GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to...

100
GAUGE AND HIGGS BOSONS γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613 g (gluon) . . . . . . . . . . . . . . . . . . . . . . . . . . 614 graviton . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 H 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648 Neutral Higgs Bosons, Searches for . . . . . . . . . . . . . . . 653 Charged Higgs Bosons (H ± and H ±± ), Searches for . . . . . . . . 662 New Heavy Bosons . . . . . . . . . . . . . . . . . . . . . . 665 Axions (A 0 ) and Other Very Light Bosons . . . . . . . . . . . . 686 Notes in the Gauge and Higgs Boson Listings The mass and width of the W boson . . . . . . . . . . . . . . . . . 614 Extraction of triple gauge couplings (TGCS) (rev.) . . . . . . . . . . 618 Anomalous W/Z quartic couplings (rev.) . . . . . . . . . . . . . . . 622 The Z boson . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 Anomalous ZZγ , Zγγ , and ZZV couplings . . . . . . . . . . . . . . 644 Anomalous W/Z quartic couplings (rev.) . . . . . . . . . . . . . . . 646 W -boson searches (rev.) . . . . . . . . . . . . . . . . . . . . . . 665 Z -boson searches (rev.) . . . . . . . . . . . . . . . . . . . . . . 670 Leptoquarks (rev.) . . . . . . . . . . . . . . . . . . . . . . . . 678 Axions and other similar particles (rev.) . . . . . . . . . . . . . . . 686

Transcript of GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to...

Page 1: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

GAUGE AND HIGGS BOSONS

γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613g (gluon) . . . . . . . . . . . . . . . . . . . . . . . . . . 614graviton . . . . . . . . . . . . . . . . . . . . . . . . . . . 614W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624H 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648Neutral Higgs Bosons, Searches for . . . . . . . . . . . . . . . 653Charged Higgs Bosons (H± and H±±), Searches for . . . . . . . . 662New Heavy Bosons . . . . . . . . . . . . . . . . . . . . . . 665Axions (A0) and Other Very Light Bosons . . . . . . . . . . . . 686

Notes in the Gauge and Higgs Boson Listings

The mass and width of the W boson . . . . . . . . . . . . . . . . . 614Extraction of triple gauge couplings (TGCS) (rev.) . . . . . . . . . . 618Anomalous W/Z quartic couplings (rev.) . . . . . . . . . . . . . . . 622The Z boson . . . . . . . . . . . . . . . . . . . . . . . . . . . 624Anomalous ZZγ, Zγγ, and ZZV couplings . . . . . . . . . . . . . . 644Anomalous W/Z quartic couplings (rev.) . . . . . . . . . . . . . . . 646W ′-boson searches (rev.) . . . . . . . . . . . . . . . . . . . . . . 665Z ′-boson searches (rev.) . . . . . . . . . . . . . . . . . . . . . . 670Leptoquarks (rev.) . . . . . . . . . . . . . . . . . . . . . . . . 678Axions and other similar particles (rev.) . . . . . . . . . . . . . . . 686

Page 2: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission
Page 3: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

613613613613See key on page 601 Gauge & Higgs Boson Parti le ListingsγGAUGE AND HIGGS BOSONSGAUGE AND HIGGS BOSONSGAUGE AND HIGGS BOSONSGAUGE AND HIGGS BOSONS

γ (photon) I (JPC ) = 0,1(1−−)γ MASSγ MASSγ MASSγ MASSResults prior to 2008 are ritiqued in GOLDHABER 10. All experimentalresults published prior to 2005 are summarized in detail by TU 05.The following onversions are useful: 1 eV = 1.783× 10−33 g = 1.957×10−6 me ; λC = (1.973 × 10−7 m)×(1 eV/mγ).VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<1 × 10−18<1 × 10−18<1 × 10−18<1 × 10−18 1 RYUTOV 07 MHD of solar wind• • • We do not use the following data for averages, ts, limits, et . • • •<2.3× 10−9 95 2 EGOROV 14 COSM Lensed quasar position3 ACCIOLY 10 Anomalous mag. mom.<1 × 10−26 4 ADELBERGER 07A Pro a gala ti eldno limit feasible 4 ADELBERGER 07A γ as Higgs parti le<1 × 10−19 5 TU 06 Torque on rotating magne-tized toroid<1.4× 10−7 ACCIOLY 04 Dispersion of GHz radiowaves by sun<2 × 10−16 6 FULLEKRUG 04 Speed of 5-50 Hz radiationin atmosphere<7 × 10−19 7 LUO 03 Torque on rotating magne-tized toroid<1 × 10−17 8 LAKES 98 Torque on toroid balan e<6 × 10−17 9 RYUTOV 97 MHD of solar wind<8 × 10−16 90 10 FISCHBACH 94 Earth magneti eld<5 × 10−13 11 CHERNIKOV 92 SQID Ampere-law null test<1.5× 10−9 90 12 RYAN 85 Coulomb-law null test<3 × 10−27 13 CHIBISOV 76 Gala ti magneti eld<6 × 10−16 99.7 14 DAVIS 75 Jupiter magneti eld<7.3× 10−16 HOLLWEG 74 Alfven waves<6 × 10−17 15 FRANKEN 71 Low freq. res. ir.<2.4× 10−13 16 KROLL 71A Dispersion in atmosphere<1 × 10−14 17 WILLIAMS 71 CNTR Tests Gauss law<2.3× 10−15 GOLDHABER 68 Satellite data1RYUTOV 07 extends the method of RYUTOV 97 to the radius of Pluto's orbit.2 EGOROV 14 studies hromati dispersion of lensed quasar positions (\gravitational rain-bows") that ould be produ ed by any of several me hanisms, among them via photonmass. Limit not ompetitive but obtained on osmologi al distan e s ales.3ACCIOLY 10 limits ome from possible alterations of anomalous magneti moment ofele tron and gravitational de e tion of ele tromagneti radiation. Reported limits arenot " laimed" by the authors and in any ase are not ompetitive.4When trying to measure m one must distinguish between measurements performed onlarge and small s ales. If the photon a quires mass by the Higgs me hanism, the large-s ale behavior of the photon might be ee tively Maxwellian. If, on the other hand, onepostulates the Pro a regime for all s ales, the very existen e of the gala ti eld impliesm < 10−26 eV, as orre tly al ulated by YAMAGUCHI 59 and CHIBISOV 76.5TU 06 ontinues the work of LUO 03, with extended LAKES 98 method, reportingthe improved limit µ2A = (0.7 ± 1.7) × 10−13 T/m if A = 0.2 µG out to 4 × 1022m. Reported result µ = (0.9 ± 1.5) × 10−52 g redu es to the frequentist mass limit1.2× 10−19 eV (FELDMAN 98).6 FULLEKRUG 04 adopted KROLL 71A method with newer and better S hummann res-onan e data. Result questionable be ause assumed frequen y shift with photon massis assumed to be linear. It is quadrati a ording to theorem by GOLDHABER 71B,KROLL 71, and PARK 71.7 LUO 03 extends LAKES 98 te hnique to set a limit on µ2A, where µ−1 is the Comptonwavelength λC of the massive photon and A is the ambient ve tor potential. Theimportant departure is that the apparatus rotates, removing sensitivity to the dire tionof A. They take A = 1012 Tm, due to \ luster level elds." But see omment ofGOLDHABER 03 and reply by LUO 03B.8 LAKES 98 reports limits on torque on a toroid Cavendish balan e, obtaining a limit on

µ2A < 2 × 10−9 Tm/m2 via the Maxwell-Pro a equations, where µ−1 is the hara -teristi length asso iated with the photon mass and A is the ambient ve tor potentialin the Lorentz gauge. Assuming A ≈ 1 × 1012 Tm due to luster elds he obtainsµ−1 > 2 × 1010 m, orresponding to µ < 1 × 10−17 eV. A more onservative limit,using A ≈ (1 µG)×(600 p ) based on the gala ti eld, is µ−1 > 1 × 109 m orµ < 2× 10−16 eV.9RYUTOV 97 uses a magnetohydrodynami s argument on erning survival of the Sun'seld to the radius of the Earth's orbit. \To re on ile observations to theory, one has toredu e [the photon mass by approximately an order of magnitude ompared with" perDAVIS 75. \Se ure limit, best by this method" (per GOLDHABER 10).10 FISCHBACH 94 analysis is based on terrestrial magneti elds; approa h analogous toDAVIS 75. Similar result based on a mu h smaller planet probably follows from morepre ise B eld mapping. \Se ure limit, best by this method" (per GOLDHABER 10).11CHERNIKOV 92, motivated by possibility that photon exhibits mass only below someunknown riti al temperature, sear hes for departure from Ampere's Law at 1.24 K. Seealso RYAN 85.12RYAN 85, motivated by possibility that photon exhibits mass only below some unknown riti al temperature, sets mass limit at < (1.5± 1.4)×10−42 g based on Coulomb's Lawdeparture limit at 1.36 K. We report the result as frequentist 90% CL (FELDMAN 98).13CHIBISOV 76 depends in riti al way on assumptions su h as appli ability of virial the-orem. Some of the arguments given only in unpublished referen es.

14DAVIS 75 analysis of Pioneer-10 data on Jupiter's magneti eld. \Se ure limit, best bythis method" (per GOLDHABER 10).15 FRANKEN 71 method is of dubious validity (KROLL 71A, JACKSON 99, GOLD-HABER 10, and referen es therein).16KROLL 71A used low frequen y S humann resonan es in avity between the ondu t-ing earth and resistive ionosphere, over oming obje tions to resonant- avity methods(JACKSON 99, GOLDHABER 10, and referen es therein). \Se ure limit, best by thismethod" (per GOLDHABER 10).17WILLIAMS 71 is landmark test of Coulomb's law. \Se ure limit, best by this method"(per GOLDHABER 10).γ CHARGEγ CHARGEγ CHARGEγ CHARGEOKUN 06 has argued that s hemes in whi h all photons are harged arein onsistent. He says that if a neutral photon is also admitted to avoidthis problem, then other problems emerge, su h as those onne ted withthe emission and absorption of harged photons by harged parti les. He on ludes that in the absen e of a self- onsistent phenomenologi al basis,interpretation of experimental data is at best diÆ ult.VALUE (e) CHARGE DOCUMENT ID TECN COMMENT

<1 × 10−46<1 × 10−46<1 × 10−46<1 × 10−46 mixedmixedmixedmixed 1 ALTSCHUL 07B VLBI Aharonov-Bohm ee t<1 × 10−35<1 × 10−35<1 × 10−35<1 × 10−35 singlesinglesinglesingle 2 CAPRINI 05 CMB Isotropy onstraint• • • We do not use the following data for averages, ts, limits, et . • • •<1 × 10−32 single 1 ALTSCHUL 07B VLBI Aharonov-Bohm ee t<3 × 10−33 mixed 3 KOBYCHEV 05 VLBI Smear as fun tion of B·Eγ<4 × 10−31 single 3 KOBYCHEV 05 VLBI De e tion as fun tion of B·Eγ<8.5× 10−17 4 SEMERTZIDIS 03 Laser light de e tion in B-eld<3 × 10−28 single 5 SIVARAM 95 CMB For M= 0.3, h2= 0.5<5 × 10−30 6 RAFFELT 94 TOF Pulsar f1−f2<2 × 10−28 7 COCCONI 92 VLBA radio teles ope resolution<2 × 10−32 COCCONI 88 TOF Pulsar f1− f2 TOF1ALTSCHUL 07B looks for Aharonov-Bohm phase shift in addition to geometri phaseshift in radio interferen e fringes (VSOP mission).2CAPRINI 05 uses isotropy of the osmi mi rowave ba kground to pla e stringent limitson possible harge asymmetry of the Universe. Charge limits are set on the photon,neutrino, and dark matter parti les. Valid if harge asymmetries produ ed by dierentparti les are not anti orrelated.3KOBYCHEV 05 onsiders a variety of observable ee ts of photon harge for extragala ti ompa t radio sour es. Best limits if sour e observed through a foreground luster ofgalaxies.4 SEMERTZIDIS 03 reports the rst laboratory limit on the photon harge in the last30 years. Straightforward improvements in the apparatus ould attain a sensitivity of10−20 e.5 SIVARAM 95 requires that CMB photon harge density not overwhelm gravity. Results ales as M h2.6RAFFELT 94 notes that COCCONI 88 negle ts the fa t that the time delay due to disper-sion by free ele trons in the interstellar medium has the same photon energy dependen eas that due to bending of a harged photon in the magneti eld. His limit is based onthe assumption that the entire observed dispersion is due to photon harge. It is a fa torof 200 less stringent than the COCCONI 88 limit.7 See COCCONI 92 for less stringent limits in other frequen y ranges. Also see RAF-FELT 94 note.

γ REFERENCESγ REFERENCESγ REFERENCESγ REFERENCESEGOROV 14 MNRAS 437 L90 P. Egorov et al. (MOSU, MIPT, INRM)ACCIOLY 10 PR D82 065026 A. A ioly, J. Helayel-Neto, E. S atena (LABEX+)GOLDHABER 10 RMP 82 939 A.S. Goldhaber, M.M. Nieto (STON, LANL)ADELBERGER 07A PRL 98 010402 E. Adelberger, G. Dvali, A. Gruzinov (WASH, NYU)ALTSCHUL 07B PRL 98 261801 B. Alts hul (IND)Also ASP 29 290 B. Alts hul (SCUC)RYUTOV 07 PPCF 49 B429 D.D. Ryutov (LLNL)OKUN 06 APP B37 565 L.B. Okun (ITEP)TU 06 PL A352 267 L.-C. Tu et al.CAPRINI 05 JCAP 0502 006 C. Caprini, P.G. Ferreira (GEVA, OXFTP)KOBYCHEV 05 AL 31 147 V.V. Koby hev, S.B. Popov (KIEV, PADO)TU 05 RPP 68 77 L.-C. Tu, J. Luo, G.T. GilliesACCIOLY 04 PR D69 107501 A. A ioly, R. PaszkoFULLEKRUG 04 PRL 93 043901 M. FullekrugGOLDHABER 03 PRL 91 149101 A.S. Goldhaber, M.M. NietoLUO 03 PRL 90 081801 J. Luo et al.LUO 03B PRL 91 149102 J. Luo et al.SEMERTZIDIS 03 PR D67 017701 Y.K. Semertzidis, G.T. Danby, D.M. LazarusJACKSON 99 Classi al Ele trodynami s J.D. Ja kson (3rd ed., J. Wiley and Sons (1999))FELDMAN 98 PR D57 3873 G.J. Feldman, R.D. CousinsLAKES 98 PRL 80 1826 R. Lakes (WISC)RYUTOV 97 PPCF 39 A73 D.D. Ryutov (LLNL)SIVARAM 95 AJP 63 473 C. Sivaram (BANG)FISCHBACH 94 PRL 73 514 E. Fis hba h et al. (PURD, JHU+)RAFFELT 94 PR D50 7729 G. Raelt (MPIM)CHERNIKOV 92 PRL 68 3383 M.A. Chernikov et al. (ETH)Also PRL 69 2999 (erratum) M.A. Chernikov et al. (ETH)COCCONI 92 AJP 60 750 G. Co oni (CERN)COCCONI 88 PL B206 705 G. Co oni (CERN)RYAN 85 PR D32 802 J.J. Ryan, F. A etta, R.H. Austin (PRIN)CHIBISOV 76 SPU 19 624 G.V. Chibisov (LEBD)Translated from UFN 119 551.DAVIS 75 PRL 35 1402 L. Davis, A.S. Goldhaber, M.M. Nieto (CIT, STON+)HOLLWEG 74 PRL 32 961 J.V. Hollweg (NCAR)FRANKEN 71 PRL 26 115 P.A. Franken, G.W. Ampulski (MICH)GOLDHABER 71B RMP 43 277 A.S. Goldhaber, M.M. Nieto (STON, BOHR, UCSB)KROLL 71 PRL 26 1395 N.M. Kroll (SLAC)KROLL 71A PRL 27 340 N.M. Kroll (SLAC)PARK 71 PRL 26 1393 D. Park, E.R. Williams (WILC)WILLIAMS 71 PRL 26 721 E.R. Williams, J.E. Faller, H.A. Hill (WESL)GOLDHABER 68 PRL 21 567 A.S. Goldhaber, M.M. Nieto (STON)YAMAGUCHI 59 PTPS 11 37 Y. Yamagu hi

Page 4: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

614614614614Gauge&Higgs Boson Parti le Listingsg , graviton,Wgor gluon I (JP ) = 0(1−)SU(3) olor o tetMass m = 0. Theoreti al value. A mass as large as a few MeVmay not be pre luded, see YNDURAIN 95.VALUE DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •ABREU 92E DLPH Spin 1, not 0ALEXANDER 91H OPAL Spin 1, not 0BEHREND 82D CELL Spin 1, not 0BERGER 80D PLUT Spin 1, not 0BRANDELIK 80C TASS Spin 1, not 0gluon REFERENCESgluon REFERENCESgluon REFERENCESgluon REFERENCESYNDURAIN 95 PL B345 524 F.J. Yndurain (MADU)ABREU 92E PL B274 498 P. Abreu et al. (DELPHI Collab.)ALEXANDER 91H ZPHY C52 543 G. Alexander et al. (OPAL Collab.)BEHREND 82D PL B110 329 H.J. Behrend et al. (CELLO Collab.)BERGER 80D PL B97 459 C. Berger et al. (PLUTO Collab.)BRANDELIK 80C PL B97 453 R. Brandelik et al. (TASSO Collab.)graviton J = 2graviton MASSgraviton MASSgraviton MASSgraviton MASSIn 1970 van Dam amd Veltman (VANDAM 70) showed that \. . . there isa dis rete dieren e between the theory with zero-mass and a theory withnite mass, no matter how small as ompared to all external momenta. . . .We may on lude that the graviton has rigorously zero mass." However,see GOLDHABER 10 and referen es therein. It has been of interest to setexperimental limits, whether or not a nite mass an exist. In most (butnot all) ases limits have been set on the distan e without eviden e for aYukawa uto. h0 is the Hubble onstant in units of 100 km s−1 Mp −1.The following onversions are useful: 1 eV = 1.783× 10−33 g = 1.957×10−6 me ; λC = (1.973 × 10−7 m)×(1 eV/mg ).VALUE (eV) DOCUMENT ID COMMENT<6 × 10−32<6 × 10−32<6 × 10−32<6 × 10−32 1 CHOUDHURY 04 Weak gravitational lensing• • • We do not use the following data for averages, ts, limits, et . • • •<1.2× 10−22 2 ABBOTT 16 LIGO bla k holes merger<5 × 10−23 3 BRITO 13 Spinning bla k holes bounds<4 × 10−25 4 BASKARAN 08 Graviton phase velo ity u tuations<6 × 10−32 5 GRUZINOV 05 Solar System observations<9.0× 10−34 6 GERSHTEIN 04 From tot value assuming RTG>6 × 10−34 7 DVALI 03 Horizon s ales<8 × 10−20 8,9 FINN 02 Binary pulsar orbital period de rease9,10 DAMOUR 91 Binary pulsar PSR 1913+16< 2× 10−29 h−10 GOLDHABER 74 Ri h lusters<7 × 10−28 HARE 73 Galaxy<8 × 104 HARE 73 2γ de ay1CHOUDHURY 04 on ludes from a study of weak-lensing data that masses heavier thanabout the inverse of 100 Mp seem to be ruled out if the gravitation eld has the Yukawaform.2ABBOTT 16 assumes modied dispersion relation for gravitational waves.3BRITO 13 explore massive graviton (spin-2) u tuations around rotating bla k holes.4BASKARAN 08 onsider u tuations in pulsar timing due to photon intera tions (\surf-ing") with ba kground gravitational waves.5GRUZINOV 05 uses the DGP model (DVALI 00) showing that non-perturbative ee tsrestore ontinuity with Einstein's equations as the gravition mass approa hes 0, thenbases his limit on Solar System observations.6GERSHTEIN 04 use non-Einstein eld relativisti theory of gravity (RTG), with a massivegraviton, to obtain the 95% CL mass limit implied by the value of tot = 1.02 ± 0.02 urrent at the time of publi ation.7DVALI 03 suggest s ale of horizon distan e via DGP model (DVALI 00). For a horizondistan e of 3× 1026 m (about age of Universe/ ; GOLDHABER 10) this graviton masslimit is implied.8 FINN 02 analyze the orbital de ay rates of PSR B1913+16 and PSR B1534+12 with apossible graviton mass as a parameter. The ombined frequentist mass limit is at 90%CL.9As of 2014, limits on dP/dt are now about 0.1% (see T. Damour, \Experimental testsof gravitational theory," in this Review).10DAMOUR 91 is an analysis of the orbital period hange in binary pulsar PSR 1913+16,and onrms the general relativity predi tion to 0.8%. \The theoreti al importan e ofthe [rate of orbital period de ay measurement has long been re ognized as a dire t onrmation that the gravitational intera tion propagates with velo ity (whi h is theimmediate ause of the appearan e of a damping for e in the binary pulsar system)and thereby as a test of the existen e of gravitational radiation and of its quadrupolarnature." TAYLOR 93 adds that orbital parameter studies now agree with general relativityto 0.5%, and set limits on the level of s alar ontribution in the ontext of a family oftensor [spin 2-bis alar theories.

