Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS &...

23
Hadronic matrix elements for Dark Matter and other searches Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett. 116 (2016) 172001 and in preparation) Laurent Lellouch KEK-PH, , 13-16 February 2017

Transcript of Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS &...

Page 1: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Hadronic matrix elements for Dark Matterand

other searches

Laurent Lellouch

CPT MarseilleCNRS & Aix-Marseille U.

Budapest-Marseille-Wuppertal collaboration (BMWc)

(Phys.Rev.Lett. 116 (2016) 172001 and in preparation)

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 2: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Direct WIMP dark matter detection

↓χ χ

N N

H

Lqχ =∑

q

λΓq[qΓq][χΓχ] −→ LNχ = λΓ

N [NΓN][χΓχ]

Quark are confined within nucleons→ nonperturbative QCD tool

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 3: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

WIMP-nucleus spin-independent cross section . . .In low-E limit

dσSIχ A

Z X

dq2 =1πv2 [Zfp + (A− Z )fn]2 |FX (q2)|2

w/ FX (~q = 0) = 1 nuclear FF and χN couplings (N = p, n)

fNMN

=∑

q=u,d,s

f Nqλq

mq+∑

Q=c,b,t

f NQλQ

mQ

such that (f = u, . . . , t and 〈N(~p′)|N(~p)〉 = (2π)3δ(3)(~p′ − ~p))

f Nud MN = σπN = mud〈N|uu + dd |N〉, f N

f MN = σfN = mf 〈N |f f |N〉

For heavy Q = c, b, t (Shifman et al ’78)mQQQ

−→ mQ QQ = −13αs

4πG2 + O

(α2sO6

4m2Q

)

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 4: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

. . . and relevant hadronic matrix elements

Then obtain f NQ in terms of f N

q through to MN = 〈N|θµµ|N〉, w/

θµµ = (1− γm(αs))

∑q=u,d,s

mq qq +∑

Q=c,b,t

mQQQ

+β(αs)

2αsG2

Integrate out Q = t , b, c and obtain f Nc from f N

q , q = u, d , s, etc.

Will be done to O(α3s) (Hill et al ’15), but at LO find

f NQ ≡

〈N|mQQQ|N〉MN

=2

27

1−∑

q=u,d,s

f Nq

+ O(αs, α

2s

Λ2QCD

4m2Q

)since 4πβ(αs) = −β0α

2s + O(α3

s) and β0 = 11− 23 Nq − 2

3 NQ

For f Nq , q = u, d , s, use lattice QCD and Feynman-Hellman theorem

f Nq MN = 〈N|mq qq|N〉 = mq

∂MN

∂mq

∣∣∣∣mΦ

q

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 5: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

What is lattice QCD (LQCD)?To describe ordinary matter, QCD requires ≥ 104 numbers at every point of spacetime→∞ number of numbers in our continuous spacetime→ must temporarily “simplify” the theory to be able to calculate (regularization)⇒ Lattice gauge theory −→ mathematically sound definition of NP QCD:

UV (& IR) cutoff→ well defined path integral inEuclidean spacetime:

〈O〉 =

∫DUDψDψ e−SG−

∫ψD[M]ψ O[U, ψ, ψ]

=

∫DU e−SG det(D[M]) O[U]Wick

DUe−SG det(D[M]) ≥ 0 & finite # of dofs→ evaluate numerically using stochastic methods

rrrrrrrrrr

rrrrrrrrrr

rrrrrrrrrr

rrrrrrrrrr

rrrrrrrrrr

rrrrrrrrrr

rrrrrrrrrr

rrrrrrrrrr

-6�?

6

?

T

-�L

?6a

Uµ(x) = eiagAµ(x) ψ(x)

LQCD is QCD but only when Nf ≥ 2 + 1, mq → mphysq , a→ 0, L→∞

HUGE conceptual and numerical challenge (integrate over ∼ 109 real variables)

⇒ very few calculations control all necessary limitsLaurent Lellouch KEK-PH, , 13-16 February 2017

Page 6: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Strategy of calculation

Objective:

Determine slope of MN wrt mq , q = u, d , s, at physical point

Method:

Perform many high-statistics simulations with various mq around physical values, variousa <∼ 0.1 fm and various L >∼ 6 fm

For each compute Mπ (→ mud ), Mηs =√

2M2K −M2

π (→ ms), MDs (→ mc ) and MN

(→ ΛQCD)

Study dependence of mq , q = ud , s, c and MN on Mπ , Mηs , MDs , a and L

For each simulation determine a, mΦq ’s such that Mπ , . . . take their physical value in a→ 0

and L→∞ limit

Compute, at physical point

f Nq =

∑P=π,ηs

∂ ln M2P

∂ ln mq

∂ ln MN

∂ ln M2P

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 7: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Lattice details

Nf = 1 + 1 + 1 + 13HEX clover-improved Wilson fermions on tree-level improved Symanzikgluons33 ensembles w/ total ∼ 169000 trajectories∼ 500 measurements per configuration4 a ∈ [0.064,0.102] fm;Mπ ∈ [195,450]MeV w/ LMπ > 4

