17
Idiot's guide to... Idiot's guide to... General Linear Model & General Linear Model & fMRI fMRI Elliot Freeman, ICN. Elliot Freeman, ICN. fMRI model, Linear Time Series, Design Matrices, Parameter estimation, *&%@!

noah-hicks
• Category

## Documents

• view

222

0

description

Observed data Preprocessing... Intensity Time Y Y = X. β + ε Y is a matrix of BOLD signals: Each column represents a single voxel sampled at successive time points.

### Transcript of Idiot's guide to... General Linear Model fMRI Elliot Freeman, ICN. fMRI model, Linear Time Series,...

Idiot's guide to...Idiot's guide to...General Linear Model & fMRI General Linear Model & fMRI

Elliot Freeman, ICN.Elliot Freeman, ICN.

• fMRI model, Linear Time Series, Design Matrices, Parameter estimation, *&%@!

General Linear Model & fMRI

How does GLM apply to fMRI experiments?

Y = X . β + ε

Observed = Predictors * Parameters + Error

BOLD = Design Matrix * Betas + Error

Observed data Preprocessing ...

Intensity

Tim

e

Y

Y = X . β + ε

Y is a matrix of BOLD signals:

Each column represents a single voxel sampled at successive time points.

Univariate analysis

Each voxel considered as independent observation

Analysis of individual voxels over time, not groups over space

SPM would still work on an Amoeba!

Y = X . β + ε

Continuous predictors

• Scan no Voxel 1 Taskdifficulty

1 57.84 52 57.58 43 57.14 44 55.15 25 55.90 36 55.67 17 58.14 68 55.82 39 55.10 1

10 58.65 611 56.89 512 55.69 2

X can contain values quantifying experimental variable

Y X

Y = X . β + ε

0 154

54.5

55

55.5

56

56.5

57

57.5

58

58.5

59

59.5

60

Condition

voxe

l val

ue

Binary predictors

• Scan no Voxel 1 Task difficulty

1 57.84 0

2 57.58 0

3 57.14 0

4 55.15 0

5 55.90 0

6 55.67 0

7 58.14 1

8 55.82 1

9 55.10 1

10 58.65 1

11 56.89 1 12 55.69 1

X can contain values distinguishing experimental conditions

Y X

Y = X . β + ε

Parameters & error

this line is a 'model' of the data

slope β = 0.23

intercept = 54.5

β: slope of line relating X to Y• ‘how much of X

is needed to approximate Y?’

• the best estimate of β minimises ε: deviations from line

Y = X . β + ε

Design Matrix

Matrix represents values of XDifferent columns = different predictors

Y X1 X2

Constantvariable

1 57.84 5 12 57.58 4 13 57.14 4 14 55.15 2 15 55.90 3 16 55.67 1 17 58.14 6 18 55.82 3 19 55.10 1 1

10 58.65 6 111 56.89 5 112 55.69 2 1

X1 X2

Y = X . β + ε

Matrix formulation

(t) Y X1 X2

Constantvariable

1 57.84 5 12 57.58 4 13 57.14 4 14 55.15 2 15 55.90 3 16 55.67 1 17 58.14 6 18 55.82 3 19 55.10 1 110 58.65 6 111 56.89 5 112 55.69 2 1

Y1

Y2

YN

β1

β2

βL

ε(t1)

ε(t2)

ε(tN)

+= X1

(t1) X2(t1) ... XL

(t1) X1

(t2) X2(t2) ... XL

(tS)

X1(tN) X2

(tN) ... XL(tN)

Y1 = (5 * β1) + (1 * β2) ^

Y2 = (4 * β1) + (1 * β2) ...

YN = (X1(tN) * β1) + (X2

(tN) * β2) ^

X1 X2

Y = X . β + ε

Parameter estimation and statsFind betas (by least squares estimation)

•Y= βX -> “B = Y / X” (B= estimated β)

•Matlab magic: >> B = inv(X) * Y

Now find error term:•e = Y – (X * B )

...and use these results for statistics:• t = betas / standard error

Covariates vs. conditions Covariates:

• parametric modulation of independent variable

• e.g. task-difficulty 1 to 6 -> regression: beta = slope

Conditions:• 'dummy' codes identify different

levels of experimental factor• specify time of onset and duration• e.g. integers 0 or 1: 'off' or 'on'

-> ANOVA: beta = effect mean

on

off

off

on

Modelling haemodynamics

Brain does not just switch on and off!

-> Reshape (convolve) regressors to resemble HRF

HRF basic function

Original

HRF Convolved

Anatomy of a design matrix

Example:• 5 subjects• 2 conditions per

subject• 6 replications per

condition• 1 covariate

covariatessubjectsconditions

Interesting vs. uninteresting Important to model all known

variables, even if not experimentally interesting:• e.g. head movement, block

and subject effects • minimise residual error

variance for better stats• effects-of-interest means

subjects

globalactivity or movement

conditions:effects of interest

Selecting and comparing betas A beta value is estimated for each

column in design matrix A contrast variable is used to select

(groups of) conditions and compare with others

e.g. mean β(2 4 6 ...) - mean β(1 3 5 ...)

t statistic = ( β1 β2 β3 ... ) . / SE

t-test: t > critical value ?

-11-1...