graviton REFERENCESgraviton REFERENCESgraviton REFERENCESgraviton REFERENCESABBOTT 16 PRL 116 061102 B.P. Abbott et al. (LIGO and Virgo Collabs.)BRITO 13 PR D88 023514 R. Brito, V. Cardoso, P. Pani (LISB, MISS, HSCA+)GOLDHABER 10 RMP 82 939 A.S. Goldhaber, M.M. Nieto (STON, LANL)BASKARAN 08 PR D78 044018 D. Baskaran et al.GRUZINOV 05 NAST 10 311 A. Gruzinov (NYU)CHOUDHURY 04 ASP 21 559 S.R. Choudhury et al. (DELPH, MELB)GERSHTEIN 04 PAN 67 1596 S.S. Gershtein et al. (SERP)Translated from YAF 67 1618.DVALI 03 PR D68 024012 G.R. Dvali, A. Grizinov, M. Zaldarriaga (NYU)FINN 02 PR D65 044022 L.S. Finn, P.J. SuttonDVALI 00 PL B485 208 G.R. Dvali, G. Gabadadze, M. Porrati (NYU)TAYLOR 93 NAT 355 132 J.N. Taylor et al. (PRIN, ARCBO, BURE+) JDAMOUR 91 APJ 366 501 T. Damour, J.H. Taylor (BURE, MEUD, PRIN)GOLDHABER 74 PR D9 1119 A.S. Goldhaber, M.M. Nieto (LANL, STON)HARE 73 CJP 51 431 M.G. Hare (SASK)VANDAM 70 NP B22 397 H. van Dam, M. Veltman (UTRE)W J = 1THE MASS AND WIDTH OF THE W BOSON

Revised September 2013 by M.W. Grunewald (U. CollegeDublin and U. Ghent) and A. Gurtu (Formerly Tata Inst.).

Precision determination of the W-mass is of great impor-

tance in testing the internal consistency of the Standard Model.

From the time of its discovery in 1983, the W-boson has been

studied and its mass determined in pp and e+e− interactions; it

is currently studied in pp interactions at the LHC. The W mass

and width definition used here corresponds to a Breit-Wigner

with mass-dependent width.

Production of on-shell W bosons at hadron colliders is

tagged by the high pT charged lepton from its decay. Owing

to the unknown parton-parton effective energy and missing

energy in the longitudinal direction, the collider experiments

reconstruct the transverse mass of the W, and derive the W

mass from comparing the transverse mass distribution with

Monte Carlo predictions as a function of MW . These analyses

use the electron and muon decay modes of the W boson.

0

0.25

0.5

0.75

1

80.2 80.3 80.4 80.5 80.6

Entries 0

80.2 80.6MW[GeV]

ALEPH 80.440±0.051

DELPHI 80.336±0.067

L3 80.270±0.055

OPAL 80.415±0.052

LEP2 80.376±0.033χ2/dof = 49 / 41

CDF 80.389±0.019

D0 80.383±0.023

Tevatron 80.387±0.016χ2/dof = 4.2 / 6

Overall average 80.385±0.015

Figure 1: Measurements of the W-bosonmass by the LEP and Tevatron experiments.

Page 5: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

615615615615See key on page 601 Gauge&HiggsBosonParti leListingsWIn the e+e− collider (LEP) a precise knowledge of the

beam energy enables one to determine the e+e− → W+W−

cross section as a function of center of mass energy, as well as

to reconstruct the W mass precisely from its decay products,

even if one of them decays leptonically. Close to the W+W−

threshold (161 GeV), the dependence of the W-pair production

cross section on MW is large, and this was used to determine

MW . At higher energies (172 to 209 GeV) this dependence is

much weaker and W-bosons were directly reconstructed and the

mass determined as the invariant mass of its decay products,

improving the resolution with a kinematic fit.

0

0.25

0.5

0.75

1

1.6 1.8 2 2.2 2.4

Entries 0

1.5 2.0 2.5ΓW[GeV]

ALEPH 2.14±0.11

DELPHI 2.40±0.17

L3 2.18±0.14

OPAL 2.00±0.14

LEP2 2.195±0.083χ2/dof = 37 / 33

CDF 2.033±0.064

D0 2.061±0.068

Tevatron 2.046±0.049χ2/dof = 1.4 / 4

Overall average 2.085±0.042

Figure 2: Measurements of the W-bosonwidth by the LEP and Tevatron experiments.

In order to compute the LEP average W mass, each ex-

periment provided its measured W mass for the qqqq and

qqℓνℓ, ℓ = e, µ, τ channels at each center-of-mass energy,

along with a detailed break-up of errors: statistical, uncor-

related, partially correlated and fully correlated systematics [1].

These have been combined to obtain a LEP W mass of

MW = 80.376±0.033 GeV. Errors due to uncertainties in LEP

energy (9 MeV), and possible effect of color reconnection (CR)

and Bose-Einstein correlations (BEC) between quarks from dif-

ferent W’s (8 MeV) are included. The mass difference between

qqqq and qqℓνℓ final states (due to possible CR and BEC effects)

is −12±45 MeV. In a similar manner, the width results obtained

at LEP have been combined, resulting in ΓW = 2.195 ± 0.083

GeV [1].

The two Tevatron experiments have also identified com-

mon systematic errors. Between the two experiments, uncer-

tainties due to the parton distribution functions, radiative

corrections, and choice of mass (width) in the width (mass)

measurements are treated as correlated. An average W width

of ΓW = 2.046 ± 0.049 GeV [2] is obtained. Errors of 20 MeV

and 7 MeV accounting for PDF and radiative correction un-

certainties in this width combination dominate the correlated

uncertainties. At the 2012 winter conferences, the CDF and D0

experiments have presented new results for the mass of the W

boson based on 2−4 fb−1 of Run-II data, 80.387±0.019 GeV [3]

and 80.375 ± 0.023 GeV [4], respectively. The W-mass deter-

mination from the Tevatron experiments has thus become very

precise. Combining all Tevatron results from Run-I and Run-II

using an improved treatment of correlations, a new average of

80.387± 0.016 GeV is obtained [5], with common uncertainties

of 10 MeV (PDF) and 4 MeV (radiative corrections).

The LEP and Tevatron results on mass and width, which are

based on all results available, are compared in Fig. 1 and Fig. 2.

Good agreement between the results is observed. Combining

these results, assuming no common systematic uncertainties

between the LEP and the Tevatron measurements, yields an

average W mass of MW = 80.385 ± 0.015 GeV and a W width

of ΓW = 2.085 ± 0.042 GeV.

The Standard Model prediction from the electroweak fit,

using Z-pole data plus mtop measurement, gives a W-boson

mass of MW = 80.363 ± 0.020 GeV and a W-boson width of

ΓW = 2.091± 0.002 GeV [1].

References

1. The LEP Collaborations: ALEPH, DELPHI, L3, OPAL,the LEP Electroweak Working Group, CERN-PH-EP/2013-022, arXiv:1302.3415 [hep-ex], Phys.Rept. 532 (2013)119-244.

2. The Tevatron Electroweak Working Group, for the CDF andD0 Collaborations: Combination of CDF and D0 Results on

the Width of the W Boson, March 2010, arXiv:1003.2826[hep-ex].

3. The CDF Collaboration, Precise measurement of the W-

boson mass with the CDF II detector, arXiv:1203.0275

[hep-ex], Phys. Rev. Lett. 108, 151803 (2012).

4. The D0 Collaboration, Measurement of the W Boson Mass

with the D0 Detector, arXiv:1203.0293 [hep-ex], Phys.Rev. Lett. 108, 151804 (2012).

5. The CDF and D0 Collabs: Combination of CDF and D0 W-

Boson Mass Measurements, July 2013, arXiv:1307.7627

[hep-ex], Phys. Rev. D88, 052018 (2013).W MASSW MASSW MASSW MASSThe W -mass listed here orresponds to the mass parameter in a Breit-Wigner distribution with mass-dependent width. To obtain the world av-erage, ommon systemati un ertainties between experiments are properlytaken into a ount. The LEP-2 average W mass based on published re-sults is 80.376 ± 0.033 GeV [SCHAEL 13A. The ombined Tevatron datayields an average W mass of 80.387 ± 0.016 GeV [AALTONEN 13N.OUR FIT uses these average LEP and Tevatron mass values and ombinesthem assuming no orrelations.VALUE (GeV) EVTS DOCUMENT ID TECN COMMENT80.385± 0.015 OUR FIT80.385± 0.015 OUR FIT80.385± 0.015 OUR FIT80.385± 0.015 OUR FIT80.375± 0.023 2177k 1 ABAZOV 14N D0 Epp m = 1.96 TeV80.387± 0.019 1095k 2 AALTONEN 12E CDF Epp m = 1.96 TeV80.336± 0.055±0.039 10.3k 3 ABDALLAH 08A DLPH Eee m = 161209 GeV80.415± 0.042±0.031 11830 4 ABBIENDI 06 OPAL Eee m= 170209 GeV80.270± 0.046±0.031 9909 5 ACHARD 06 L3 Eee m= 161209 GeV80.440± 0.043±0.027 8692 6 SCHAEL 06 ALEP Eee m= 161209 GeV80.483± 0.084 49247 7 ABAZOV 02D D0 Epp m= 1.8 TeV80.433± 0.079 53841 8 AFFOLDER 01E CDF Epp m= 1.8 TeV

Page 6: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

616616616616Gauge & Higgs Boson Parti le ListingsW• • • We do not use the following data for averages, ts, limits, et . • • •80.367± 0.026 1677k 9 ABAZOV 12F D0 Epp m = 1.96 TeV80.401± 0.043 500k 10 ABAZOV 09AB D0 Epp m = 1.96 TeV80.413± 0.034±0.034 115k 11 AALTONEN 07F CDF Epp m = 1.96 TeV82.87 ± 1.82 +0.30

−0.16 1500 12 AKTAS 06 H1 e± p → νe (νe )X ,√s ≈ 300 GeV80.3 ± 2.1 ± 1.2 ± 1.0 645 13 CHEKANOV 02C ZEUS e− p → νe X, √s=318 GeV81.4+2.7

−2.6 ± 2.0+3.3−3.0 1086 14 BREITWEG 00D ZEUS e+ p → νe X, √s ≈300 GeV80.84 ± 0.22 ±0.83 2065 15 ALITTI 92B UA2 See W /Z ratio below80.79 ± 0.31 ±0.84 16 ALITTI 90B UA2 Epp m= 546,630 GeV80.0 ± 3.3 ±2.4 22 17 ABE 89I CDF Epp m= 1.8 TeV82.7 ± 1.0 ±2.7 149 18 ALBAJAR 89 UA1 Epp m= 546,630 GeV81.8 + 6.0

− 5.3 ±2.6 46 19 ALBAJAR 89 UA1 Epp m= 546,630 GeV89 ± 3 ±6 32 20 ALBAJAR 89 UA1 Epp m= 546,630 GeV81. ± 5. 6 ARNISON 83 UA1 Eee m= 546 GeV80. +10.− 6. 4 BANNER 83B UA2 Repl. by ALITTI 90B1ABAZOV 14N is a ombination of ABAZOV 09AB and ABAZOV 12F, also giving moredetails on the analysis.2AALTONEN 12E sele t 470k W → e ν de ays and 625k W → µν de ays in 2.2 fb−1of Run-II data. The mass is determined using the transverse mass, transverse leptonmomentum and transverse missing energy distributions, a ounting for orrelations. Thisresult supersedes AALTONEN 07F. AALTONEN 14D gives more details on the pro eduresfollowed by the authors.3ABDALLAH 08A use dire t re onstru tion of the kinemati s of W+W− → qq ℓνand W+W− → qq qq events for energies 172 GeV and above. The W mass wasalso extra ted from the dependen e of the WW ross se tion lose to the produ tionthreshold and ombined appropriately to obtain the nal result. The systemati errorin ludes ±0.025 GeV due to nal state intera tions and ±0.009 GeV due to LEP energyun ertainty.4ABBIENDI 06 use dire t re onstru tion of the kinemati s of W+W− → qq ℓνℓ andW+W− → qq qq events. The result quoted here is obtained ombining this massvalue with the results using W+W− → ℓνℓ ℓ′ν

ℓ′ events in the energy range 183207GeV (ABBIENDI 03C) and the dependen e of the WW produ tion ross-se tion on mWat threshold. The systemati error in ludes ±0.009 GeV due to the un ertainty on theLEP beam energy.5ACHARD 06 use dire t re onstru tion of the kinemati s of W+W− → qq ℓνℓ andW+W− → qq qq events in the C.M. energy range 189209 GeV. The result quotedhere is obtained ombining this mass value with the results obtained from a dire t Wmass re onstru tion at 172 and 183 GeV and with those from the dependen e of theWW produ tion ross-se tion on mW at 161 and 172 GeV (ACCIARRI 99).6 SCHAEL 06 use dire t re onstru tion of the kinemati s of W+W− → qq ℓνℓ andW+W− → qq qq events in the C.M. energy range 183209 GeV. The result quotedhere is obtained ombining this mass value with those obtained from the dependen eof the W pair produ tion ross-se tion on mW at 161 and 172 GeV (BARATE 97 andBARATE 97S respe tively). The systemati error in ludes ±0.009 GeV due to possibleee ts of nal state intera tions in the qq qq hannel and ±0.009 GeV due to theun ertainty on the LEP beam energy.7ABAZOV 02D improve the measurement of the W -boson mass in luding W → e νeevents in whi h the ele tron is lose to a boundary of a entral ele tromagneti alorimetermodule. Properly ombining the results obtained by tting mT (W ), pT (e), and pT (ν),this sample provides a mass value of 80.574 ± 0.405 GeV. The value reported here is a ombination of this measurement with all previous D W -boson mass measurements.8AFFOLDER 01E t the transverse mass spe trum of 30115 W → e νe events (MW=80.473± 0.065± 0.092 GeV) and of 14740 W → µνµ events (MW= 80.465± 0.100±0.103 GeV) obtained in the run IB (1994-95). Combining the ele tron and muon results,a ounting for orrelated un ertainties, yields MW= 80.470± 0.089 GeV. They ombinethis value with their measurement of ABE 95P reported in run IA (1992-93) to obtainthe quoted value.9ABAZOV 12F sele t 1677k W → e ν de ays in 4.3 fb−1 of Run-II data. The massis determined using the transverse mass and transverse lepton momentum distributions,a ounting for orrelations.10ABAZOV 09AB study the transverse mass, transverse ele tron momentum, and transversemissing energy in a sample of 0.5 million W → e ν de ays sele ted in Run-II data. Thequoted result ombines all three methods, a ounting for orrelations.11AALTONEN 07F obtain high purity W → e νe and W → µνµ andidate samplestotaling 63,964 and 51,128 events respe tively. The W mass value quoted above isderived by simultaneously tting the transverse mass and the lepton, and neutrino pTdistributions.12AKTAS 06 t the Q2 dependen e (300 < Q2 < 30,000 GeV2) of the harged- urrentdierential ross se tion with a propagator mass. The rst error is experimental and these ond orresponds to un ertainties due to input parameters and model assumptions.13CHEKANOV 02C t the Q2 dependen e (200<Q2 <60000 GeV2) of the harged- urrentdierential ross se tions with a propagator mass t. The last error is due to the un er-tainty on the probability density fun tions.14BREITWEG 00D t the Q2 dependen e (200 < Q2 < 22500 GeV2) of the harged- urrent dierential ross se tions with a propagator mass t. The last error is due to theun ertainty on the probability density fun tions.15ALITTI 92B result has two ontributions to the systemati error (±0.83); one (±0.81) an els in mW /mZ and one (±0.17) is non an elling. These were added in quadrature.We hoose the ALITTI 92B value without using the LEP mZ value, be ause we performour own ombined t.16There are two ontributions to the systemati error (±0.84): one (±0.81) whi h an elsin mW /mZ and one (±0.21) whi h is non- an elling. These were added in quadrature.17ABE 89I systemati error dominated by the un ertainty in the absolute energy s ale.18ALBAJAR 89 result is from a total sample of 299 W → e ν events.19ALBAJAR 89 result is from a total sample of 67 W → µν events.