Improvements over BMWc, PRL ’16

3 Charm in sea3 >∼ × 100 in statistics3 >∼ × 2 lever arm in ms

3 Like PRL ’16 FH in terms of quark and not meson masses7 No physical mud , but small enough and know MN from experiment

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 8: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

M2π ∼ mud dependence of MN (preliminary)

1002 2002 3002

Mπ2 [MeV2]

900

950

1000

1050

1100

1150M

N [M

eV]

β=3.2β=3.2 QCD+QEDβ=3.3β=3.4β=3.5

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 9: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Mηs ∼ ms dependence of MN (preliminary)

3002 4002 5002 6002 7002 8002

Mηs

2 [MeV2]

880

900

920

940

960M

N [M

eV]

β=3.2β=3.2 QCD+QEDβ=3.3β=3.4β=3.5

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 10: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Chain rule conversion matrix (preliminary)

Have:

∂ ln MN

∂ ln M2P

w/ P = π, ηs

Want:

∂ ln MN

∂ ln mq

w/ q = u, d , s 3002 4002 5002 6002 7002 8002

2 [MeV2 ]

β=3.2β=3.3β=3.4β=3.5

1002 2002 3002

2 [MeV2 ]

0

0.5

1

1.5

ms/m

0

0.1

0.2

mud

/msφ

s

∂ ln M2π

∂ ln mud

∂ ln M2ηs

∂ ln mud∂ ln M2

π∂ ln ms

∂ ln M2ηs

∂ ln ms

=

(0.94(1)(1) 0.002(0)(1)0.06(2)(3) 1.02(0)(2)

)

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 11: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Systematic error assessment (preliminary)Estimated using extended frequentist approach (BMWc, Science ’08, Science ’15)

Excited state contamination: 4 time intervals for correlations functions

Mass interpolation/extrapolation errors

Mπ ≤ 330/360/420 MeVdifferent Mπ/ηs dependences (polynomials, Padés, χPT)

continuum extrapolation: O(αsa) vs O(a2)

⇒ 672 analyses which differ by higher order effects

20 30 40 50σudN [MeV]

0

0.2

0.4

0.6

0.8

1

rela

tive

wei

ght

AIC weightQ weightflat weight

40 50 60 70σsN [MeV]

0

0.2

0.4

0.6

0.8

1

rela

tive

wei

ght

AIC weightQ weightflat weight

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 12: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Preliminary results

Direct results

f Nud = 0.0430(19)(32) [8.6%] f N

s = 0.0564(38)(35) [9.2%]

Using SU(2) isospin (BMWc, PRL116) w/ ∆QCDMN = 2.52(17)(24) MeV (BMWc,Science 347) & mu/md = 0.485(11)(16) (BMWc, PRL117)

f pu = 0.0153(6)(11) [8.1%] f p

d = 0.0264(13)(21) [9.4%]

f nu = 0.0128(6)(11) [9.7%] f n

d = 0.0316(13)(21) [7.9%]

Using f Nud,s & HQ expansion up to O(α4

s ,Λ2QCD/m

2c ) corrections (Hill et al ’15)

f Nc = 0.0730(5)(5)(??) [1.0 + ??%] f N

b = 0.0700(4)(4)(??) [0.9 + ??%]

f Nt = 0.0678(3)(3)(??) [0.7 + ??%]

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 13: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Low-energy effective h-N coupling (preliminary)

1 100 10000mq [MeV]

0

2

4

6

8

f fp [%]

u

d

s

cb t

ffN is q contribution to effective coupling of Higgs to nucleon in units of MN

⇒ fraction of MN coming from q contribution to coupling of N to Higgs vev

HQ expansion⇒ Q = c, b, t contributions mainly through their impact on the running of αs

fN = 0.310(3)(3)(??) [1.4 + ??%]

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 14: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Conclusion

Scalar quark contents of p & n have been computed with full control overall sources of uncertainties

Important for: DM searches; coherent LFV µ→ e conversion in nuclei;describing low-energy coupling of N to the Higgs; understanding MN ; πN and KNscattering, etc.

f Nq , q = u,d , s & N = n,p are now known to better than 10%

f NQ , Q = c,b, t and fN to even better precision

Correlations between the various quantities will be given

Hadronic ME are no longer the dominant source of uncertainty in DMdirect detection rate predictions . . .

