Generalized Reflection Coefficient, Smith Chart ...

44
M.H. Perrott High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components Michael H. Perrott February 11, 2004 Copyright © 2004 by Michael H. Perrott All rights reserved. 1

Transcript of Generalized Reflection Coefficient, Smith Chart ...

M.H. Perrott

High Speed Communication Circuits and SystemsLecture 4

Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components

Michael H. PerrottFebruary 11, 2004

Copyright © 2004 by Michael H. PerrottAll rights reserved.

1

M.H. PerrottM.H. Perrott

Determine Voltage and Current At Different Positions

Incident and reflected waves must be added together

x

z

Ex

Hyy

ZL

ExHy

ZL

Incident Wave

Reflected Wave

0Lz

V+ejwtejkz

I+ejwtejkz

V-ejwte-jkz

I-ejwte-jkz

2

M.H. PerrottM.H. Perrott

Determine Voltage and Current At Different Positions

x

z

Ex

Hyy

ZL

ExHy

ZL

Incident Wave

Reflected Wave

0Lz

V+ejwtejkz

I+ejwtejkz

V-ejwte-jkz

I-ejwte-jkz

3

M.H. PerrottM.H. Perrott

Define Generalized Reflection Coefficient

Similarly:

4

M.H. PerrottM.H. Perrott

A Closer Look at (z)

Recall L is

We can view (z) as a complex number that rotates clockwise as z (distance from the load) increases

Note: |ΓL|

|ΓL| Re{Γ(z)}

Im{Γ(z)}

ΓL

Δ = 2kzΓL

Γ(z)

0

5

M.H. PerrottM.H. Perrott

Calculate |Vmax| and |Vmin| Across The Transmission Line

We found that

So that the max and min of V(z,t) are calculated as

We can calculate this geometrically!

6

M.H. PerrottM.H. Perrott

A Geometric View of |1 + (z)|

|ΓL|

Re{1+Γ(z)}

Im{1+Γ(z)}

Γ(z)

10

|1+Γ(z)|

7

M.H. PerrottM.H. Perrott

Reflections Cause Amplitude to Vary Across Line

Equation: Graphical representation:

directionof travel

z

tV+ejwtejkz

z

|1 + Γ(z)|

max|1+Γ(z)|

λ

0

min|1+Γ(z)|

|1+Γ(0)|

8

M.H. PerrottM.H. Perrott

Voltage Standing Wave Ratio (VSWR)

Definition

For passive load (and line)

We can infer the magnitude of the reflection coefficient based on VSWR

9

M.H. PerrottM.H. Perrott

Reflections Influence Impedance Across The Line

From Slide 4

- Note: not a function of time! (only of distance from load)

Alternatively

- From Lecture 2:

10

M.H. PerrottM.H. Perrott

Example: Z(/4) with Shorted Load

Calculate reflection coefficient

Calculate generalized reflection coefficient

Calculate impedance

x

z

y

ZL

0Lz

λ/4

Z(λ/4)

11

M.H. PerrottM.H. Perrott

Generalize Relationship Between Z(/4) and Z(0)

General formulation

At load (z=0)

At quarter wavelength away (z = /4)

- Impedance is inverted! Shorts turn into opens Capacitors turn into inductors

12

M.H. PerrottM.H. Perrott

Now Look At Z() (Impedance Close to Load)

Impedance formula ( very small)

- A useful approximation:

- Recall from Lecture 2:

Overall approximation:

13

M.H. PerrottM.H. Perrott

Example: Look At Z() With Load Shorted

Reflection coefficient:

Resulting impedance looks inductive!

x

z

y

ZL

0Δz

Z(Δ)

14

M.H. PerrottM.H. Perrott

Example: Look At Z() With Load Open

Reflection coefficient:

Resulting impedance looks capacitive!

x

z

y

ZL

0Δz

Z(Δ)

15

M.H. PerrottM.H. Perrott

Consider an Ideal LC Tank Circuit

Calculate input impedance about resonance

L CZin

= 0 negligible

16

M.H. PerrottM.H. Perrott

Transmission Line Version: Z(/4) with Shorted Load

As previously calculated

Impedance calculation

Relate to frequency

x

z

y

ZL

0Lz

λ0/4

Z(λ0/4)