20ALBAJAR 89 result is from W → τ ν events.W/Z MASS RATIOW/Z MASS RATIOW/Z MASS RATIOW/Z MASS RATIOVALUE EVTS DOCUMENT ID TECN COMMENT0.88153±0.000170.88153±0.000170.88153±0.000170.88153±0.00017 1 PDG 16• • • We do not use the following data for averages, ts, limits, et . • • •0.8821 ±0.0011 ±0.0008 28323 2 ABBOTT 98N D0 Epp m= 1.8 TeV0.88114±0.00154±0.00252 5982 3 ABBOTT 98P D0 Epp m= 1.8 TeV0.8813 ±0.0036 ±0.0019 156 4 ALITTI 92B UA2 Epp m= 630 GeV1PDG 16 is the PDG average using the world average mW and mZ values as quoted inthis edition of Review of Parti le Physi s. The dire tly measured values of mW /mZ arenot used as their orrelation with the Tevatron measured mW is unknown.2ABBOTT 98N obtain this from a study of 28323 W → e νe and 3294 Z → e+ e−de ays. Of this latter sample, 2179 events are used to alibrate the ele tron energy s ale.3ABBOTT 98P obtain this from a study of 5982 W → e νe events. The systemati errorin ludes an un ertainty of ±0.00175 due to the ele tron energy s ale.4 S ale error an els in this ratio. mZ − mWmZ − mWmZ − mWmZ − mWVALUE (GeV) DOCUMENT ID TECN COMMENT10.803±0.015 OUR AVERAGE10.803±0.015 OUR AVERAGE10.803±0.015 OUR AVERAGE10.803±0.015 OUR AVERAGE10.803±0.015 1 PDG 1610.4 ±1.4 ±0.8 ALBAJAR 89 UA1 Epp m= 546,630 GeV• • • We do not use the following data for averages, ts, limits, et . • • •11.3 ±1.3 ±0.9 ANSARI 87 UA2 Epp m= 546,630 GeV1PDG 16 value was obtained using the world average values of mZ and mW as listed inthis publi ation. mW+ − mW−mW+ − mW−mW+ − mW−mW+ − mW−Test of CPT invarian e.VALUE (GeV) EVTS DOCUMENT ID TECN COMMENT−0.19±0.58−0.19±0.58−0.19±0.58−0.19±0.58 1722 ABE 90G CDF Epp m= 1.8 TeVW WIDTHW WIDTHW WIDTHW WIDTHThe W width listed here orresponds to the width parameter in a Breit-Wigner distribution with mass-dependent width. To obtain the world av-erage, ommon systemati un ertainties between experiments are properlytaken into a ount. The LEP-2 average W width based on published re-sults is 2.195 ± 0.083 GeV [SCHAEL 13A. The ombined Tevatron datayields an average W width of 2.046±0.049 GeV [FERMILAB-TM-2460-E.OUR FIT uses these average LEP and Tevatron width values and ombinesthem assuming no orrelations.VALUE (GeV) EVTS DOCUMENT ID TECN COMMENT2.085±0.042 OUR FIT2.085±0.042 OUR FIT2.085±0.042 OUR FIT2.085±0.042 OUR FIT2.028±0.072 5272 1 ABAZOV 09AK D0 Epp m = 1.96 GeV2.032±0.045±0.057 6055 2 AALTONEN 08B CDF Epp m = 1.96 TeV2.404±0.140±0.101 10.3k 3 ABDALLAH 08A DLPH Eee m= 183209 GeV1.996±0.096±0.102 10729 4 ABBIENDI 06 OPAL Eee m= 170209 GeV2.18 ±0.11 ±0.09 9795 5 ACHARD 06 L3 Eee m= 172209 GeV2.14 ±0.09 ±0.06 8717 6 SCHAEL 06 ALEP Eee m= 183209 GeV2.23 +0.15

−0.14 ±0.10 294 7 ABAZOV 02E D0 Epp m = 1.8 TeV2.05 ±0.10 ±0.08 662 8 AFFOLDER 00M CDF Epp m = 1.8 TeV• • • We do not use the following data for averages, ts, limits, et . • • •2.152±0.066 79176 9 ABBOTT 00B D0 Extra ted value2.064±0.060±0.059 10 ABE 95W CDF Extra ted value2.10 +0.14

−0.13 ±0.09 3559 11 ALITTI 92 UA2 Extra ted value2.18 +0.26−0.24 ±0.04 12 ALBAJAR 91 UA1 Extra ted value1ABAZOV 09AK obtain this result tting the high-end tail (100-200 GeV) of the transversemass spe trum in W → e ν de ays.2AALTONEN 08B obtain this result tting the high-end tail (90200 GeV) of the trans-verse mass spe trum in semileptoni W → e νe and W → µνµ de ays.3ABDALLAH 08A use dire t re onstru tion of the kinemati s of W+W− → qq ℓν andW+W− → qq qq events. The systemati error in ludes ±0.065 GeV due to nalstate intera tions.4ABBIENDI 06 use dire t re onstru tion of the kinemati s of W+W− → qq ℓνℓ andW+W− → qq qq events. The systemati error in ludes ±0.003 GeV due to theun ertainty on the LEP beam energy.5ACHARD 06 use dire t re onstru tion of the kinemati s of W+W− → qq ℓνℓ andW+W− → qq qq events in the C.M. energy range 189209 GeV. The result quotedhere is obtained ombining this value of the width with the result obtained from a dire tW mass re onstru tion at 172 and 183 GeV (ACCIARRI 99).6 SCHAEL 06 use dire t re onstru tion of the kinemati s of W+W− → qq ℓνℓ andW+W− → qq qq events. The systemati error in ludes ±0.05 GeV due to possi-ble ee ts of nal state intera tions in the qq qq hannel and ±0.01 GeV due to theun ertainty on the LEP beam energy.

Page 7: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

617617617617See key on page 601 Gauge & Higgs Boson Parti le ListingsW7ABAZOV 02E obtain this result tting the high-end tail (90200 GeV) of the transverse-mass spe trum in semileptoni W → e νe de ays.8AFFOLDER 00M t the high transverse mass (100200 GeV) W → e νe and W →µνµ events to obtain (W )= 2.04 ± 0.11(stat)±0.09(syst) GeV. This is ombined withthe earlier CDF measurement (ABE 95C) to obtain the quoted result.9ABBOTT 00B measure R = 10.43 ± 0.27 for the W → e νe de ay hannel. They usethe SM theoreti al predi tions for σ(W )/σ(Z) and (W → e νe ) and the world averagefor B(Z → e e). The value quoted here is obtained ombining this result (2.169 ± 0.070GeV) with that of ABBOTT 99H.10ABE 95W measured R = 10.90 ± 0.32 ± 0.29. They use mW=80.23 ± 0.18 GeV,σ(W )/σ(Z) = 3.35 ± 0.03, (W → e ν) = 225.9 ± 0.9 MeV, (Z → e+ e−) =83.98 ± 0.18 MeV, and (Z) = 2.4969 ± 0.0038 GeV.11ALITTI 92 measured R = 10.4+0.7

−0.6 ± 0.3. The values of σ(Z) and σ(W ) ome fromO(α2s ) al ulations using mW = 80.14 ± 0.27 GeV, and mZ = 91.175 ± 0.021 GeValong with the orresponding value of sin2θW = 0.2274. They use σ(W )/σ(Z) =3.26 ± 0.07 ± 0.05 and (Z) = 2.487 ± 0.010 GeV.12ALBAJAR 91 measured R = 9.5+1.1−1.0 (stat. + syst.). σ(W )/σ(Z) is al ulated in QCDat the parton level using mW = 80.18 ± 0.28 GeV and mZ = 91.172 ± 0.031 GeValong with sin2θW = 0.2322 ± 0.0014. They use σ(W )/σ(Z) = 3.23 ± 0.05 and (Z)= 2.498 ± 0.020 GeV. This measurement is obtained ombining both the ele tron andmuon hannels. W+ DECAY MODESW+ DECAY MODESW+ DECAY MODESW+ DECAY MODESW− modes are harge onjugates of the modes below.Mode Fra tion (i /) Conden e level1 ℓ+ν [a (10.86± 0.09) %2 e+ν (10.71± 0.16) %3 µ+ν (10.63± 0.15) %4 τ+ ν (11.38± 0.21) %5 hadrons (67.41± 0.27) %6 π+ γ < 7 × 10−6 95%7 D+s γ < 1.3 × 10−3 95%8 X (33.3 ± 2.6 ) %9 s (31 +13

−11 ) %10 invisible [b ( 1.4 ± 2.9 ) %[a ℓ indi ates ea h type of lepton (e, µ, and τ), not sum over them.[b This represents the width for the de ay of the W boson into a hargedparti le with momentum below dete tability, p< 200 MeV.W PARTIAL WIDTHSW PARTIAL WIDTHSW PARTIAL WIDTHSW PARTIAL WIDTHS(invisible) 10(invisible) 10(invisible) 10(invisible) 10This represents the width for the de ay of the W boson into a harged parti le withmomentum below dete tability, p< 200 MeV.VALUE (MeV) DOCUMENT ID TECN COMMENT30+52−48±3330+52−48±3330+52−48±3330+52−48±33 1 BARATE 99I ALEP Eee m= 161+172+183 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •2 BARATE 99L ALEP Eee m= 161+172+183 GeV1BARATE 99I measure this quantity using the dependen e of the total ross se tionσWW upon a hange in the total width. The t is performed to the WW measured ross se tions at 161, 172, and 183 GeV. This partial width is < 139 MeV at 95%CL.2BARATE 99L use W -pair produ tion to sear h for ee tively invisible W de ays, taggingwith the de ay of the other W boson to Standard Model parti les. The partial width foree tively invisible de ay is < 27 MeV at 95%CL.W BRANCHING RATIOSW BRANCHING RATIOSW BRANCHING RATIOSW BRANCHING RATIOSOverall ts are performed to determine the bran hing ratios of the Wboson. Averages on W → e ν, W → µν, and W → τ ν, and their orrelations are obtained by ombining results from the four LEP experi-ments properly taking into a ount the ommon systemati un ertaintiesand their orrelations [SCHAEL 13A. A rst t determines the three indi-vidual leptoni bra hing ratios B(W → e ν), B(W → µν), and B(W →

τ ν). This t has a χ2 = 6.3 for 9 degrees of freedom. The orrelation o-eÆ ients between the bran hing fra tions are 0.14 (e−µ), −0.20 (e−τ),−0.12 (µ − τ). A se ond t assumes lepton universality and determinesthe leptoni bran hing ratio brW → ℓν and the hadroni bran hing ratiois derived as B(W → hadrons) = 13 brW → ℓ. This t has a χ2 =15.4 for 11 degrees of freedom.(ℓ+ν

)/total 1/(ℓ+ν)/total 1/(ℓ+ν)/total 1/(ℓ+ν)/total 1/

ℓ indi ates average over e, µ, and τ modes, not sum over modes.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT10.86±0.09 OUR FIT10.86±0.09 OUR FIT10.86±0.09 OUR FIT10.86±0.09 OUR FIT10.86±0.12±0.08 16438 ABBIENDI 07A OPAL Eee m= 161209 GeV10.85±0.14±0.08 13600 ABDALLAH 04G DLPH Eee m= 161209 GeV10.83±0.14±0.10 11246 ACHARD 04J L3 Eee m= 161209 GeV10.96±0.12±0.05 16116 SCHAEL 04A ALEP Eee m= 183209 GeV• • • We do not use the following data for averages, ts, limits, et . • • •

11.02±0.52 11858 1 ABBOTT 99H D0 Epp m= 1.8 TeV10.4 ±0.8 3642 2 ABE 92I CDF Epp m= 1.8 TeV1ABBOTT 99H measure R ≡ [σW B(W → ℓνℓ)/[σZ B(Z → ℓℓ) = 10.90 ± 0.52 ombining ele tron and muon hannels. They use MW = 80.39 ± 0.06 GeV and theSM theoreti al predi tions for σ(W )/σ(Z) and B(Z → ℓℓ).2 1216 ± 38+27−31 W → µν events from ABE 92I and 2426W → e ν events of ABE 91C.ABE 92I give the inverse quantity as 9.6 ± 0.7 and we have inverted.(e+ ν

)/total 2/(e+ ν)/total 2/(e+ ν)/total 2/(e+ ν)/total 2/VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT10.71±0.16 OUR FIT10.71±0.16 OUR FIT10.71±0.16 OUR FIT10.71±0.16 OUR FIT10.71±0.25±0.11 2374 ABBIENDI 07A OPAL Eee m= 161209 GeV10.55±0.31±0.14 1804 ABDALLAH 04G DLPH Eee m= 161209 GeV10.78±0.29±0.13 1576 ACHARD 04J L3 Eee m= 161209 GeV10.78±0.27±0.10 2142 SCHAEL 04A ALEP Eee m= 183209 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •10.61±0.28 1 ABAZOV 04D TEVA Epp m= 1.8 TeV1ABAZOV 04D take into a ount all orrelations to properly ombine the CDF (ABE 95W)and D (ABBOTT 00B) measurements of the ratio R in the ele tron hannel. The ratioR is dened as [σW · B(W → e νe ) / [σZ · B(Z → e e). The ombination givesRTevatron = 10.59 ± 0.23. σW / σZ is al ulated at nexttonexttoleading order(3.360 ± 0.051). The bran hing fra tion B(Z → e e) is taken from this Review as(3.363 ± 0.004)%.(µ+ν)/total 3/(µ+ν)/total 3/(µ+ν)/total 3/(µ+ν)/total 3/VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT10.63±0.15 OUR FIT10.63±0.15 OUR FIT10.63±0.15 OUR FIT10.63±0.15 OUR FIT10.78±0.24±0.10 2397 ABBIENDI 07A OPAL Eee m= 161209 GeV10.65±0.26±0.08 1998 ABDALLAH 04G DLPH Eee m = 161209 GeV10.03±0.29±0.12 1423 ACHARD 04J L3 Eee m = 161209 GeV10.87±0.25±0.08 2216 SCHAEL 04A ALEP Eee m = 183209 GeV(τ+ ν)/total 4/(τ+ ν)/total 4/(τ+ ν)/total 4/(τ+ ν)/total 4/VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT11.38±0.21 OUR FIT11.38±0.21 OUR FIT11.38±0.21 OUR FIT11.38±0.21 OUR FIT11.14±0.31±0.17 2177 ABBIENDI 07A OPAL Eee m= 161209 GeV11.46±0.39±0.19 2034 ABDALLAH 04G DLPH Eee m = 161209 GeV11.89±0.40±0.20 1375 ACHARD 04J L3 Eee m = 161209 GeV11.25±0.32±0.20 2070 SCHAEL 04A ALEP Eee m = 183209 GeV(hadrons)/total 5/(hadrons)/total 5/(hadrons)/total 5/(hadrons)/total 5/OUR FIT value is obtained by a t to the lepton bran hing ratio data assuming leptonuniversality.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT67.41±0.27 OUR FIT67.41±0.27 OUR FIT67.41±0.27 OUR FIT67.41±0.27 OUR FIT67.41±0.37±0.23 16438 ABBIENDI 07A OPAL Eee m= 161209 GeV67.45±0.41±0.24 13600 ABDALLAH 04G DLPH Eee m = 161209 GeV67.50±0.42±0.30 11246 ACHARD 04J L3 Eee m = 161209 GeV67.13±0.37±0.15 16116 SCHAEL 04A ALEP Eee m = 183209 GeV(µ+ν)/(e+ ν

) 3/2(µ+ν)/(e+ ν

) 3/2(µ+ν)/(e+ ν

) 3/2(µ+ν)/(e+ ν

) 3/2VALUE EVTS DOCUMENT ID TECN COMMENT0.991±0.018 OUR AVERAGE0.991±0.018 OUR AVERAGE0.991±0.018 OUR AVERAGE0.991±0.018 OUR AVERAGE0.993±0.019 SCHAEL 13A LEP Eee m= 130209 GeV0.89 ±0.10 13k 1 ABACHI 95D D0 Epp m= 1.8 TeV1.02 ±0.08 1216 2 ABE 92I CDF Epp m= 1.8 TeV1.00 ±0.14 ±0.08 67 ALBAJAR 89 UA1 Epp m= 546,630 GeV• • • We do not use the following data for averages, ts, limits, et . • • •1.24 +0.6

−0.4 14 ARNISON 84D UA1 Repl. by ALBAJAR 891ABACHI 95D obtain this result from the measured σW B(W → µν)= 2.09 ± 0.23 ±0.11 nb and σW B(W → e ν)= 2.36 ± 0.07 ± 0.13 nb in whi h the rst error is the ombined statisti al and systemati un ertainty, the se ond re e ts the un ertainty inthe luminosity.2ABE 92I obtain σW B(W → µν)= 2.21 ± 0.07 ± 0.21 and ombine with ABE 91C σWB((W → e ν)) to give a ratio of the ouplings from whi h we derive this measurement.(τ+ ν)/(e+ν

) 4/2(τ+ ν)/(e+ν

) 4/2(τ+ ν)/(e+ν

) 4/2(τ+ ν)/(e+ν

) 4/2VALUE EVTS DOCUMENT ID TECN COMMENT1.043±0.024 OUR AVERAGE1.043±0.024 OUR AVERAGE1.043±0.024 OUR AVERAGE1.043±0.024 OUR AVERAGE1.063±0.027 SCHAEL 13A LEP Eee m= 130209 GeV0.961±0.061 980 1 ABBOTT 00D D0 Epp m= 1.8 TeV0.94 ±0.14 179 2 ABE 92E CDF Epp m= 1.8 TeV1.04 ±0.08 ±0.08 754 3 ALITTI 92F UA2 Epp m= 630 GeV1.02 ±0.20 ±0.12 32 ALBAJAR 89 UA1 Epp m= 546,630 GeV• • • We do not use the following data for averages, ts, limits, et . • • •0.995±0.112±0.083 198 ALITTI 91C UA2 Repl. by ALITTI 92F1.02 ±0.20 ±0.10 32 ALBAJAR 87 UA1 Repl. by ALBAJAR 89

Page 8: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

618618618618Gauge&HiggsBosonParti leListingsW1ABBOTT 00D measure σW×B(W → τ ντ ) = 2.22 ± 0.09 ± 0.10 ± 0.10 nb. Usingthe ABBOTT 00B result σW×B(W → e νe ) = 2.31 ± 0.01 ± 0.05 ± 0.10 nb, theyquote the ratio of the ouplings from whi h we derive this measurement.2ABE 92E use two pro edures for sele ting W → τ ντ events. The missing ET triggerleads to 132± 14± 8 events and the τ trigger to 47± 9± 4 events. Proper statisti al andsystemati orrelations are taken into a ount to arrive at σB(W → τ ν) = 2.05 ± 0.27nb. Combined with ABE 91C result on σB(W → e ν), ABE 92E quote a ratio of the ouplings from whi h we derive this measurement.3This measurement is derived by us from the ratio of the ouplings of ALITTI 92F.(τ+ ν)/(µ+ν

) 4/3(τ+ ν)/(µ+ν

) 4/3(τ+ ν)/(µ+ν

) 4/3(τ+ ν)/(µ+ν

) 4/3VALUE DOCUMENT ID TECN COMMENT1.070±0.0261.070±0.0261.070±0.0261.070±0.026 SCHAEL 13A LEP Eee m= 130209 GeV(π+ γ)/(e+ν

) 6/2(π+ γ)/(e+ν

) 6/2(π+ γ)/(e+ν

) 6/2(π+ γ)/(e+ν

) 6/2VALUE CL% DOCUMENT ID TECN COMMENT< 6.4× 10−5< 6.4× 10−5< 6.4× 10−5< 6.4× 10−5 95 AALTONEN 12W CDF Epp m= 1.96 Tev< 7 × 10−4 95 ABE 98H CDF Epp m= 1.8 TeV< 4.9× 10−3 95 1 ALITTI 92D UA2 Epp m= 630 GeV<58 × 10−3 95 2 ALBAJAR 90 UA1 Epp m= 546, 630 GeV1ALITTI 92D limit is 3.8× 10−3 at 90%CL.2ALBAJAR 90 obtain < 0.048 at 90%CL.(D+s γ