. . . or in the determination of WIMP couplings from possible DM signals

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 15: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

BACKUP

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 16: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Comparison

GLS 91 _Pavan 02 _Alarcon et al 12 _Shanahan et al 12 _Alvarez et al 13, FH _Lutz et al 14, FH _Ren et al 14, FH _Hoferichter et al 15 _JLQCD 08, FH _Bali et al 11, FH _ETM 16, ME _Bali et al 16, ME _BMWc 11, FH _QCDSF 11,FH _

BMWc 16, FH _

Yang et al 15, ME _

New dataset, FH_

0.02

0.02

0.04

0.04

0.06

0.06

0.08

0.08fN

ud

Pheno.Nf=2Nf=2+1Nf=2+1+1

MILC 09, FH _BMWc 11, FH _QCDSF 11, FH _Ohki et al 13, ME _Junnarkar et al 13, FH _Gong et al 13, ME _Yang et al 15, ME _

BMWc 16, FH _

GLS 91 _Pavan 02 _

Shanahan et al 12 _Lutz et al 14 _Ren et al 14 _An et al 14 _Alarcon et al 14 _JLQCD 10, FH _Bali et al 11, ME _ETM 16, ME _Bali et al 16, ME _

New dataset, FH _0

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5fN

s

Pheno.Nf=2Nf=2+1Nf=2+1+1

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 17: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Finite-volume effects

1/10 1/6 1/4 1/3L-1 [fm-1]

940

960

980

1000

MN[M

eV]

β=3.2β=3.2 QCD+QEDβ=3.3β=3.4β=3.5

Fit away leading effects MX (L)−MXMX

= cM1/2π L−3/2e−LMπ

Compabtible w/ χPT expectation (Colangelo et al ’10)

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 18: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Kolmogorov-Smirnov test and ground state extraction

Selection of fit-time range is crucial and delicate to isolate N ground state incorrelation functions

Consider cumulative distributions ofthe fit qualities over 33 ensembles fordifferent tmin and hadrons

Fit quality should be uniformlydistributed

Apply Kolmogorov-Smirnov analysis totest measured distributions

Keep tmin 3 distribution compatible w/uniform distribution w/ prob. > 30%

0 0.2 0.4 0.6 0.8 1fit quality

0

0.2

0.4

0.6

0.8

1

cdf(M

p)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

tref=1 fm p=0.09tref=1.3 fm p=0.55

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 19: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Systematic error decomposition

3 All analyses in goodagreement

3 Reasonable fitquality0.03 < Q < 0.65

50 60 70σsN [MeV]

t0=-1.25 Q=0.20t0=-1.3 Q=0.23

t0=-1.35 Q=0.34t0=-1.4 Q=0.24

no a Q=0.23αa q Q=0.23a2 q Q=0.23

αa N Q=0.0.27αa N αa q Q=0.0.27

a2 N Q=0.27a2 N a2 q Q=0.27

Mπ<330 MeV Q=0.30

Mπ<360 MeV Q=0.26

Mπ<420 MeV Q=0.20

4 Q=0.22M

π

3 Q=0.29

2 Pade Q=0.24M

χ

2 Taylor Q=0.26

LO mq Q=0.25NLO mq Q=0.25

TOTAL Q=0.25

30 40 50σudN [MeV]

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 20: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

Example continuum extrapolation of MN (preliminary)

0.0502 0.1002

a[fm]

920

930

940

950

960

970

980

MN[M

eV]

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 21: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

New method for obtaining f p/nu/d

[BMWc, PRL 116 (2016)]

Input: f Nud and ∆QCDMN = Mn − Mp (from BMWc, Science ’15)

SU(2) relations w/ δm = md − mu

H = Hiso + Hδm , Hδm =δm2

∫d3x (dd − uu)

∆QCDMN = δm〈p|uu − dd |p〉

lead to, w/ r = mu/md ,

f p/nu =

(r

1 + r

)f Nud ±

12

(r

1− r

)∆QCDMN

MN

f p/nd =

(1

1 + r

)f Nud ∓

12

(1

1− r

)∆QCDMN

MN

Huge improvement on usual SU(3)-flavor approach

systematic:(

ms −mud

ΛQCD

)2≈ 10% −→

(md −mu

ΛQCD

)2≈ 0.01% .

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 22: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

σ-terms from LQCD: matrix element (ME) methodσπN = mud〈N|uu + dd |N〉 σsN = ms〈N|ss|N〉

Extract directly from time-dependence of 3-pt fns:

N(ti) N(tf)N(tf)

qΓq(t)

N(ti) N(tf)

(t−ti ),(tf−t)→∞−→ 〈N(~0)|qΓq|N(~0)〉

3 Desired matrix element appears at leading order

7 Must compute more noisy 3-pt fn

7 Quark-disconnected contribution difficult, though1/Nc suppressed

7 mq qq renormalization challenging (Wilson fermions)

N(ti) N(tf)

qΓq(t)

Laurent Lellouch KEK-PH, , 13-16 February 2017

Page 23: Hadronic matrix elements for Dark Matter and other searches ...Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett.

σ-terms from LQCD: Feynman-Hellmann (FH) method

Feynman-Hellmann theorem yields:

〈N|mq qq|N〉 = mq∂MN

∂mq

∣∣∣∣mΦ

q

On lattice get MN from time-dependence of 2pt-fn, e.g.:

N(ti) N(tf)(t−ti )→∞−→ 〈0|N|N〉〈N|N|0〉 exp {−MN(tf − ti )}

3 Only simpler and less noisy 2pt-fn is needed

3 No difficult quark-disconnected contributions

3 No difficult renormalization

7 ∂MN/∂mq small for q = [ud ] and even smaller for q = s, c, . . .

Laurent Lellouch KEK-PH, , 13-16 February 2017