electroviscous and electrocaloric effects.

Phenomenological models exist, butmuch of the general theory needed for interpretation is still missing.

Susan Weinstein Ullas Pathak Amanda R. Young-GonzalesLi-Min Wang Abidah Khalife Pyeongeun KimWei Huang Subarna Samanta

CONCLUSIONS

pola

rizat

ion

P

field E

ASU

team