)/(e+ν) 7/2(D+s γ

)/(e+ν) 7/2(D+s γ

)/(e+ν) 7/2(D+s γ

)/(e+ν) 7/2VALUE CL% DOCUMENT ID TECN COMMENT

<1.2× 10−2<1.2× 10−2<1.2× 10−2<1.2× 10−2 95 ABE 98P CDF Epp m= 1.8 TeV( X)/(hadrons) 8/5( X)/(hadrons) 8/5( X)/(hadrons) 8/5( X)/(hadrons) 8/5VALUE EVTS DOCUMENT ID TECN COMMENT0.49 ±0.04 OUR AVERAGE0.49 ±0.04 OUR AVERAGE0.49 ±0.04 OUR AVERAGE0.49 ±0.04 OUR AVERAGE0.481±0.042±0.032 3005 1 ABBIENDI 00V OPAL Eee m= 183 + 189 GeV0.51 ±0.05 ±0.03 746 2 BARATE 99M ALEP Eee m= 172 + 183 GeV1ABBIENDI 00V tag W → X de ays using measured jet properties, lifetime infor-mation, and leptons produ ed in harm de ays. From this result, and using the ad-ditional measurements of (W ) and B(W → hadrons), ∣∣V s ∣∣ is determined to be0.969 ± 0.045 ± 0.036.2BARATE 99M tag jets using a neural network algorithm. From this measurement ∣∣V s ∣∣is determined to be 1.00 ± 0.11 ± 0.07.R s = ( s)/(hadrons) 9/5R s = ( s)/(hadrons) 9/5R s = ( s)/(hadrons) 9/5R s = ( s)/(hadrons) 9/5VALUE DOCUMENT ID TECN COMMENT0.46+0.18−0.14±0.070.46+0.18−0.14±0.070.46+0.18−0.14±0.070.46+0.18−0.14±0.07 1 ABREU 98N DLPH Eee m= 161+172 GeV1ABREU 98N tag and s jets by identifying a harged kaon as the highest momentumparti le in a hadroni jet. They also use a lifetime tag to independently identify a jet,based on the impa t parameter distribution of harged parti les in a jet. From thismeasurement ∣∣V s ∣∣ is determined to be 0.94+0.32

−0.26 ± 0.13.AVERAGE PARTICLE MULTIPLICITIES IN HADRONIC W DECAYAVERAGE PARTICLE MULTIPLICITIES IN HADRONIC W DECAYAVERAGE PARTICLE MULTIPLICITIES IN HADRONIC W DECAYAVERAGE PARTICLE MULTIPLICITIES IN HADRONIC W DECAYSummed over parti le and antiparti le, when appropriate.⟨Nπ±

⟩⟨Nπ±⟩⟨Nπ±⟩⟨Nπ±⟩VALUE DOCUMENT ID TECN COMMENT15.70±0.3515.70±0.3515.70±0.3515.70±0.35 1 ABREU,P 00F DLPH Eee m= 189 GeV1ABREU,P 00F measure ⟨N

π±⟩ = 31.65 ± 0.48 ± 0.76 and 15.51 ± 0.38 ± 0.40 in thefully hadroni and semileptoni nal states respe tively. The value quoted is a weightedaverage without assuming any orrelations.

⟨NK±⟩⟨NK±⟩⟨NK±⟩⟨NK±⟩VALUE DOCUMENT ID TECN COMMENT2.20±0.192.20±0.192.20±0.192.20±0.19 1 ABREU,P 00F DLPH Eee m= 189 GeV1ABREU,P 00F measure ⟨NK±

⟩ = 4.38 ± 0.42 ± 0.12 and 2.23 ± 0.32 ± 0.17 in thefully hadroni and semileptoni nal states respe tively. The value quoted is a weightedaverage without assuming any orrelations.⟨Np⟩⟨Np⟩⟨Np⟩⟨Np⟩VALUE DOCUMENT ID TECN COMMENT0.92±0.140.92±0.140.92±0.140.92±0.14 1 ABREU,P 00F DLPH Eee m= 189 GeV1ABREU,P 00F measure ⟨Np⟩ = 1.82 ± 0.29 ± 0.16 and 0.94 ± 0.23 ± 0.06 in thefully hadroni and semileptoni nal states respe tively. The value quoted is a weightedaverage without assuming any orrelations.⟨N harged⟩⟨N harged⟩⟨N harged⟩⟨N harged⟩VALUE DOCUMENT ID TECN COMMENT19.39±0.08 OUR AVERAGE19.39±0.08 OUR AVERAGE19.39±0.08 OUR AVERAGE19.39±0.08 OUR AVERAGE19.38±0.05±0.08 1 ABBIENDI 06A OPAL Eee m= 189209 GeV19.44±0.17 2 ABREU,P 00F DLPH Eee m= 183+189 GeV19.3 ±0.3 ±0.3 3 ABBIENDI 99N OPAL Eee m= 183 GeV19.23±0.74 4 ABREU 98C DLPH Eee m= 172 GeV

1ABBIENDI 06A measure ⟨N harged⟩ = 38.74 ± 0.12 ± 0.26 when both W bosonsde ay hadroni ally and ⟨N harged⟩ = 19.39 ± 0.11 ± 0.09 when one W boson de ayssemileptoni ally. The value quoted here is obtained under the assumption that there isno olor re onne tion between W bosons; the value is a weighted average taking intoa ount orrelations in the systemati un ertainties.2ABREU,P 00F measure ⟨N harged⟩ = 39.12 ± 0.33 ± 0.36 and 38.11 ± 0.57 ± 0.44in the fully hadroni nal states at 189 and 183 GeV respe tively, and ⟨N harged⟩ =19.49 ± 0.31 ± 0.27 and 19.78 ± 0.49 ± 0.43 in the semileptoni nal states. The valuequoted is a weighted average without assuming any orrelations.3ABBIENDI 99N use the nal states W+W− → qq ℓνℓ to derive this value.4ABREU 98C ombine results from both the fully hadroni as well semileptoni WW nalstates after demonstrating that the W de ay harged multipli ity is independent of thetopology within errors.TRIPLE GAUGE COUPLINGS (TGC'S)TRIPLE GAUGE COUPLINGS (TGC'S)TRIPLE GAUGE COUPLINGS (TGC'S)TRIPLE GAUGE COUPLINGS (TGC'S)EXTRACTION OF TRIPLE GAUGE COUPLINGS(TGCS)

Revised August 2015 by M.W. Grunewald (U. College Dublin)and A. Gurtu (Formerly Tata Inst.).

Fourteen independent couplings, seven each for ZWW and

γWW , completely describe the V WW vertices within the most

general framework of the electroweak Standard Model (SM)

consistent with Lorentz invariance and U(1) gauge invariance.

Of each of the seven TGCs, three conserve C and P individually,

three violate CP , and one violates C and P individually

while conserving CP . Assumption of C and P conservation

and electromagnetic gauge invariance reduces the number of

independent V WW couplings to five: one common set [1,2]

is (κγ , κZ , λγ , λZ , gZ1 ), where κγ = κZ = gZ

1 = 1 and λγ =

λZ = 0 in the Standard Model at tree level. The parameters

κZ and λZ are related to the other three due to constraints

of gauge invariance as follows: κZ = gZ1 − (κγ − 1) tan2 θW

and λZ = λγ , where θW is the weak mixing angle. The W

magnetic dipole moment, µW , and the W electric quadrupole

moment, qW , are expressed as µW = e (1 + κγ + λγ)/2MW and

qW = −e (κγ − λγ)/M2W .

Precision measurements of suitable observables at LEP1 has

already led to an exploration of much of the TGC parameter

space. At LEP2, the V WW coupling arises in W -pair produc-

tion via s-channel exchange, or in single W production via the

radiation of a virtual photon off the incident e+ or e−. At the

Tevatron and the LHC, hard-photon bremsstrahlung off a pro-

duced W or Z signals the presence of a triple-gauge vertex. In

order to extract the value of one TGC, the others are generally

kept fixed to their SM values. While most analyses use the

above gauge constraints in the extraction of TGCs, one analysis

of W -pair events also determines the real and imaginary parts

of all 14 couplings using unconstrained single-parameter fits [3].

The results are consistent. Some experiments have determined

limits on the couplings under various non-LEP scenarios and as-

suming different values of the form factor Λ, where the coupling

parameters are scaled by 1/(1+ s/Λ2)2. For practical reasons it

is not possible to quote all such determinations in the listings.

For that the individual papers may be consulted.

References

1. K. Hagiwara et al., Nucl. Phys. B282, 253 (1987).

2. G. Gounaris et al., CERN 96-01 p. 525.

3. S. Schael et al. (ALEPH Collab.), Phys. Lett. B614, 7(2005).

Page 9: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

619619619619See key on page 601 Gauge & Higgs Boson Parti le ListingsWgZ1gZ1gZ1gZ1 OUR FIT below is taken from [SCHAEL 13A.VALUE EVTS DOCUMENT ID TECN COMMENT0.984+0.018−0.020 OUR FIT0.984+0.018−0.020 OUR FIT0.984+0.018−0.020 OUR FIT0.984+0.018−0.020 OUR FIT0.975+0.033−0.030 7872 1 ABDALLAH 10 DLPH Eee m= 189209 GeV1.001±0.027±0.013 9310 2 SCHAEL 05A ALEP Eee m= 183209 GeV0.987+0.034−0.033 9800 3 ABBIENDI 04D OPAL Eee m= 183209 GeV0.966+0.034−0.032±0.015 8325 4 ACHARD 04D L3 Eee m= 161209 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •5 AAD 14Y ATLS Epp m = 8 TeV6 AAD 13AL ATLS Epp m = 7 TeV7 CHATRCHYAN13BF CMS Epp m = 7 TeV8 AAD 12CD ATLS Epp m = 7 TeV9 AALTONEN 12AC CDF Epp m = 1.96 TeV10 ABAZOV 12AG D0 Epp m = 1.96 TeV34 11 ABAZOV 11 D0 Epp m = 1.96 TeV334 12 AALTONEN 10K CDF Epp m = 1.96 TeV1.04 ±0.09 13 ABAZOV 09ADD0 Epp m = 1.96 TeV14 ABAZOV 09AJ D0 Epp m = 1.96 TeV1.07 +0.08−0.12 1880 15 ABDALLAH 08C DLPH Superseded by ABDAL-LAH 1013 16 ABAZOV 07Z D0 Epp m = 1.96 TeV2.3 17 ABAZOV 05S D0 Epp m = 1.96 TeV0.98 ±0.07 ±0.01 2114 18 ABREU 01I DLPH Eee m= 183+189 GeV331 19 ABBOTT 99I D0 Epp m= 1.8 TeV1ABDALLAH 10 use data on the nal states e+ e− → j j ℓν, j j j j, j j X , ℓX , at enter-of-mass energies between 189209 GeV at LEP2, where j = jet, ℓ = lepton, and Xrepresents missing momentum. The t is arried out keeping all other parameters xedat their SM values.2 SCHAEL 05A study singlephoton, singleW , and WWpair produ tion from 183 to209 GeV. The result quoted here is derived from the WWpair produ tion sample.Ea h parameter is determined from a singleparameter t in whi h the other parametersassume their Standard Model values.3ABBIENDI 04D ombine results fromW+W− in all de ay hannels. Only CP- onserving ouplings are onsidered and ea h parameter is determined from a single-parameter t inwhi h the other parameters assume their Standard Model values. The 95% onden einterval is 0.923 < gZ1 < 1.054.4ACHARD 04D study WWpair produ tion, singleW produ tion and singlephoton pro-du tion with missing energy from 189 to 209 GeV. The result quoted here is obtainedfrom the WWpair produ tion sample in luding data from 161 to 183 GeV, ACCIA-RRI 99Q. Ea h parameter is determined from a singleparameter t in whi h the otherparameters assume their Standard Model values.5AAD 14Y determine the ele troweak Z -dijet ross se tion in 8 TeV pp ollisions. Z →e e and Z → µµ de ays are sele ted with the di-lepton pT > 20 GeV and mass in the81101 GeV range. Minimum two jets are required with pT > 55 and 45 GeV and noadditional jets with pT > 25 GeV in the rapidity interval between them. The normalizedpT balan e between the Z and the two jets is required to be < 0.15. This leads to asele tion of 900 events with dijet mass > 1 TeV. The number of signal and ba kgroundevents expe ted is 261 and 592 respe tively. A Poisson likelihood method is used on anevent by event basis to obtain the 95% CL limit 0.5 < gZ1 < 1.26 for a form fa tor value = ∞.6AAD 13AL study WW produ tion in pp ollisions and sele t 1325 WW andidates inde ay modes with ele trons or muons with an expe ted ba kground of 369 ± 61 events.Assuming the LEP formulation and setting the form-fa tor = innity, a t to thetransverse momentum distribution of the leading harged lepton, leads to a 95% C.L.range of 0.961 < gZ1 < 1.052. Supersedes AAD 12AC.7 CHATRCHYAN 13BF determine the W+W− produ tion ross se tion using unlike signdi-lepton (e or µ) events with high 6pT . The leptons have pT > 20 GeV/ and areisolated. 1134 andidate events are observed with an expe ted SM ba kground of 247 ±34. The pT distribution of the leading lepton is tted to obtain 95% C.L. limits of 0.905≤ gZ1 ≤ 1.095.8AAD 12CD study W Z produ tion in pp ollisions and sele t 317 W Z andidates in threeℓν de ay modes with an expe ted ba kground of 68.0 ± 10.0 events. The resulting 95%C.L. range is: 0.943 < gZ1 < 1.093. Supersedes AAD 12V.9AALTONEN 12AC study W Z produ tion in pp ollisions and sele t 63 W Z andidatesin three ℓν de ay modes with an expe ted ba kground of 7.9 ± 1.0 events. Based onthe ross se tion and shape of the Z transverse momentum spe trum, the following 95%C.L. range is reported: 0.92 < gZ1 < 1.20 for a form fa tor of = 2 TeV.10ABAZOV 12AG ombine new results with already published results on W γ, WW andW Z produ tion in order to determine the ouplings with in reased pre ision, supersedingABAZOV 08R, ABAZOV 11AC, ABAZOV 09AJ, ABAZOV 09AD. The 68% C.L. result fora formfa tor uto of = 2 TeV is gZ1 = 1.022+0.032

−0.030.11ABAZOV 11 study the pp → 3ℓν pro ess arising in W Z produ tion. They observe34 W Z andidates with an estimated ba kground of 6 events. An analysis of the pTspe trum of the Z boson leads to a 95% C.L. limit of 0.944 < gZ1 < 1.154, for a formfa tor = 2 TeV.12AALTONEN 10K study pp → W+W− with W → e/µν. The pT of the leading(se ond) lepton is required to be > 20 (10) GeV. The nal number of events sele ted is654 of whi h 320 ± 47 are estimated to be ba kground. The 95% C.L. interval is 0.76< gZ1 < 1.34 for = 1.5 TeV and 0.78 < gZ1 < 1.30 for = 2 TeV.13ABAZOV 09AD study the pp → ℓν 2jet pro ess arising in WW and W Z produ tion.They sele t 12,473 (14,392) events in the ele tron (muon) hannel with an expe ted

di-boson signal of 436 (527) events. The results on the anomalous ouplings are derivedfrom an analysis of the pT spe trum of the 2-jet system and quoted at 68% C.L. andfor a form fa tor of 2 TeV. This measurement is not used for obtaining the mean as it isfor a spe i form fa tor. The 95% onden e interval is 0.88 < gZ1 < 1.20.14ABAZOV 09AJ study the pp → 2ℓ2ν pro ess arising in WW produ tion. They sele t100 events with an expe ted WW signal of 65 events. An analysis of the pT spe trumof the two harged leptons leads to 95% C.L. limits of 0.86 < gZ1 < 1.3, for a formfa tor = 2 TeV.15ABDALLAH 08C determine this triple gauge oupling from the measurement of the spindensity matrix elements in e+ e− → W+W− → (qq)(ℓν), where ℓ = e or µ. Valuesof all other ouplings are xed to their standard model values.16ABAZOV 07Z set limits on anomalous TGCs using the measured ross se tion and pT (Z)distribution in W Z produ tion with both the W and the Z de aying leptoni ally intoele trons and muons. Setting the other ouplings to their standard model values, the95% C.L. limit for a form fa tor s ale = 2 TeV is 0.86 < gZ1 < 1.35.17ABAZOV 05S study p p → W Z produ tion with a subsequent trilepton de ay to ℓν ℓ′ ℓ′(ℓ and ℓ′ = e or µ). Three events (estimated ba kground 0.71 ± 0.08 events) with WZde ay hara teristi s are observed from whi h they derive limits on the anomalous WWZ ouplings. The 95% CL limit for a form fa tor s ale = 1.5 TeV is 0.51 < gZ1 <1.66, xing λZ and κZ to their Standard Model values.18ABREU 01I ombine results from e+ e− intera tions at 189 GeV leading to W+W−and W e νe nal states with results from ABREU 99L at 183 GeV. The 95% onden einterval is 0.84 < gZ1 < 1.13.19ABBOTT 99I perform a simultaneous t to the W γ, WW → dilepton, WW /W Z →e ν j j, WW /W Z → µν j j, and W Z → trilepton data samples. For = 2.0 TeV, the95%CL limits are 0.63 < gZ1 < 1.57, xing λZ and κZ to their Standard Model values,and assuming Standard Model values for the WW γ ouplings.κγκγκγκγ OUR FIT below is taken from [SCHAEL 13A.VALUE EVTS DOCUMENT ID TECN COMMENT0.982±0.042 OUR FIT0.982±0.042 OUR FIT0.982±0.042 OUR FIT0.982±0.042 OUR FIT1.024+0.077

−0.081 7872 1 ABDALLAH 10 DLPH Eee m= 189209 GeV0.971±0.055±0.030 10689 2 SCHAEL 05A ALEP Eee m= 183209 GeV0.88 +0.09−0.08 9800 3 ABBIENDI 04D OPAL Eee m= 183209 GeV1.013+0.067−0.064±0.026 10575 4 ACHARD 04D L3 Eee m= 161209 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •5 CHATRCHYAN14AB CMS Epp m = 7 TeV6 AAD 13AN ATLS Epp m = 7 TeV7 CHATRCHYAN13BF CMS Epp m = 7 TeV8 ABAZOV 12AG D0 Epp m = 1.96 TeV9 ABAZOV 11AC D0 Epp m = 1.96 TeV10 CHATRCHYAN11M CMS Epp m = 7 TeV334 11 AALTONEN 10K CDF Epp m = 1.96 TeV53 12 AARON 09B H1 Eep m = 0.3 TeV1.07 +0.26−0.29 13 ABAZOV 09ADD0 Epp m = 1.96 TeV14 ABAZOV 09AJ D0 Epp m = 1.96 TeV15 ABAZOV 08R D0 Epp m = 1.96 TeV0.68 +0.17−0.15 1880 16 ABDALLAH 08C DLPH Superseded by ABDAL-LAH 101617 17 AALTONEN 07L CDF Epp m = 1.96 GeV17 18 ABAZOV 06H D0 Epp m = 1.96 TeV141 19 ABAZOV 05J D0 Epp m = 1.96 TeV1.25 +0.21−0.20 ±0.06 2298 20 ABREU 01I DLPH Eee m= 183+189 GeV21 BREITWEG 00 ZEUS e+ p → e+W±X,√s ≈ 300 GeV0.92 ±0.34 331 22 ABBOTT 99I D0 Epp m= 1.8 TeV1ABDALLAH 10 use data on the nal states e+ e− → j j ℓν, j j j j, j j X , ℓX , at enter-of-mass energies between 189209 GeV at LEP2, where j = jet, ℓ = lepton, and Xrepresents missing momentum. The t is arried out keeping all other parameters xedat their SM values.2 SCHAEL 05A study singlephoton, singleW , and WWpair produ tion from 183 to209 GeV. Ea h parameter is determined from a singleparameter t in whi h the otherparameters assume their Standard Model values.3ABBIENDI 04D ombine results fromW+W− in all de ay hannels. Only CP- onserving ouplings are onsidered and ea h parameter is determined from a single-parameter t inwhi h the other parameters assume their Standard Model values. The 95% onden einterval is 0.73 < κγ < 1.07.4ACHARD 04D study WWpair produ tion, singleW produ tion and singlephoton pro-du tion with missing energy from 189 to 209 GeV. The result quoted here is obtainedin luding data from 161 to 183 GeV, ACCIARRI 99Q. Ea h parameter is determinedfrom a singleparameter t in whi h the other parameters assume their Standard Modelvalues.5CHATRCHYAN 14AB measureW γ produ tion ross se tion for pγ

T> 15 GeV and R(ℓγ)

> 0.7, whi h is the separation between the γ and the nal state harged lepton (e orµ) in the azimuthal angle-pseudorapidity (φ − η) plane. After ba kground subtra tionthe number of e ν γ and µν γ events is determined to be 3200 ± 325 and 4970 ± 543respe tively, ompatible with expe tations from the SM. This leads to a 95% CL limit of0.62 < κγ < 1.29, assuming other parameters have SM values.

