HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV...

18
HIV-1 Dynamics in Blood Stream with Euler’s method & RK4 Team 7 Louis, Lee Young June, Heo jisu

Transcript of HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV...

Page 1: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

HIV-1 Dynamics in Blood Streamwith Euler’s method & RK4

Team 7

Louis, Lee Young June, Heo jisu

Page 2: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

Outline

1. Preliminary

Ⅰ. Improved Euler’s method

Ⅱ. Runge-Kutta method2. Main topic

Ⅰ. Problem : HIV-1 Dynamics in the Blood Stream

Ⅱ. Codes & result of Improved Euler’s method

Ⅲ. Codes & result of RK4

3. Summary - Comparison

4. Future work - Multistep method

Page 3: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

Preliminary

Ⅰ. Improved Euler’s method

Ⅱ. The 4th order Runge-Kutta method

Page 4: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

Main topicⅠ.Problem

T : concentration of target cells in plasmaT* : concentration of infected cells in plasmaV1 : concentration of infectious viral RNA in plasmaVx : concentration of non-infectious viral particles in plasmaδ : the rate of cell loss by lysis, apoptosis, or removal by the immune systemc : rate at which viral particles are cleared from the blood stream

target cells→

infected→

infectious virons ->Vx V1

T*(+) *kT

(-) *δ

(-) *cV1

(+) *Nδ

(-) *c

T

non-infectious virons ->

Page 5: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

Problem : HIV-1 Dynamics in the Blood Stream

Equation

dT* / dt = kV1T −δT*

dV1 / dt = −cV1

dVx / dt = NδT*−cVx

Initial value

V1 (t = 0) = 100 /µlVx (t = 0) = 0 /µlT (t = 0) = 250non-infected cells /µlT* (t = 0) = 10infected cells /µl k = 2 ·10−4µl /day/virions (infection rate)N = 60virions produced per cellδ= 0 .5/day c = 3 .0/day

Assumptions*No natural death of healthy cells*No production of new healthy cells

Page 6: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

Problem.

Find the number of infected cells, infectious viral particles, and non-infectious viral particles at t = 5 days using improved Euler’s method and fourth-order RK method.

Page 7: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

Anaylitic solution We can find anaylitic solution of V1(t), T*(t) and Vx(t) by intergrating

dV1 / dt = −cV1 V1 (t = 0) = 100 /µl

dT* / dt = kV1T −δT* T* (t = 0) = 10 infected cells /µl

dVx / dt = NδT*−cVx Vx (t = 0) = 0 /µl

Then we got these equations.

V1(t) = 100e-3t-

T*(t) = 12e-0.5t-2e-3t

Vx(t) = -144e-3t-60*t*e-3t+144e-0.5t

So we can get exact values at each t. (t=1,2,3,4,5)

Page 8: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

Ⅱ. MATLAB Codes & results of Improved Euler’s method

Page 9: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

MATLAB Codes & results of Improved Euler’s method

Page 10: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

MATLAB Codes & results of Improved Euler’s method

Page 11: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

Ⅲ. MATLAB Codes & results of RK4

Page 12: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

MATLAB Codes & results of RK4

Page 13: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

MATLAB Codes & results of RK4

Page 14: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

Summary

As you can see, we get some pattern in the tables.In the table 3, about two zeros are added as h is multiplied by 0.1.On the other hand, about 4 zeros are added as h is muliplied by 0.1 in the

table 5.So we may say Global errors is for the improved Euler’s method,and Global errors for the Runge-Kutta method is .

* In RK4, as the number of iteration becomes large, other types of errors may creep in.

Page 15: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

Summary

Page 16: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

Summary

It is clear that Numerical values obtained with RK4 are closer to the real values than values obtained with IE.

Page 17: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

Future workMULTISTEP METHODSEuler’s method, IE, RK4 are examples of single-step or starting methods. In these methods each succesive value is computed based only on information about the immediately preceding value . On the other hand, multistep methods use the values from several computed steps to obtain the value of . Here is one example of multistep method. The fourth-order Adams-Bashforth-Moulton method.

- Adams-Bashforth-Moulton MethodLike the improved Euler’s method, it is a predictor-corrector method. One formula is used to predict a value , which in turn is used to obtain a corrected value . The predictor in this method is the Adams-Bashforth formula

for The value of is then substituted into the Adams-Moulton corrector

Page 18: HIV-1 Dynamics in Blood Streammath2.hanyang.ac.kr/hjang/MM/7_1.pdf ·  · 2018-04-16dT* / dt = kV 1 T −δT* dV 1 / dt = −cV 1 dV x / dt = NδT*−cV x Initial value V 1 (t =

THANK YOU

Q&A