17

M.H. PerrottM.H. Perrott

Calculate Z( f) – Step 1

Wavelength as a function of f

Generalized reflection coefficient

x

z

y

ZL

0Lz

λ0/4

Z(λ0/4)

18

M.H. PerrottM.H. Perrott

Calculate Z( f) – Step 2

Impedance calculation

Recall

x

z

y

ZL

0Lz

λ0/4

Z(λ0/4)

- Looks like LC tank circuit (but more than one mode)!19

M.H. PerrottM.H. Perrott

Smith Chart

Define normalized impedance

Mapping from normalized impedance to is one-to-one

- Consider working in coordinate system based on Key relationship between Zn and

- Equate real and imaginary parts to get Smith Chart

20

M.H. PerrottM.H. Perrott

Real Impedance in Coordinates (Equate Real Parts)

0.2 0.5 1 2 5

ΓL=0

Im{ΓL}

Re{ΓL}

ΓL=1ΓL=-1

ΓL=j

ΓL=-j

Zn=0.5

21

M.H. PerrottM.H. Perrott

Imag. Impedance in Coordinates (Equate Imag. Parts)

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

Im{ΓL}

Re{ΓL}

ΓL=0 ΓL=1ΓL=-1

ΓL=j

ΓL=-j

Zn=j0.5

Zn=-j0.5

22

M.H. PerrottM.H. Perrott

What Happens When We Invert the Impedance?

Fundamental formulas

Impact of inverting the impedance

- Derivation:

We can invert complex impedances in plane by simply changing the sign of !

How can we best exploit this?

23

M.H. PerrottM.H. Perrott

The Smith Chart as a Calculator for Matching Networks

Consider constructing both impedance and admittance curves on Smith chart

- Conductance curves derived from resistance curves- Susceptance curves derived from reactance curves

For series circuits, work with impedance- Impedances add for series circuits

For parallel circuits, work with admittance- Admittances add for parallel circuits

24

M.H. PerrottM.H. Perrott

Resistance and Conductance on the Smith Chart

0.2 0.5 1 2 5

Im{ΓL}

Re{ΓL}

ΓL=0 ΓL=1ΓL=-1

ΓL=j

ΓL=-j

Yn=2

Yn=0.5 Zn=0.5

Zn=2

25

M.H. PerrottM.H. Perrott

Reactance and Susceptance on the Smith Chart

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

Im{ΓL}

Re{ΓL}

ΓL=0 ΓL=1ΓL=-1

ΓL=j

ΓL=-j

Yn=-j2

Yn=j2

Zn=j2

Zn=-j2

26

M.H. PerrottM.H. Perrott

Overall Smith Chart

0.2 0.5 1 2 5

j0.2

−j0.2

0

j0.5

−j0.5

0

j1

−j1

0

j2

−j2

0

j5

−j5

0

27

M.H. PerrottM.H. Perrott

Example – Match RC Network to 50 Ohms at 2.5 GHz

Circuit

Step 1: Calculate ZLn

Step 2: Plot ZLn on Smith Chart (use admittance, YLn)

Zin Rp=200Cp=1pFMatchingNetwork ZL

28

M.H. PerrottM.H. Perrott

Plot Starting Impedance (Admittance) on Smith Chart

0.2 0.5 1 2 5

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

YLn=0.25+j0.7854

(Note: ZLn=0.37-j1.16)

29

M.H. PerrottM.H. Perrott

Develop Matching “Game Plan” Based on Smith Chart

By inspection, we see that the following matching network can bring us to Zin = 50 Ohms (center of Smith chart)

Use the Smith chart to come up with component values- Inductance Lm shifts impedance up along reactance

curve- Capacitance Cm shifts impedance down along susceptance curve

Zin Rp=200Cp=1pFZL

Lm

Cm

Matching Network

30

M.H. PerrottM.H. Perrott

Add Reactance of Inductor Lm

0.2 0.5 1 2 5

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

ZLn=0.37-j1.16

Z2n=0.37+j0.48

normalizedinductor

reactance= j1.64

31

M.H. PerrottM.H. Perrott

Inductor Value Calculation Using Smith Chart

From Smith chart, we found that the desired normalized inductor reactance is

Required inductor value is therefore

32

M.H. PerrottM.H. Perrott

Add Susceptance of Capacitor Cm (Achieves Match!)