Page 10: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

620620620620Gauge & Higgs Boson Parti le ListingsW6AAD 13AN study W γ produ tion in pp ollisions. In events with no additional jet,4449 (6578) W de ays to ele tron (muon) are sele ted, with an expe ted ba kground of1662 ± 262 (2538 ± 362) events. Analysing the photon pT spe trum above 100 GeVyields a 95% C.L. limit of 0.59 < κγ < 1.46. Supersedes AAD 12BX.7 CHATRCHYAN 13BF determine the W+W− produ tion ross se tion using unlike signdi-lepton (e or µ) events with high 6pT . The leptons have pT > 20 GeV/ and areisolated. 1134 andidate events are observed with an expe ted SM ba kground of 247 ±34. The pT distribution of the leading lepton is tted to obtain 95% C.L. limits of 0.79≤ kγ ≤ 1.22.8ABAZOV 12AG ombine new results with already published results on W γ, WW andW Z produ tion in order to determine the ouplings with in reased pre ision, supersedingABAZOV 08R, ABAZOV 11AC, ABAZOV 09AJ, ABAZOV 09AD. The 68% C.L. result fora formfa tor uto of = 2 TeV is κγ = 1.048+0.106

−0.105.9ABAZOV 11AC study W γ produ tion in pp ollisions at 1.96 TeV, with the W de ayprodu ts ontaining an ele tron or a muon. They sele t 196 (363) events in the ele tron(muon) mode, with a SM expe tation of 190 (372) events. A likelihood t to the photonET spe trum above 15 GeV yields at 95% C.L. the result: 0.6 < κγ < 1.4 for aformfa tor = 2 TeV.10CHATRCHYAN 11M studyW γ produ tion in pp ollisions at √s = 7 TeV using 36 pb−1pp data with the W de aying to ele tron and muon. The total ross se tion is measuredfor photon transverse energy EγT

> 10 GeV and spatial separation from harged leptonsin the plane of pseudo rapidity and azimuthal angle R(ℓ,γ)> 0.7. The number of andidate (ba kground) events is 452 (228 ± 21) for the ele tron hannel and 520(277 ± 25) for the muon hannel. Setting other ouplings to their standard model value,they derive a 95% CL limit of −0.11 < κγ < 2.04.11AALTONEN 10K study pp → W+W− with W → e/µν. The pT of the leading(se ond) lepton is required to be > 20 (10) GeV. The nal number of events sele ted is654 of whi h 320 ± 47 are estimated to be ba kground. The 95% C.L. interval is 0.37< κγ < 1.72 for = 1.5 TeV and 0.43 < κγ < 1.65 for = 2 TeV.12AARON 09B study single-W produ tion in e p ollisions at 0.3 TeV C.M. energy. Theysele t 53 W → e /µ events with a standard model expe tation of 54.1 ± 7.4 events.Fitting the transverse momentum spe trum of the hadroni re oil system they obtain a95% C.L. limit of −3.7 < κγ < −1.5 or 0.3< κγ <1.5, where the ambiguity is due tothe quadrati dependen e of the ross se tion to the oupling parameter.13ABAZOV 09AD study the pp → ℓν 2jet pro ess arising in WW and W Z produ tion.They sele t 12,473 (14,392) events in the ele tron (muon) hannel with an expe teddi-boson signal of 436 (527) events. The results on the anomalous ouplings are derivedfrom an analysis of the pT spe trum of the 2-jet system and quoted at 68% C.L. andfor a form fa tor of 2 TeV. This measurement is not used for obtaining the mean as it isfor a spe i form fa tor. The 95% onden e interval is 0.56 < κγ < 1.55.14ABAZOV 09AJ study the pp → 2ℓ2ν pro ess arising in WW produ tion. They sele t100 events with an expe ted WW signal of 65 events. An analysis of the pT spe trumof the two harged leptons leads to 95% C.L. limits of 0.46 < κγ < 1.83, for a formfa tor = 2 TeV.15ABAZOV 08R use 0.7 fb−1 pp data at √s = 1.96 TeV to sele t 263 W γ + X events,of whi h 187 onstitute signal, with the W de aying into an ele tron or a muon, whi his required to be well separated from a photon with ET > 9 GeV. A likelihood t to thephoton ET spe trum yields a 95% CL limit 0.49 < κγ < 1.51 with other ouplings xedto their Standard Model values.16ABDALLAH 08C determine this triple gauge oupling from the measurement of the spindensity matrix elements in e+ e− → W+W− → (qq)(ℓν), where ℓ = e or µ. Valuesof all other ouplings are xed to their standard model values.17AALTONEN 07L set limits on anomalous TGCs using the pT (W ) distribution in WWand W Z produ tion with the W de aying to an ele tron or muon and the Z to 2 jets.Setting other ouplings to their standard model value, the 95% C.L. limits are 0.54< κγ < 1.39 for a form fa tor s ale = 1.5 TeV.18ABAZOV 06H study pp → WW produ tion with a subsequent de ay WW →e+ νe e− νe , WW → e± νe µ∓ νµ or WW → µ+ νµµ− νµ. The 95% C.L. limit fora form fa tor s ale = 1 TeV is −0.05 < κγ <2.29, xing λγ=0. With the assumptionthat the WW γ and WW Z ouplings are equal the 95% C.L. one-dimensional limit (= 2 TeV) is 0.68 < κ < 1.45.19ABAZOV 05J perform a likelihood t to the photon ET spe trum of W γ + X events,where the W de ays to an ele tron or muon whi h is required to be well separated fromthe photon. For = 2.0 TeV the 95% CL limits are 0.12 < κγ < 1.96. In the t λγis kept xed to its Standard Model value.20ABREU 01I ombine results from e+ e− intera tions at 189 GeV leading to W+W−,W e νe , and ν ν γ nal states with results from ABREU 99L at 183 GeV. The 95% onden e interval is 0.87 < κγ < 1.68.21BREITWEG 00 sear h for W produ tion in events with large hadroni pT . For pT >20GeV, the upper limit on the ross se tion gives the 95%CL limit −3.7 < κγ < 2.5 (forλγ=0).22ABBOTT 99I perform a simultaneous t to the W γ, WW → dilepton, WW /W Z →e ν j j , WW /W Z → µν j j, and W Z → trilepton data samples. For = 2.0 TeV, the95%CL limits are 0.75 < κγ < 1.39.

λγλγλγλγ OUR FIT below is taken from [SCHAEL 13A.VALUE EVTS DOCUMENT ID TECN COMMENT−0.022±0.019 OUR FIT−0.022±0.019 OUR FIT−0.022±0.019 OUR FIT−0.022±0.019 OUR FIT0.002±0.035 7872 1 ABDALLAH 10 DLPH Eee m= 189209 GeV−0.012±0.027±0.011 10689 2 SCHAEL 05A ALEP Eee m= 183209 GeV−0.060+0.034

−0.033 9800 3 ABBIENDI 04D OPAL Eee m= 183209 GeV−0.021+0.035

−0.034±0.017 10575 4 ACHARD 04D L3 Eee m= 161209 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •5 CHATRCHYAN14AB CMS Epp m = 7 TeV6 AAD 13AN ATLS Epp m = 7 TeV7 ABAZOV 12AG D0 Epp m = 1.96 TeV8 ABAZOV 11AC D0 Epp m = 1.96 TeV9 CHATRCHYAN11M CMS Epp m = 7 TeV53 10 AARON 09B H1 Eep m = 0.3 TeV0.00 ±0.06 11 ABAZOV 09ADD0 Epp m = 1.96 TeV12 ABAZOV 09AJ D0 Epp m = 1.96 TeV13 ABAZOV 08R D0 Epp m = 1.96 TeV0.16 +0.12−0.13 1880 14 ABDALLAH 08C DLPH Superseded by ABDAL-LAH 101617 15 AALTONEN 07L CDF Epp m = 1.96 GeV17 16 ABAZOV 06H D0 Epp m = 1.96 TeV141 17 ABAZOV 05J D0 Epp m = 1.96 TeV0.05 ±0.09 ±0.01 2298 18 ABREU 01I DLPH Eee m= 183+189 GeV19 BREITWEG 00 ZEUS e+ p → e+W±X,√s ≈ 300 GeV0.00 +0.10−0.09 331 20 ABBOTT 99I D0 Epp m= 1.8 TeV1ABDALLAH 10 use data on the nal states e+ e− → j j ℓν, j j j j, j j X , ℓX , at enter-of-mass energies between 189209 GeV at LEP2, where j = jet, ℓ = lepton, and Xrepresents missing momentum. The t is arried out keeping all other parameters xedat their SM values.2 SCHAEL 05A study singlephoton, singleW , and WWpair produ tion from 183 to209 GeV. Ea h parameter is determined from a singleparameter t in whi h the otherparameters assume their Standard Model values.3ABBIENDI 04D ombine results fromW+W− in all de ay hannels. Only CP- onserving ouplings are onsidered and ea h parameter is determined from a single-parameter t inwhi h the other parameters assume their Standard Model values. The 95% onden einterval is −0.13 < λγ < 0.01.4ACHARD 04D study WWpair produ tion, singleW produ tion and singlephoton pro-du tion with missing energy from 189 to 209 GeV. The result quoted here is obtainedin luding data from 161 to 183 GeV, ACCIARRI 99Q. Ea h parameter is determinedfrom a singleparameter t in whi h the other parameters assume their Standard Modelvalues.5CHATRCHYAN 14AB measureW γ produ tion ross se tion for pγ

T> 15 GeV and R(ℓγ)

> 0.7, whi h is the separation between the γ and the nal state harged lepton (e orµ) in the azimuthal angle-pseudorapidity (φ − η) plane. After ba kground subtra tionthe number of e ν γ and µν γ events is determined to be 3200 ± 325 and 4970 ± 543respe tively, ompatible with expe tations from the SM. This leads to a 95% CL limit of−0.050 < λγ < 0.037, assuming all other parameters have SM values.6AAD 13AN study W γ produ tion in pp ollisions. In events with no additional jet,4449 (6578) W de ays to ele tron (muon) are sele ted, with an expe ted ba kground of1662 ± 262 (2538 ± 362) events. Analysing the photon pT spe trum above 100 GeVyields a 95% C.L. limit of −0.065 < λγ < 0.061. Supersedes AAD 12BX.7ABAZOV 12AG ombine new results with already published results on W γ, WW andW Z produ tion in order to determine the ouplings with in reased pre ision, supersedingABAZOV 08R, ABAZOV 11AC, ABAZOV 09AJ, ABAZOV 09AD. The 68% C.L. result fora formfa tor uto of = 2 TeV is λγ = 0.007+0.021

−0.022.8ABAZOV 11AC study W γ produ tion in pp ollisions at 1.96 TeV, with the W de ayprodu ts ontaining an ele tron or a muon. They sele t 196 (363) events in the ele tron(muon) mode, with a SM expe tation of 190 (372) events. A likelihood t to the photonET spe trum above 15 GeV yields at 95% C.L. the result: −0.08 < λγ < 0.07 for aformfa tor = 2 TeV.9CHATRCHYAN 11M studyW γ produ tion in pp ollisions at √s = 7 TeV using 36 pb−1pp data with the W de aying to ele tron and muon. The total ross se tion is measuredfor photon transverse energy EγT

> 10 GeV and spatial separation from harged leptonsin the plane of pseudo rapidity and azimuthal angle R(ℓ,γ)> 0.7. The number of andidate (ba kground) events is 452 (228 ± 21) for the ele tron hannel and 520(277 ± 25) for the muon hannel. Setting other ouplings to their standard model value,they derive a 95% CL limit of −0.18 < λγ < 0.17.10AARON 09B study single-W produ tion in e p ollisions at 0.3 TeV C.M. energy. Theysele t 53 W → e /µ events with a standard model expe tation of 54.1 ± 7.4 events.Fitting the transverse momentum spe trum of the hadroni re oil system they obtain a95% C.L. limit of −2.5 < λγ < 2.5.11ABAZOV 09AD study the pp → ℓν 2jet pro ess arising in WW and W Z produ tion.They sele t 12,473 (14,392) events in the ele tron (muon) hannel with an expe teddi-boson signal of 436 (527) events. The results on the anomalous ouplings are derivedfrom an analysis of the pT spe trum of the 2-jet system and quoted at 68% C.L. andfor a form fa tor of 2 TeV. This measurement is not used for obtaining the mean as it isfor a spe i form fa tor. The 95% onden e interval is −0.10 < λγ < 0.11.12ABAZOV 09AJ study the pp → 2ℓ2ν pro ess arising in WW produ tion. They sele t100 events with an expe ted WW signal of 65 events. An analysis of the pT spe trumof the two harged leptons leads to 95% C.L. limits of −0.14 < λγ < 0.18, for a formfa tor = 2 TeV.13ABAZOV 08R use 0.7 fb−1 pp data at √s = 1.96 TeV to sele t 263 W γ + X events,of whi h 187 onstitute signal, with the W de aying into an ele tron or a muon, whi his required to be well separated from a photon with ET > 9 GeV. A likelihood t to thephoton ET spe trum yields a 95% CL limit −0.12 < λγ < 0.13 with other ouplingsxed to their Standard Model values.14ABDALLAH 08C determine this triple gauge oupling from the measurement of the spindensity matrix elements in e+ e− → W+W− → (qq)(ℓν), where ℓ = e or µ. Valuesof all other ouplings are xed to their standard model values.15AALTONEN 07L set limits on anomalous TGCs using the pT (W ) distribution in WWand W Z produ tion with the W de aying to an ele tron or muon and the Z to 2jets. Setting other ouplings to their standard model value, the 95% C.L. limits are−0.18 < λγ < 0.17 for a form fa tor s ale = 1.5 TeV.

Page 11: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

621621621621See key on page 601 Gauge&HiggsBosonParti leListingsW16ABAZOV 06H study pp → WW produ tion with a subsequent de ay WW →e+ νe e− νe , WW → e± νe µ∓ νµ or WW → µ+ νµµ− νµ. The 95% C.L. limit fora form fa tor s ale = 1 TeV is −0.97 < λγ < 1.04, xing κγ=1. With the assumptionthat the WW γ and WW Z ouplings are equal the 95% C.L. one-dimensional limit (= 2 TeV) is −0.29 < λ < 0.30.17ABAZOV 05J perform a likelihood t to the photon ET spe trum of W γ + X events,where the W de ays to an ele tron or muon whi h is required to be well separated fromthe photon. For = 2.0 TeV the 95% CL limits are −0.20 < λγ < 0.20. In the tκγ is kept xed to its Standard Model value.18ABREU 01I ombine results from e+ e− intera tions at 189 GeV leading to W+W−,W e νe , and ν ν γ nal states with results from ABREU 99L at 183 GeV. The 95% onden e interval is −0.11 < λγ < 0.23.19BREITWEG 00 sear h for W produ tion in events with large hadroni pT . For pT >20GeV, the upper limit on the ross se tion gives the 95%CL limit −3.2 < λγ < 3.2 forκγ xed to its Standard Model value.20ABBOTT 99I perform a simultaneous t to the W γ, WW → dilepton, WW /W Z →e ν j j , WW /W Z → µν j j, and W Z → trilepton data samples. For = 2.0 TeV, the95%CL limits are −0.18 < λγ < 0.19.

κZκZκZκZ This oupling is CP- onserving (C- and P- separately onserving).VALUE EVTS DOCUMENT ID TECN COMMENT0.924+0.059−0.056±0.0240.924+0.059−0.056±0.0240.924+0.059−0.056±0.0240.924+0.059−0.056±0.024 7171 1 ACHARD 04D L3 Eee m = 189209 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •2 AAD 13AL ATLS Epp m = 7 TeV3 AAD 12CD ATLS Epp m = 7 TeV4 AALTONEN 12AC CDF Epp m = 1.96 TeV34 5 ABAZOV 11 D0 Epp m = 1.96 TeV17 6 ABAZOV 06H D0 Epp m = 1.96 TeV2.3 7 ABAZOV 05S D0 Epp m = 1.96 TeV1ACHARD 04D study WWpair produ tion, singleW produ tion and singlephoton pro-du tion with missing energy from 189 to 209 GeV. The result quoted here is obtainedusing the WWpair produ tion sample. Ea h parameter is determined from a singleparameter t in whi h the other parameters assume their Standard Model values.2AAD 13AL study WW produ tion in pp ollisions and sele t 1325 WW andidates inde ay modes with ele trons or muons with an expe ted ba kground of 369 ± 61 events.Assuming the LEP formulation and setting the form-fa tor = innity, a t to thetransverse momentum distribution of the leading harged lepton, leads to a 95% C.L.range of 0.957 < κZ < 1.043. Supersedes AAD 12AC.3AAD 12CD study W Z produ tion in pp ollisions and sele t 317 W Z andidates in threeℓν de ay modes with an expe ted ba kground of 68.0 ± 10.0 events. The resulting 95%C.L. range is: 0.63 < κZ < 1.57. Supersedes AAD 12V.4AALTONEN 12AC study W Z produ tion in pp ollisions and sele t 63 W Z andidatesin three ℓν de ay modes with an expe ted ba kground of 7.9 ± 1.0 events. Based onthe ross se tion and shape of the Z transverse momentum spe trum, the following 95%C.L. range is reported: 0.61 < κZ < 1.90 for a form fa tor of = 2 TeV.5ABAZOV 11 study the pp → 3ℓν pro ess arising in W Z produ tion. They observe34 W Z andidates with an estimated ba kground of 6 events. An analysis of the pTspe trum of the Z boson leads to a 95% C.L. limit of 0.600 < κZ < 1.675, for a formfa tor = 2 TeV.6ABAZOV 06H study pp → WW produ tion with a subsequent de ay WW →e+ νe e− νe , WW → e± νe µ∓ νµ or WW → µ+ νµµ− νµ. The 95% C.L. limit fora form fa tor s ale = 2 TeV is 0.55 < κZ < 1.55, xing λZ=0. With the assumptionthat the WW γ and WW Z ouplings are equal the 95% C.L. one-dimensional limit (= 2 TeV) is 0.68 < κ < 1.45.7ABAZOV 05S study p p → W Z produ tion with a subsequent trilepton de ay to ℓν ℓ′ ℓ′(ℓ and ℓ′ = e or µ). Three events (estimated ba kground 0.71 ± 0.08 events) with WZde ay hara teristi s are observed from whi h they derive limits on the anomalous WWZ ouplings. The 95% CL limit for a form fa tor s ale = 1 TeV is −1.0 < κZ < 3.4,xing λZ and gZ1 to their Standard Model values.

λZλZλZλZ This oupling is CP- onserving (C- and P- separately onserving).VALUE EVTS DOCUMENT ID TECN COMMENT−0.088+0.060

−0.057±0.023−0.088+0.060−0.057±0.023−0.088+0.060−0.057±0.023−0.088+0.060−0.057±0.023 7171 1 ACHARD 04D L3 Eee m = 189209 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •2 AAD 14Y ATLS Epp m = 8 TeV3 AAD 13AL ATLS Epp m = 7 TeV4 CHATRCHYAN13BF CMS Epp m = 7 TeV5 AAD 12CD ATLS Epp m = 7 TeV6 AALTONEN 12AC CDF Epp m = 1.96 TeV34 7 ABAZOV 11 D0 Epp m = 1.96 TeV334 8 AALTONEN 10K CDF Epp m = 1.96 TeV13 9 ABAZOV 07Z D0 Epp m = 1.96 TeV17 10 ABAZOV 06H D0 Epp m = 1.96 TeV2.3 11 ABAZOV 05S D0 Epp m = 1.96 TeV

1ACHARD 04D study WWpair produ tion, singleW produ tion and singlephoton pro-du tion with missing energy from 189 to 209 GeV. The result quoted here is obtainedusing the WWpair produ tion sample. Ea h parameter is determined from a singleparameter t in whi h the other parameters assume their Standard Model values.2AAD 14Y determine the ele troweak Z -dijet ross se tion in 8 TeV pp ollisions. Z →e e and Z → µµ de ays are sele ted with the di-lepton pT > 20 GeV and mass in the81101 GeV range. Minimum two jets are required with pT > 55 and 45 GeV and noadditional jets with pT > 25 GeV in the rapidity interval between them. The normalizedpT balan e between the Z and the two jets is required to be < 0.15. This leads to asele tion of 900 events with dijet mass > 1 TeV. The number of signal and ba kgroundevents expe ted is 261 and 592 respe tively. A Poisson likelihood method is used on anevent by event basis to obtain the 95% CL limit −0.15 < λZ < 0.13 for a form fa torvalue = ∞.3AAD 13AL study WW produ tion in pp ollisions and sele t 1325 WW andidates inde ay modes with ele trons or muons with an expe ted ba kground of 369 ± 61 events.Assuming the LEP formulation and setting the form-fa tor = innity, a t to thetransverse momentum distribution of the leading harged lepton, leads to a 95% C.L.range of −0.062 < λZ < 0.059. Supersedes AAD 12AC.4 CHATRCHYAN 13BF determine the W+W− produ tion ross se tion using unlike signdi-lepton (e or µ) events with high 6pT . The leptons have pT > 20 GeV/ and areisolated. 1134 andidate events are observed with an expe ted SM ba kground of 247 ±34. The pT distribution of the leading lepton is tted to obtain 95% C.L. limits of−0.048 ≤ λZ ≤ 0.048.5AAD 12CD study W Z produ tion in pp ollisions and sele t 317 W Z andidates in threeℓν de ay modes with an expe ted ba kground of 68.0 ± 10.0 events. The resulting 95%C.L. range is: −0.046 < λZ < 0.047. Supersedes AAD 12V.6AALTONEN 12AC study W Z produ tion in pp ollisions and sele t 63 W Z andidatesin three ℓν de ay modes with an expe ted ba kground of 7.9 ± 1.0 events. Based onthe ross se tion and shape of the Z transverse momentum spe trum, the following 95%C.L. range is reported: −0.08 < λZ < 0.10 for a form fa tor of = 2 TeV.7ABAZOV 11 study the pp → 3ℓν pro ess arising in W Z produ tion. They observe34 W Z andidates with an estimated ba kground of 6 events. An analysis of the pTspe trum of the Z boson leads to a 95% C.L. limit of −0.077 < λZ < 0.093, for aform fa tor = 2 TeV.8AALTONEN 10K study pp → W+W− with W → e/µν. The pT of the leading(se ond) lepton is required to be > 20 (10) GeV. The nal number of events sele tedis 654 of whi h 320 ± 47 are estimated to be ba kground. The 95% C.L. interval is−0.16 < λZ < 0.16 for = 1.5 TeV and −0.14 < λZ < 0.15 for = 2 TeV.9ABAZOV 07Z set limits on anomalous TGCs using the measured ross se tion and pT (Z)distribution in W Z produ tion with both the W and the Z de aying leptoni ally intoele trons and muons. Setting the other ouplings to their standard model values, the95% C.L. limit for a form fa tor s ale = 2 TeV is −0.17 < λZ < 0.21.10ABAZOV 06H study pp → WW produ tion with a subsequent de ay WW →e+ νe e− νe , WW → e± νe µ∓ νµ or WW → µ+ νµµ− νµ. The 95% C.L. limit fora form fa tor s ale = 2 TeV is −0.39 < λZ < 0.39, xing κZ=1. With the assump-tion that the WW γ and WW Z ouplings are equal the 95% C.L. one-dimensional limit( = 2 TeV) is −0.29 < λ < 0.30.11ABAZOV 05S study p p → W Z produ tion with a subsequent trilepton de ay to ℓν ℓ′ ℓ′(ℓ and ℓ′ = e or µ). Three events (estimated ba kground 0.71 ± 0.08 events) with WZde ay hara teristi s are observed from whi h they derive limits on the anomalous WWZ ouplings. The 95% CL limit for a form fa tor s ale = 1.5 TeV is −0.48 < λZ <0.48, xing gZ1 and κZ to their Standard Model values.gZ5gZ5gZ5gZ5 This oupling is CP- onserving but C- and P-violating.VALUE EVTS DOCUMENT ID TECN COMMENT

−0.07±0.09 OUR AVERAGE−0.07±0.09 OUR AVERAGE−0.07±0.09 OUR AVERAGE−0.07±0.09 OUR AVERAGE Error in ludes s ale fa tor of 1.1.−0.04+0.13

−0.12 9800 1 ABBIENDI 04D OPAL Eee m= 183209 GeV0.00±0.13±0.05 7171 2 ACHARD 04D L3 Eee m= 189209 GeV−0.44+0.23

−0.22±0.12 1154 3 ACCIARRI 99Q L3 Eee m= 161+172+ 183 GeV• • • We do not use the following data for averages, ts, limits, et . • • •−0.31±0.23 4 EBOLI 00 THEO LEP1, SLC+ Tevatron1ABBIENDI 04D ombine results fromW+W− in all de ay hannels. Only CP- onserving ouplings are onsidered and ea h parameter is determined from a single-parameter t inwhi h the other parameters assume their Standard Model values. The 95% onden einterval is −0.28 < gZ5 < +0.21.2ACHARD 04D study WWpair produ tion, singleW produ tion and singlephoton pro-du tion with missing energy from 189 to 209 GeV. The result quoted here is obtainedusing the WWpair produ tion sample. Ea h parameter is determined from a singleparameter t in whi h the other parameters assume their Standard Model values.3ACCIARRI 99Q study W -pair, single-W , and single photon events.4 EBOLI 00 extra t this indire t value of the oupling studying the non-universal one-loop ontributions to the experimental value of the Z → bb width (=1 TeV is assumed).gZ4gZ4gZ4gZ4 This oupling is CP-violating (C-violating and P- onserving).VALUE EVTS DOCUMENT ID TECN COMMENT−0.30±0.17 OUR AVERAGE−0.30±0.17 OUR AVERAGE−0.30±0.17 OUR AVERAGE−0.30±0.17 OUR AVERAGE−0.39+0.19

−0.20 1880 1 ABDALLAH 08C DLPH Eee m= 189209 GeV−0.02+0.32

−0.33 1065 2 ABBIENDI 01H OPAL Eee m= 189 GeV1ABDALLAH 08C determine this triple gauge oupling from the measurement of the spindensity matrix elements in e+ e− → W+W− → (qq)(ℓν), where ℓ = e or µ. Valuesof all other ouplings are xed to their standard model values.2ABBIENDI 01H study W -pair events, with one leptoni ally and one hadroni ally de ayingW . The oupling is extra ted using information from the W produ tion angle togetherwith de ay angles from the leptoni ally de aying W .

Page 12: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

622622622622Gauge&Higgs Boson Parti le ListingsWκZκZκZκZ This oupling is CP-violating (C- onserving and P-violating).VALUE EVTS DOCUMENT ID TECN COMMENT−0.12+0.06

−0.04 OUR AVERAGE−0.12+0.06−0.04 OUR AVERAGE−0.12+0.06−0.04 OUR AVERAGE−0.12+0.06−0.04 OUR AVERAGE

−0.09+0.08−0.05 1880 1 ABDALLAH 08C DLPH Eee m= 189209 GeV

−0.20+0.10−0.07 1065 2 ABBIENDI 01H OPAL Eee m= 189 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •3 BLINOV 11 LEP Eee m= 183207 GeV1ABDALLAH 08C determine this triple gauge oupling from the measurement of the spindensity matrix elements in e+ e− → W+W− → (qq)(ℓν), where ℓ = e or µ. Valuesof all other ouplings are xed to their standard model values.2ABBIENDI 01H study W -pair events, with one leptoni ally and one hadroni ally de ayingW . The oupling is extra ted using information from the W produ tion angle togetherwith de ay angles from the leptoni ally de aying W .3BLINOV 11 use the LEP-average e+ e− → W+W− ross se tion data for √s =183207 GeV to determine an upper limit on the TGC κZ . The average values of the ross se tions as well as their orrelation matrix, and standard model expe tations of the ross se tions are taken from the LEPEWWG note hep-ex/0612034. At 95% onden elevel ∣∣κZ ∣∣ < 0.13.

λZλZλZλZ This oupling is CP-violating (C- onserving and P-violating).VALUE EVTS DOCUMENT ID TECN COMMENT−0.09±0.07 OUR AVERAGE−0.09±0.07 OUR AVERAGE−0.09±0.07 OUR AVERAGE−0.09±0.07 OUR AVERAGE−0.08±0.07 1880 1 ABDALLAH 08C DLPH Eee m= 189209 GeV−0.18+0.24

−0.16 1065 2 ABBIENDI 01H OPAL Eee m= 189 GeV• • • We do not use the following data for averages, ts, limits, et . • • •3 BLINOV 11 LEP Eee m= 183207 GeV1ABDALLAH 08C determine this triple gauge oupling from the measurement of the spindensity matrix elements in e+ e− → W+W− → (qq)(ℓν), where ℓ = e or µ. Valuesof all other ouplings are xed to their standard model values.2ABBIENDI 01H study W -pair events, with one leptoni ally and one hadroni ally de ayingW . The oupling is extra ted using information from the W produ tion angle togetherwith de ay angles from the leptoni ally de aying W .3BLINOV 11 use the LEP-average e+ e− → W+W− ross se tion data for √

s =183207 GeV to determine an upper limit on the TGC λZ . The average values of the ross se tions as well as their orrelation matrix, and standard model expe tations of the ross se tions are taken from the LEPEWWG note hep-ex/0612034. At 95% onden elevel ∣∣λZ ∣∣ < 0.31.W ANOMALOUS MAGNETIC MOMENTW ANOMALOUS MAGNETIC MOMENTW ANOMALOUS MAGNETIC MOMENTW ANOMALOUS MAGNETIC MOMENTThe full magneti moment is given by µW = e(1+κ + λ)/2mW . In theStandard Model, at tree level, κ= 1 and λ= 0. Some papers have denedκ = 1−κ and assume that λ= 0. Note that the ele tri quadrupolemoment is given by −e(κ−λ)/m2W . A des ription of the parameterizationof these moments and additional referen es an be found in HAGIWARA 87and BAUR 88. The parameter appearing in the theoreti al limits belowis a regularization uto whi h roughly orresponds to the energy s alewhere the stru ture of the W boson be omes manifest.VALUE (e/2mW

) EVTS DOCUMENT ID TECN COMMENT2.22+0.20−0.192.22+0.20−0.192.22+0.20−0.192.22+0.20−0.19 2298 1 ABREU 01I DLPH Eee m= 183+189 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •2 ABE 95G CDF3 ALITTI 92C UA24 SAMUEL 92 THEO5 SAMUEL 91 THEO6 GRIFOLS 88 THEO7 GROTCH 87 THEO8 VANDERBIJ 87 THEO9 GRAU 85 THEO10 SUZUKI 85 THEO11 HERZOG 84 THEO1ABREU 01I ombine results from e+ e− intera tions at 189 GeV leading to W+W−,W e νe , and ν ν γ nal states with results from ABREU 99L at 183 GeV to determinegZ1 , κγ , and λγ . κγ and λγ are simultaneously oated in the t to determineµW .2ABE 95G report −1.3 < κ < 3.2 for λ=0 and −0.7 < λ < 0.7 for κ=1 in pp → e νe γXand µνµ γX at √s = 1.8 TeV.3ALITTI 92C measure κ = 1+2.6

−2.2 and λ = 0+1.7−1.8 in pp → e ν γ+ X at √s = 630 GeV.At 95%CL they report −3.5 < κ < 5.9 and −3.6 < λ < 3.5.4 SAMUEL 92 use preliminary CDF and UA2 data and nd −2.4 < κ < 3.7 at 96%CLand −3.1 < κ < 4.2 at 95%CL respe tively. They use data for W γ produ tion andradiative W de ay.5 SAMUEL 91 use preliminary CDF data for pp → W γX to obtain −11.3 ≤ κ ≤10.9. Note that their κ = 1−κ.6GRIFOLS 88 uses deviation from ρ parameter to set limit κ . 65 (M2W /2).

7GROTCH 87 nds the limit −37 < κ < 73.5 (90% CL) from the experimental limitson e+ e− → ν ν γ assuming three neutrino generations and −19.5 < κ < 56 forfour generations. Note their κ has the opposite sign as our denition.8VANDERBIJ 87 uses existing limits to the photon stru ture to obtain ∣∣κ∣∣ < 33(mW /). In addition VANDERBIJ 87 dis usses problems with using the ρ parameter ofthe Standard Model to determine κ.9GRAU 85 uses the muon anomaly to derive a oupled limit on the anomalous magneti dipole and ele tri quadrupole (λ) moments 1.05 > κ ln(/mW ) + λ/2 > −2.77. Inthe Standard Model λ = 0.10SUZUKI 85 uses partial-wave unitarity at high energies to obtain ∣∣κ

∣∣ . 190(mW /)2. From the anomalous magneti moment of the muon, SUZUKI 85 obtains∣∣κ∣∣ . 2.2/ln(/mW ). Finally SUZUKI 85 uses deviations from the ρ parameter andobtains a very qualitative, order-of-magnitude limit ∣∣κ

∣∣ . 150 (mW /)4 if ∣∣κ∣∣ ≪1.11HERZOG 84 onsider the ontribution of W -boson to muon magneti moment in ludinganomalous oupling of WW γ. Obtain a limit −1 < κ < 3 for & 1 TeV.ANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W /Z QUARTIC COUPLINGS

ANOMALOUS W/Z QUARTIC COUPLINGS (QGCS)

Revised November 2015 by M.W. Grunewald (U. CollegeDublin) and A. Gurtu (Formerly Tata Inst.).

Quartic couplings, WWZZ, WWZγ, WWγγ, and ZZγγ,

were studied at LEP and Tevatron at energies at which the

Standard Model predicts negligible contributions to multiboson

production. Thus, to parametrize limits on these couplings, an

effective theory approach is adopted which supplements the

Standard Model Lagrangian with higher dimensional operators

which include quartic couplings. The LEP collaborations chose

the lowers dimensional representation of operators (dimension

6) which presumes the SU(2)×U(1) gauge symmetry is broken

by means other than the conventional Higgs scalar doublet [1–3].

In this representation possible quartic couplings, a0, ac, an, are

expressed in terms of the following dimension-6 operators [1,2];

L06 = − e2

16Λ2 a0 F µν Fµν~Wα · ~Wα

Lc6 = − e2

16Λ2 ac F µα Fµβ~W β · ~Wα

Ln6 = −i e2

16Λ2 anǫijk W(i)µα W

(j)ν W (k)αF µν

L06 = − e2

16Λ2 a0 F µν Fµν~Wα · ~Wα

Ln6 = −i e2

16Λ2 anǫijk W(i)µα W

(j)ν W (k)αF µν

where F, W are photon and W fields, L06 and Lc

6 conserve C,

P separately (L06 conserves only C) and generate anomalous

W+W−γγ and ZZγγ couplings, Ln6 violates CP (Ln

6 violates

both C and P ) and generates an anomalous W+W−Zγ cou-

pling, and Λ is an energy scale for new physics. For the ZZγγ

coupling the CP -violating term represented by Ln6 does not con-

tribute. These couplings are assumed to be real and to vanish

at tree level in the Standard Model.

Within the same framework as above, a more recent de-

scription of the quartic couplings [3] treats the anomalous parts

of the WWγγ and ZZγγ couplings separately, leading to two

sets parametrized as aV0 /Λ2 and aV

c /Λ2, where V = W or Z.