0.2 0.5 1 2 5

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

ZLn=0.37-j1.16

Z2n=0.37+j0.48

1.0+j0.0

normalizedcapacitor

susceptance= j1.31

(note: Y2n=1.00-j1.31)

33

M.H. PerrottM.H. Perrott

Capacitor Value Calculation Using Smith Chart

From Smith chart, we found that the desired normalized capacitor susceptance is

Required capacitor value is therefore

34

M.H. PerrottM.H. Perrott

Just For Fun

Play the “matching game” at

- Allows you to graphically tune several matching networks- Note: game is set up to match source to load impedance

rather than match the load to the source impedance Same results, just different viewpoint

http://contact.tm.agilent.com/Agilent/tmo/an-95-1/classes/imatch.html

35

M.H. Perrott

Passives

36

M.H. PerrottM.H. Perrott

Polysilicon Resistors

Use unsilicided polysilicon to create resistor

Key parameters- Resistance (usually 100- 200 Ohms per square)- Parasitic capacitance (usually small)

Appropriate for high speed amplifiers- Linearity (quite linear compared to other options)- Accuracy (usually can be set within ± 15%)

A

Rpoly

B

B

A

37

M.H. PerrottM.H. Perrott

MOS Resistors

Bias a MOS device in its triode region

High resistance values can be achieved in a small area (MegaOhms within tens of square microns)

Resistance is quite nonlinear- Appropriate for small swing circuits

AW/LRds

B A B

38

M.H. PerrottM.H. Perrott

High Density Capacitors (Biasing, Decoupling)

MOS devices offer the highest capacitance per unit area- Limited to a one terminal device- Voltage must be high enough to invert the channel

Key parameters- Capacitance value

Raw cap value from MOS device is 6.1 fF/ m2 for 0.24u CMOS

- Q (i.e., amount of series resistance) Maximized with minimum L (tradeoff with area efficiency)

See pages 39-40 of Tom Lee’s book

A

W/L

A

C1=CoxWL

39

M.H. PerrottM.H. Perrott

High Q Capacitors (Signal Path)

Lateral metal capacitors offer high Q and reasonably large capacitance per unit area- Stack many levels of metal on top of each other (best

layers are the top ones), via them at maximum density

- Accuracy often better than ±10%- Parasitic side cap is symmetric, less than 10% of cap value

Example: CT = 1.5 fF/m2 for 0.24m process with 7 metals, Lmin = Wmin = 0.24m, tmetal = 0.53m- see “Capacity Limits and Matching Properties of Integrated

Capacitors”, Aparicio et. al., JSSC, Mar 2002

B

A

C1

A

B

40

M.H. PerrottM.H. Perrott

Spiral Inductors

Create integrated inductor using spiral shape on top level metals (may also want a patterned ground shield)

- Key parameters are Q (< 10), L (1-10 nH), self resonant freq.- Usually implemented in top metal layers to minimize series

resistance, coupling to substrate- Design using Mohan et. al, “Simple, Accurate Expressions

for Planar Spiral Inductances, JSSC, Oct, 1999, pp 1419-1424- Verify inductor parameters (L, Q, etc.) using ASITIC

http://formosa.eecs.berkeley.edu/~niknejad/asitic.html

Lm

A

BB

A

41

M.H. PerrottM.H. Perrott

Bondwire Inductors

Used to bond from the package to die- Can be used to advantage

Key parameters- Inductance ( ≈ 1 nH/mm – usually achieve 1-5 nH)- Q (much higher than spiral inductors – typically > 40)

Cpin

Lbondwire

Cbonding_pad

dieAdjoining pins

package

To chip circuitsFrom board

42

M.H. PerrottM.H. Perrott

Integrated Transformers

Utilize magnetic coupling between adjoining wires

Key parameters- L (self inductance for primary and secondary windings)- k (coupling coefficient between primary and secondary)

Design – ASITIC, other CAD packages

A B

L2

B

L1

A

Cpar1

k C D

C DCpar2

43

M.H. PerrottM.H. Perrott

High Speed Transformer Example – A T-Coil Network

A T-coil consists of a center-tapped inductor with mutual coupling between each inductor half

Used for bandwidth enhancement- See S. Galal, B. Ravazi, “10 Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18u CMOS”, ISSCC 2003, pp 188-189 and “Broadband ESD Protection …”, pp. 182-183

A B

X

L2

B

L1

A

CB X

k

44