With the discovery of a Higgs at the LHC in 2012, it is

then useful to go to the next higher dimensional representa-

tion (dimension 8 operators) in which the gauge symmetry is

broken by the conventional Higgs scalar doublet [3,4]. There

are 14 operators which can contribute to the anomalous quartic

coupling signal. Some of the operators have analogues in the

dimension 6 scheme. The CMS collaboration, [5], have used

Page 13: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

623623623623See key on page 601 Gauge & Higgs Boson Parti le ListingsWthis parametrization, in which the connections between the two

schemes are also summarized:

LAQGC = − e2

8

aW0

Λ2FµνF µνW+aW−

a

− e2

16

aWc

Λ2FµνF

µa(W+νW−

a + W−νW+a )

− e2g2κW0

Λ2FµνZ

µνW+aW−

a

− e2g2

2

κWc

Λ2FµνZ

µa(W+νW−

a + W−νW+a )

+fT,0

Λ4Tr[WµνW

µν ] × Tr[WαβWαβ ]

The energy scale of possible new physics is Λ, and g =

e/sin(θW ), e being the unit electric charge and θW the Wein-

berg angle. The field tensors are described in [3,4].

The two dimension 6 operators aW0 /Λ2 and aW

c /Λ2 are asso-

ciated with the WWγγ vertex. Among dimension 8 operators,

κW0 /Λ2 and κW

c /Λ2 are associated with the WWZγ vertex,

whereas the parameter fT,0/Λ4 contributes to both vertices.

There is a relationship between these two dimension 6 parame-

ters and the dimension 8 parameters fM,i/Λ4 as follows [3]:

aW0

Λ2= −4M2

W

g2

fM,0

Λ4− 8M2

W

g′2fM,2

Λ4

aWc

Λ2= −4M2

W

g2

fM,1

Λ4− 8M2

W

g′2fM,3

Λ4

where g′ = e/cos(θW ) and MW is the invariant mass of

the W boson. This relation provides a translation between lim-

its on dimension 6 operators aW0,c and fM,j/Λ4. It is further

required [4] that fM,0 = 2fM,2 and fM,1 = 2fM,3 which sup-

presses contributions to the WWZγ vertex. The complete set of

Lagrangian contributions as presented in [4] corresponds to 19

anomalous couplings in total – fS,i, i = 1, 2, fM,i, i = 0, . . . , 8

and fT,i, i = 0, . . . , 9 – each scaled by 1/Λ4.

The ATLAS collaboration [6], on the other hand, follows

a K-matrix driven approach of Ref. 7 in which the anomalous

couplings can be expressed in terms of two parameters α4 and

α5, which account for all BSM effects.

It is the early stages in the determination of quartic cou-

plings by the LHC experiments. It is hoped that the two

collaborations, ATLAS and CMS, will agree to use at least one

common set of parameters to express these limits to enable the

reader to make a comparison and allow for a possible LHC

combination.

References

1. G. Belanger and F. Boudjema, Phys. Lett. B288, 201(1992).

2. J.W. Stirling and A. Werthenbach, Eur. Phys. J. C14, 103(2000);J.W. Stirling and A. Werthenbach, Phys. Lett. B466, 369(1999);A. Denner et al., Eur. Phys. J. C20, 201 (2001);G. Montagna et al., Phys. Lett. B515, 197 (2001).

3. G. Belanger et al., Eur. Phys. J. C13, 283 (2000).

4. O.J.P. Eboli, M.C. Gonzalez-Garcia, and S.M. Lietti, Phys.Rev. D69, 095005 (2004);

O.J.P. Eboli, M.C. Gonzalez-Garcia, and J.K. Mizukoshi,Phys. Rev. D77, 073005 (2006).

5. S. Chatrchyan et al., Phys. Rev. D90, 032008 (2014);S. Chatrchyan et al., Phys. Rev. Lett. 114, 051801 (2015).

6. G. Aad et al., Phys. Rev. Lett. 113, 141803 (2014).

7. A. Albateanu, W. Killian, and J. Reuter, JHEP 0811, 010(2008).a0/2, a /2, an/2, κW0 /2, κW /2, fT,0/4, fM,i/4, α4, α5,a0/2, a /2, an/2, κW0 /2, κW /2, fT,0/4, fM,i/4, α4, α5,a0/2, a /2, an/2, κW0 /2, κW /2, fT,0/4, fM,i/4, α4, α5,a0/2, a /2, an/2, κW0 /2, κW /2, fT,0/4, fM,i/4, α4, α5,FS,i/4, FM,i/4, FT,i/4FS,i/4, FM,i/4, FT,i/4FS,i/4, FM,i/4, FT,i/4FS,i/4, FM,i/4, FT,i/4AnomalousW quarti ouplings are measured by the experiments at LEP, the Tevatron,and the LHC. Some of the re ent results from the Tevatron and LHC experimentsindividually surpass the ombined LEP-2 results in pre ision (see below). As dis ussedin the review on the \Anomalous W /Z quarti ouplings (QGCS)," the measurementsare typi ally done using dierent operator expansions whi h then do not allow theresults to be ompared and averaged. At least one ommon framework should beagreed upon for the use in the future publi ations by the experiments.VALUE DOCUMENT ID TECN

• • • We do not use the following data for averages, ts, limits, et . • • •1 AAD 15N ATLS2 KHACHATRY...15D CMS3 AAD 14AMATLS4 CHATRCHYAN14Q CMS5 ABAZOV 13D D06 CHATRCHYAN13AA CMS7 ABBIENDI 04B OPAL8 ABBIENDI 04L OPAL9 HEISTER 04A ALEP10 ABDALLAH 03I DLPH11 ACHARD 02F L31AAD 15N study W γ γ events in 8 TeV pp intera tions, where the W de ays into anele tron or a muon. The events are hara terized by an isolated lepton, a missingtransverse energy due to the de ay neutrino, and two isolated photons, with the pT of thelepton and the photons being > 20 GeV. The number of andidate events observed in theele tron hannel for N(jet) ≥ 0 and N(jet) = 0 is 47 and 15, the orresponding numbersfor the muon hannel being 110 and 53. The ba kgrounds expe ted are 30.2 ± 7.4,8.7± 3.0, 52.1± 12.2, and 24.4± 8.3 respe tively. The 95% C.L. limits on the values ofthe parameters fT,0/4, fM,2/4 and fM,3/4 are −0.90.9× 102, −0.80.8× 104,and −1.51.4× 104 respe tively, without appli ation of a form fa tor FF.2KHACHATRYAN 15D study ve tor-boson-s attering tagged by two jets, requiring twosame-sign harged leptons arising from W± W± produ tion and de ay. The two jetsmust have a transverse momentum larger than 30 GeV, while the leptons, ele trons ormuons, must have a transverse momentum > 20 GeV. The dijet mass is required to be >500 GeV, the dilepton mass > 50 GeV, with additional requirement of diering from theZ mass by > 15 GeV. In the two ategoriesW+W+ andW−W−, 10 and 2 data eventsare observed in a data sample orresponding to an integrated luminosity of 19.4 fb−1,with an expe ted ba kground of 3.1±0.6 and 2.6±0.5 events. Analysing the distributionof the dilepton invariant mass, the following limits at 95% C.L. are obtained, in units ofTeV−4: −38 < FS,0/4 < 40, −118 < FS,1/4 < 120, −33 < FM,0/4 < 32,−44 < FM,1/4 < 47, −65 < FM,6/4 < 63, −70 < FM,7/4 < 66, −4.2 <FT,0/4 < 4.6, −1.9 < FT,1/4 < 2.2, −6.2 < FT,2/4 < 6.4.3AAD 14AM analyze ele troweak produ tion ofWW jet jet same- harge diboson plus twojets produ tion, with the W bosons de aying to ele tron or muon, to study the quarti WWWW oupling. In a kinemati region enhan ing the ele troweak produ tion overthe strong produ tion, 34 events are observed in the data while 29.8 ± 2.4 events areexpe ted with a ba kgound of 15.9 ± 1.9 events. Assuming the other QGC oupling tohave the SM value of zero, the observed event yield is used to determine 95% CL limitson the quarti gauge ouplings: −0.14 < α4 < 0.16 and −0.23 < α5 < 0.24.4CHATRCHYAN 14Q study W V γ produ tion in 8 TeV pp ollisions, in the single leptonnal state, with W → ℓν, Z → dijet or W → ℓν, W → dijet, the dijet mass resolutionpre luding dierentiation between the W and Z . pT and pseudo-rapidity uts are puton the lepton, the photon and the two jets to minimize ba kgrounds. The dijet mass isrequired to be between 7100 GeV and ∣∣ηjj

∣∣ < 1.4. The sele ted number of muon(ele tron) events are 183 (139), with SM expe tation being 194.2 ± 11.5 (147.9 ± 10.7)in luding signal and ba kground. The photon ET distribution is used to set limits on theanomalous quarti ouplings. The following 95% CL limits are dedu ed (all in units ofTeV−2 or TeV−4): −21 < aW0 /2 < 20, −34 < aW /2 < 32, −12 < κW0 /2 <10 and −18 < κW /2 < 17; and −25 < fT,0/4 < 24 TeV−4.5ABAZOV 13D sear hes for anomalous WW γ γ quarti gauge ouplings in the two-photon-mediated pro ess pp → ppW W , assuming the WW γ triple gauge boson ouplings to be at their Standard Model values. 946 events ontaining an e+ e− pairwith missing energy are sele ted in a total luminosity of 9.7 fb−1, with an expe tationof 983 ± 108 events from Standard-Model pro esses. The following 1-parameter limitsat 95% CL are otained: ∣∣aW0 /2∣∣ < 4.3 × 10−4 GeV−2 (aW = 0), ∣∣aW /2∣∣ <1.5× 10−3 GeV−2 (aW0 = 0).6CHATRCHYAN 13AA sear hes for anomalous WW γ γ quarti gauge ouplings in thetwo-photon-mediated pro ess pp → ppW W , assuming the WW γ triple gauge boson ouplings to be at their Standard Model values. 2 events ontaining an e±µ∓ pair withpT (e, µ) > 30 GeV are sele ted in a total luminosity of 5.05 fb−1, with an expe tedppW W signal of 2.2 ± 0.4 events and an expe ted ba kground of 0.84 ± 0.15 events.The following 1-parameter limits at 95% CL are otained from the pT (e, µ) spe trum:

Page 14: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

624624624624Gauge&Higgs Boson Parti le ListingsW , Z∣∣aW0 /2∣∣ < 4.0 × 10−6 GeV−2 (aW = 0), ∣∣aW /2∣∣ < 1.5 × 10−5 GeV−2 (aW0= 0).7ABBIENDI 04B sele t 187 e+ e− → W+W−γ events in the C.M. energy range180209 GeV, where Eγ >2.5 GeV, the photon has a polar angle ∣∣ osθγ ∣∣ < 0.975and is well isolated from the nearest jet and harged lepton, and the ee tive massesof both fermion-antifermion systems agree with the W mass within 3 W . The mea-sured dierential ross se tion as a fun tion of the photon energy and photon polarangle is used to extra t the 95% CL limits: −0.020 GeV−2 <a0/2 < 0.020 GeV−2,−0.053 GeV−2 <ac/2 < 0.037 GeV−2 and −0.16 GeV−2 <an/2 < 0.15 GeV−2.8ABBIENDI 04L sele t 20 e+ e− → ν ν γ γ a oplanar events in the energy range 180209GeV and 176 e+ e− → qq γ γ events in the energy range 130209 GeV. These samplesare used to onstrain possible anomalous W+W− γ γ and Z Z γ γ quarti ouplings.Further ombining with the W+W− γ sample of ABBIENDI 04B the following oneparameter 95% CL limits are obtained: −0.007 < aZ0 /2 < 0.023 GeV−2, −0.029 <aZ /2 < 0.029 GeV−2, −0.020 < aW0 /2 < 0.020 GeV−2, −0.052 < aW /2 <0.037 GeV−2.9 In the CM energy range 183 to 209 GeV HEISTER 04A sele t 30 e+ e− → ν ν γ γ eventswith two a oplanar, high energy and high transverse momentum photons. The photonphoton a oplanarity is required to be > 5, Eγ/√s > 0.025 (the more energeti photonhaving energy > 0.2 √

s), pTγ/Ebeam > 0.05 and ∣∣ os θγ

∣∣ < 0.94. A likelihood tto the photon energy and re oil missing mass yields the following oneparameter 95%CL limits: −0.012 < aZ0 /2 < 0.019 GeV−2, −0.041 < aZ /2 < 0.044 GeV−2,−0.060 < aW0 /2 < 0.055 GeV−2, −0.099 < aW /2 < 0.093 GeV−2.10ABDALLAH 03I sele t 122 e+ e− → W+W−γ events in the C.M. energy range189209 GeV, where Eγ >5 GeV, the photon has a polar angle ∣∣ osθγ ∣∣ < 0.95 andis well isolated from the nearest harged fermion. A t to the photon energy spe -tra yields a /2= 0.000+0.019

−0.040 GeV−2, a0/2= −0.004+0.018−0.010 GeV−2, a0/2=

−0.007+0.019−0.008 GeV−2, an/2= −0.09+0.16

−0.05 GeV−2, and an/2= +0.05+0.07−0.15GeV−2, keeping the other parameters xed to their Standard Model values (0).The 95% CL limits are: −0.063 GeV−2 <a /2 < +0.032 GeV−2, −0.020GeV−2 <a0/2 < +0.020 GeV−2, −0.020 GeV−2 < a0/2 < +0.020 GeV−2,

−0.18 GeV−2 <an/2 < +0.14 GeV−2, −0.16 GeV−2 < an/2 < +0.17 GeV−2.11ACHARD 02F sele t 86 e+ e− → W+W− γ events at 192207 GeV, where Eγ >5GeV and the photon is well isolated. They also sele t 43 a oplanar e+ e− → ν ν γ γevents in this energy range, where the photon energies are >5 GeV and >1 GeV and thephoton polar angles are between 14 and 166. All these 43 events are in the re oil massregion orresponding to the Z (75110 GeV). Using the shape and normalization of thephoton spe tra in the W+W− γ events, and ombining with the 42 event sample from189 GeV data (ACCIARRI 00T), they obtain: a0/2= 0.000 ± 0.010 GeV−2, a /2=−0.013 ± 0.023 GeV−2, and an/2= −0.002 ± 0.076 GeV−2. Further ombining theanalyses of W+W− γ events with the low re oil mass region of ν ν γ γ events (in ludingsamples olle ted at 183 + 189 GeV), they obtain the following one-parameter 95% CLlimits: −0.015 GeV−2 <a0/2 < 0.015 GeV−2, −0.048 GeV−2 <a /2 < 0.026GeV−2, and −0.14 GeV−2 <an/2 < 0.13 GeV−2.W REFERENCESW REFERENCESW REFERENCESW REFERENCESPDG 16 Chin. Phys. C C. Patrignani et al. (PDG Collab.)AAD 15N PRL 115 031802 G. Aad et al. (ATLAS Collab.)KHACHATRY... 15D PRL 114 051801 V. Kha hatryan et al. (CMS Collab.)AAD 14AM PRL 113 141803 G. Aad et al. (ATLAS Collab.)AAD 14Y JHEP 1404 031 G. Aad et al. (ATLAS Collab.)AALTONEN 14D PR D89 072003 T. Aaltonen et al. (CDF Collab.)ABAZOV 14N PR D89 012005 V.M. Abazov et al. (D0 Collab.)CHATRCHYAN 14AB PR D89 092005 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 14Q PR D90 032008 S. Chatr hyan et al. (CMS Collab.)AAD 13AL PR D87 112001 G. Aad et al. (ATLAS Collab.)Also PR D88 079906 (errat.) G. Aad et al. (ATLAS Collab.)AAD 13AN PR D87 112003 G. Aad et al. (ATLAS Collab.)Also PR D91 119901 (errat.) G. Aad et al. (ATLAS Collab.)AALTONEN 13N PR D88 052018 T. Aaltonen et al. (CDF and D0 Collabs.)ABAZOV 13D PR D88 012005 V.M. Abazov et al. (D0 Collab.)CHATRCHYAN 13AA JHEP 1307 116 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13BF EPJ C73 2610 S. Chatr hyan et al. (CMS Collab.)SCHAEL 13A PRPL 532 119 S. S hael et al. (ALEPH Collab., DELPHI, L3+)AAD 12AC PL B712 289 G. Aad et al. (ATLAS Collab.)AAD 12BX PL B717 49 G. Aad et al. (ATLAS Collab.)AAD 12CD EPJ C72 2173 G. Aad et al. (ATLAS Collab.)AAD 12V PL B709 341 G. Aad et al. (ATLAS Collab.)AALTONEN 12AC PR D86 031104 T. Aaltonen et al. (CDF Collab.)AALTONEN 12E PRL 108 151803 T. Aaltonen et al. (CDF Collab.)AALTONEN 12W PR D85 032001 T. Aaltonen et al. (CDF Collab.)ABAZOV 12AG PL B718 451 V.M. Abazov et al. (D0 Collab.)ABAZOV 12F PRL 108 151804 V.M. Abazov et al. (D0 Collab.)ABAZOV 11 PL B695 67 V.M. Abazov et al. (D0 Collab.)ABAZOV 11AC PRL 107 241803 V.M. Abazov et al. (D0 Collab.)BLINOV 11 PL B699 287 A.E. Blinov, A.S. Rudenko (NOVO)CHATRCHYAN 11M PL B701 535 S. Chatr hyan et al. (CMS Collab.)AALTONEN 10K PRL 104 201801 T. Aaltonen et al. (CDF Collab.)Also PRL 105 019905(errat.) T. Aaltonen et al. (CDF Collab.)ABDALLAH 10 EPJ C66 35 J. Abdallah et al. (DELPHI Collab.)AARON 09B EPJ C64 251 F.D. Aaron et al. (H1 Collab.)ABAZOV 09AB PRL 103 141801 V.M. Abazov et al. (D0 Collab.)ABAZOV 09AD PR D80 053012 V.M. Abazov et al. (D0 Collab.)ABAZOV 09AJ PRL 103 191801 V.M. Abazov et al. (D0 Collab.)ABAZOV 09AK PRL 103 231802 V.M. Abazov et al. (D0 Collab.)AALTONEN 08B PRL 100 071801 T. Aaltonen et al. (CDF Collab.)ABAZOV 08R PRL 100 241805 V.M. Abazov et al. (D0 Collab.)ABDALLAH 08A EPJ C55 1 J. Abdallah et al. (DELPHI Collab.)ABDALLAH 08C EPJ C54 345 J. Abdallah et al. (DELPHI Collab.)AALTONEN 07F PRL 99 151801 T. Aaltonen et al. (CDF Collab.)Also PR D77 112001 T. Aaltonen et al. (CDF Collab.)AALTONEN 07L PR D76 111103 T. Aaltonen et al. (CDF Collab.)ABAZOV 07Z PR D76 111104 V.M. Abazov et al. (D0 Collab.)ABBIENDI 07A EPJ C52 767 G. Abbiendi et al. (OPAL Collab.)ABAZOV 06H PR D74 057101 V.M. Abazov et al. (D0 Collab.)Also PR D74 059904(errat.) V.M. Abazov et al. (D0 Collab.)ABBIENDI 06 EPJ C45 307 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 06A EPJ C45 291 G. Abbiendi et al. (OPAL Collab.)

ACHARD 06 EPJ C45 569 P. A hard et al. (L3 Collab.)AKTAS 06 PL B632 35 A. Aktas et al. (H1 Collab.)SCHAEL 06 EPJ C47 309 S. S hael et al. (ALEPH Collab.)ABAZOV 05J PR D71 091108 V.M. Abazov et al. (D0 Collab.)ABAZOV 05S PRL 95 141802 V.M. Abazov et al. (D0 Collab.)SCHAEL 05A PL B614 7 S. S hael et al. (ALEPH Collab.)ABAZOV 04D PR D70 092008 V.M. Abazov et al. (CDF Collab., D0 Collab.)ABBIENDI 04B PL B580 17 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 04D EPJ C33 463 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 04L PR D70 032005 G. Abbiendi et al. (OPAL Collab.)ABDALLAH 04G EPJ C34 127 J. Abdallah et al. (DELPHI Collab.)ACHARD 04D PL B586 151 P. A hard et al. (L3 Collab.)ACHARD 04J PL B600 22 P. A hard et al. (L3 Collab.)HEISTER 04A PL B602 31 A. Heister et al. (ALEPH Collab.)SCHAEL 04A EPJ C38 147 S. S hael et al. (ALEPH Collab.)ABBIENDI 03C EPJ C26 321 G. Abbiendi et al. (OPAL Collab.)ABDALLAH 03I EPJ C31 139 J. Abdallah et al. (DELPHI Collab.)ABAZOV 02D PR D66 012001 V.M. Abazov et al. (D0 Collab.)ABAZOV 02E PR D66 032008 V.M. Abazov et al. (D0 Collab.)ACHARD 02F PL B527 29 P. A hard et al. (L3 Collab.)CHEKANOV 02C PL B539 197 S. Chekanov et al. (ZEUS Collab.)ABBIENDI 01H EPJ C19 229 G. Abbiendi et al. (OPAL Collab.)ABREU 01I PL B502 9 P. Abreu et al. (DELPHI Collab.)AFFOLDER 01E PR D64 052001 T. Aolder et al. (CDF Collab.)ABBIENDI 00V PL B490 71 G. Abbiendi et al. (OPAL Collab.)ABBOTT 00B PR D61 072001 B. Abbott et al. (D0 Collab.)ABBOTT 00D PRL 84 5710 B. Abbott et al. (D0 Collab.)ABREU,P 00F EPJ C18 203 P. Abreu et al. (DELPHI Collab.)Also EPJ C25 493 (errat.) P. Abreu et al. (DELPHI Collab.)ACCIARRI 00T PL B490 187 M. A iarri et al. (L3 Collab.)AFFOLDER 00M PRL 85 3347 T. Aolder et al. (CDF Collab.)BREITWEG 00 PL B471 411 J. Breitweg et al. (ZEUS Collab.)BREITWEG 00D EPJ C12 411 J. Breitweg et al. (ZEUS Collab.)EBOLI 00 MPL A15 1 O. Eboli, M. Gonzalez-Gar ia, S. NovaesABBIENDI 99N PL B453 153 G. Abbiendi et al. (OPAL Collab.)ABBOTT 99H PR D60 052003 B. Abbott et al. (D0 Collab.)ABBOTT 99I PR D60 072002 B. Abbott et al. (D0 Collab.)ABREU 99L PL B459 382 P. Abreu et al. (DELPHI Collab.)ACCIARRI 99 PL B454 386 M. A iarri et al. (L3 Collab.)ACCIARRI 99Q PL B467 171 M. A iarri et al. (L3 Collab.)BARATE 99I PL B453 107 R. Barate et al. (ALEPH Collab.)BARATE 99L PL B462 389 R. Barate et al. (ALEPH Collab.)BARATE 99M PL B465 349 R. Barate et al. (ALEPH Collab.)ABBOTT 98N PR D58 092003 B. Abbott et al. (D0 Collab.)ABBOTT 98P PR D58 012002 B. Abbott et al. (D0 Collab.)ABE 98H PR D58 031101 F. Abe et al. (CDF Collab.)ABE 98P PR D58 091101 F. Abe et al. (CDF Collab.)ABREU 98C PL B416 233 P. Abreu et al. (DELPHI Collab.)ABREU 98N PL B439 209 P. Abreu et al. (DELPHI Collab.)BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab.)BARATE 97S PL B415 435 R. Barate et al. (ALEPH Collab.)ABACHI 95D PRL 75 1456 S. Aba hi et al. (D0 Collab.)ABE 95C PRL 74 341 F. Abe et al. (CDF Collab.)ABE 95G PRL 74 1936 F. Abe et al. (CDF Collab.)ABE 95P PRL 75 11 F. Abe et al. (CDF Collab.)Also PR D52 4784 F. Abe et al. (CDF Collab.)ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.)Also PRL 73 220 F. Abe et al. (CDF Collab.)ABE 92E PRL 68 3398 F. Abe et al. (CDF Collab.)ABE 92I PRL 69 28 F. Abe et al. (CDF Collab.)ALITTI 92 PL B276 365 J. Alitti et al. (UA2 Collab.)ALITTI 92B PL B276 354 J. Alitti et al. (UA2 Collab.)ALITTI 92C PL B277 194 J. Alitti et al. (UA2 Collab.)ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.)ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.)SAMUEL 92 PL B280 124 M.A. Samuel et al. (OKSU, CARL)ABE 91C PR D44 29 F. Abe et al. (CDF Collab.)ALBAJAR 91 PL B253 503 C. Albajar et al. (UA1 Collab.)ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.)SAMUEL 91 PRL 67 9 M.A. Samuel et al. (OKSU, CARL)Also PRL 67 2920 (erratum) M.A. Samuel et al.ABE 90G PRL 65 2243 F. Abe et al. (CDF Collab.)Also PR D43 2070 F. Abe et al. (CDF Collab.)ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.)ALITTI 90B PL B241 150 J. Alitti et al. (UA2 Collab.)ABE 89I PRL 62 1005 F. Abe et al. (CDF Collab.)ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.)BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC)GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY)Also PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY)ALBAJAR 87 PL B185 233 C. Albajar et al. (UA1 Collab.)ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.)GROTCH 87 PR D36 2153 H. Grot h, R.W. Robinett (PSU)HAGIWARA 87 NP B282 253 K. Hagiwara et al. (KEK, UCLA, FSU)VANDERBIJ 87 PR D35 1088 J.J. van der Bij (FNAL)GRAU 85 PL 154B 283 A. Grau, J.A. Grifols (BARC)SUZUKI 85 PL 153B 289 M. Suzuki (LBL)ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.)HERZOG 84 PL 148B 355 F. Herzog (WISC)Also PL 155B 468 (erratum) F. Herzog (WISC)ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)BANNER 83B PL 122B 476 M. Banner et al. (UA2 Collab.)Z J = 1THE Z BOSON

Revised September 2013 by M.W. Grunewald (U. CollegeDublin and U. Ghent), and A. Gurtu (Formerly Tata Inst.).

Precision measurements at the Z-boson resonance using

electron–positron colliding beams began in 1989 at the SLC and

at LEP. During 1989–95, the four LEP experiments (ALEPH,

DELPHI, L3, OPAL) made high-statistics studies of the pro-

duction and decay properties of the Z. Although the SLD

experiment at the SLC collected much lower statistics, it was

able to match the precision of LEP experiments in determining

Page 15: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

625625625625See key on page 601 Gauge&Higgs Boson Parti le ListingsZthe effective electroweak mixing angle sin2θW and the rates of

Z decay to b- and c-quarks, owing to availability of polarized

electron beams, small beam size, and stable beam spot.

The Z-boson properties reported in this section may broadly

be categorized as:

• The standard ‘lineshape’ parameters of the Z con-

sisting of its mass, MZ , its total width, ΓZ , and its

partial decay widths, Γ(hadrons), and Γ(ℓℓ) where

ℓ = e, µ, τ, ν;

• Z asymmetries in leptonic decays and extraction of

Z couplings to charged and neutral leptons;

• The b- and c-quark-related partial widths and charge

asymmetries which require special techniques;

• Determination of Z decay modes and the search for

modes that violate known conservation laws;

• Average particle multiplicities in hadronic Z decay;

• Z anomalous couplings.

The effective vector and axial-vector coupling constants

describing the Z-to-fermion coupling are also measured in

pp and ep collisions at the Tevatron and at HERA. The

corresponding cross-section formulae are given in Section 39

(Cross-section formulae for specific processes) and Section 16

(Structure Functions) in this Review. In this minireview, we

concentrate on the measurements in e+e− collisions at LEP and

SLC.

The standard ‘lineshape’ parameters of the Z are deter-

mined from an analysis of the production cross sections of

these final states in e+e− collisions. The Z → νν(γ) state is

identified directly by detecting single photon production and

indirectly by subtracting the visible partial widths from the

total width. Inclusion in this analysis of the forward-backward

asymmetry of charged leptons, A(0,ℓ)FB , of the τ polarization,

P (τ), and its forward-backward asymmetry, P (τ)fb, enables

the separate determination of the effective vector (gV ) and ax-

ial vector (gA) couplings of the Z to these leptons and the ratio

(gV /gA), which is related to the effective electroweak mixing

angle sin2θW (see the “Electroweak Model and Constraints on

New Physics” review).

Determination of the b- and c-quark-related partial widths

and charge asymmetries involves tagging the b and c quarks

for which various methods are employed: requiring the pres-

ence of a high momentum prompt lepton in the event with

high transverse momentum with respect to the accompanying

jet; impact parameter and lifetime tagging using precision ver-

tex measurement with high-resolution detectors; application of

neural-network techniques to classify events as b or non-b on

a statistical basis using event–shape variables; and using the

presence of a charmed meson (D/D∗) or a kaon as a tag.

Z-parameter determination

LEP was run at energy points on and around the Z

mass (88–94 GeV) constituting an energy ‘scan.’ The shape

of the cross-section variation around the Z peak can be de-

scribed by a Breit-Wigner ansatz with an energy-dependent

total width [1–3]. The three main properties of this dis-

tribution, viz., the position of the peak, the width of the

distribution, and the height of the peak, determine respec-

tively the values of MZ , ΓZ , and Γ(e+e−) × Γ(ff), where

Γ(e+e−) and Γ(ff) are the electron and fermion partial widths

of the Z. The quantitative determination of these parameters

is done by writing analytic expressions for these cross sections

in terms of the parameters, and fitting the calculated cross sec-

tions to the measured ones by varying these parameters, taking

properly into account all the errors. Single-photon exchange

(σ0γ) and γ-Z interference (σ0

γZ) are included, and the large

(∼25 %) initial-state radiation (ISR) effects are taken into ac-

count by convoluting the analytic expressions over a ‘Radiator

Function’ [1–5] H(s, s′). Thus for the process e+e− → ff :

σf (s) =

∫H(s, s′) σ0

f (s′) ds′ (1)

σ0f (s) =σ0

Z + σ0γ + σ0

γZ (2)

σ0Z =

12π

M2Z

Γ(e+e−)Γ(ff)

Γ2Z

s Γ2Z

(s − M2Z)2 + s2Γ2

Z/M2Z

(3)

σ0γ =

4πα2(s)

3sQ2

fNfc (4)

σ0γZ = − 2

√2α(s)

3(QfGF Nf

c GeV G

fV )

× (s − M2Z)M2

Z

(s − M2Z)2 + s2Γ2

Z/M2Z

(5)

where Qf is the charge of the fermion, Nfc = 3 for quarks and

1 for leptons, and GfV is the vector coupling of the Z to the

fermion-antifermion pair ff .

Since σ0γZ is expected to be much less than σ0

Z , the LEP

Collaborations have generally calculated the interference term

in the framework of the Standard Model. This fixing of σ0γZ

leads to a tighter constraint on MZ , and consequently a smaller

error on its fitted value. It is possible to relax this constraint

and carry out the fit within the S-matrix framework, which is

briefly described in the next section.

In the above framework, the QED radiative corrections have

been explicitly taken into account by convoluting over the ISR

and allowing the electromagnetic coupling constant to run [6]:

α(s) = α/(1 − ∆α). On the other hand, weak radiative cor-

rections that depend upon the assumptions of the electroweak

theory and on the values of Mtop and MHiggs are accounted

for by absorbing them into the couplings, which are then

called the effective couplings GV and GA (or alternatively the

effective parameters of the ⋆ scheme of Kennedy and Lynn [7].)

GfV and Gf

A are complex numbers with small imaginary parts.

As experimental data does not allow simultaneous extraction

of both real and imaginary parts of the effective couplings, the

convention gfA = Re(Gf

A) and gfV = Re(Gf

V ) is used and the

imaginary parts are added in the fitting code [4].

Defining

Af = 2gfV · gf

A

(gfV )2 + (gf

A)2(6)

Page 16: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

626626626626Gauge&Higgs Boson Parti le ListingsZthe lowest-order expressions for the various lepton-related

asymmetries on the Z pole are [8–10] A(0,ℓ)FB = (3/4)AeAf ,

P (τ) = −Aτ , P (τ)fb = −(3/4)Ae, ALR = Ae. The full anal-

ysis takes into account the energy-dependence of the asymme-

tries. Experimentally ALR is defined as (σL − σR)/(σL + σR),

where σL(R) are the e+e− → Z production cross sections with

left- (right)-handed electrons.

The definition of the partial decay width of the Z to ff

includes the effects of QED and QCD final-state corrections,

as well as the contribution due to the imaginary parts of the

couplings:

Γ(ff) =GF M3

Z

6√

2πNf

c (∣∣∣Gf

A

∣∣∣2Rf

A +∣∣∣Gf

V

∣∣∣2Rf

V ) + ∆ew/QCD (7)

where RfV and Rf

A are radiator factors to account for final state

QED and QCD corrections, as well as effects due to nonzero

fermion masses, and ∆ew/QCD represents the non-factorizable

electroweak/QCD corrections.

S-matrix approach to the Z

While most experimental analyses of LEP/SLC data have

followed the ‘Breit-Wigner’ approach, an alternative S-matrix-

based analysis is also possible. The Z, like all unstable parti-

cles, is associated with a complex pole in the S matrix. The

pole position is process-independent and gauge-invariant. The

mass, MZ , and width, ΓZ , can be defined in terms of the pole

in the energy plane via [11–14]

s = M2Z − iMZΓZ (8)

leading to the relations

MZ = MZ/√

1 + Γ2Z/M2

Z

≈ MZ − 34.1 MeV (9)

ΓZ = ΓZ/√

1 + Γ2Z/M2

Z

≈ ΓZ − 0.9 MeV . (10)

The LEP collaborations [15] have analyzed their data using

the S–matrix approach as defined in Eq. (8), in addition to

the conventional one. They observe a downward shift in the

Z mass as expected.

Handling the large-angle e+e− final state

Unlike other ff decay final states of the Z, the e+e− final

state has a contribution not only from the s-channel but also

from the t-channel and s-t interference. The full amplitude

is not amenable to fast calculation, which is essential if one

has to carry out minimization fits within reasonable computer

time. The usual procedure is to calculate the non-s channel

part of the cross section separately using the Standard Model

programs ALIBABA [16] or TOPAZ0 [17], with the measured

value of Mtop, and MHiggs = 150 GeV, and add it to the

s-channel cross section calculated as for other channels. This

leads to two additional sources of error in the analysis: firstly,

the theoretical calculation in ALIBABA itself is known to be

accurate to ∼ 0.5%, and secondly, there is uncertainty due

to the error on Mtop and the unknown value of MHiggs (100–

1000 GeV). These errors are propagated into the analysis by

including them in the systematic error on the e+e− final state.

As these errors are common to the four LEP experiments, this

is taken into account when performing the LEP average.

Errors due to uncertainty in LEP energy determina-

tion [18–23]

The systematic errors related to the LEP energy measure-

ment can be classified as:

• The absolute energy scale error;

• Energy-point-to-energy-point errors due to the non-

linear response of the magnets to the exciting cur-

rents;

• Energy-point-to-energy-point errors due to possible

higher-order effects in the relationship between the

dipole field and beam energy;

• Energy reproducibility errors due to various un-

known uncertainties in temperatures, tidal effects,

corrector settings, RF status, etc.

Precise energy calibration was done outside normal data-

taking using the resonant depolarization technique. Run-time

energies were determined every 10 minutes by measuring the

relevant machine parameters and using a model which takes

into account all the known effects, including leakage currents

produced by trains in the Geneva area and the tidal effects

due to gravitational forces of the Sun and the Moon. The LEP

Energy Working Group has provided a covariance matrix from

the determination of LEP energies for the different running

periods during 1993–1995 [18].

Choice of fit parameters

The LEP Collaborations have chosen the following primary

set of parameters for fitting: MZ , ΓZ , σ0hadron, R(lepton),

A(0,ℓ)FB , where R(lepton) = Γ(hadrons)/Γ(lepton), σ0

hadron =

12πΓ(e+e−)Γ(hadrons)/M2ZΓ2

Z . With a knowledge of these fit-

ted parameters and their covariance matrix, any other param-

eter can be derived. The main advantage of these parameters

is that they form a physics motivated set of parameters with

much reduced correlations.

Thus, the most general fit carried out to cross section and

asymmetry data determines the nine parameters: MZ , ΓZ ,

σ0hadron, R(e), R(µ), R(τ), A

(0,e)FB , A

(0,µ)FB , A

(0,τ )FB . Assumption of

lepton universality leads to a five-parameter fit determining

MZ , ΓZ , σ0hadron, R(lepton), A

(0,ℓ)FB .

Combining results from LEP and SLC experiments

With a steady increase in statistics over the years and

improved understanding of the common systematic errors be-

tween LEP experiments, the procedures for combining results

have evolved continuously [24]. The Line Shape Sub-group of

the LEP Electroweak Working Group investigated the effects

of these common errors, and devised a combination procedure

for the precise determination of the Z parameters from LEP

experiments. Using these procedures, this note also gives the

Page 17: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

627627627627See key on page 601 Gauge&Higgs Boson Parti le ListingsZresults after combining the final parameter sets from the four

experiments, and these are the results quoted as the fit re-

sults in the Z listings below. Transformation of variables leads

to values of derived parameters like partial decay widths and

branching ratios to hadrons and leptons. Finally, transforming

the LEP combined nine parameter set to (MZ , ΓZ , σ

hadron, gfA,

gfV , f = e, µ, τ) using the average values of lepton asymmetry

parameters (Ae, Aµ, Aτ ) as constraints, leads to the best fitted

values of the vector and axial-vector couplings (gV , gA) of the

charged leptons to the Z.

Brief remarks on the handling of common errors and their

magnitudes are given below. The identified common errors are

those coming from

(a) LEP energy-calibration uncertainties, and

(b) the theoretical uncertainties in (i) the luminosity deter-

mination using small angle Bhabha scattering, (ii) estimating

the non-s channel contribution to large angle Bhabha scatter-

ing, (iii) the calculation of QED radiative effects, and (iv) the

parametrization of the cross section in terms of the parameter

set used.

Common LEP energy errors

All the collaborations incorporate in their fit the full LEP

energy error matrix as provided by the LEP energy group for

their intersection region [18]. The effect of these errors is

separated out from that of other errors by carrying out fits with

energy errors scaled up and down by ∼ 10% and redoing the

fits. From the observed changes in the overall error matrix, the

covariance matrix of the common energy errors is determined.

Common LEP energy errors lead to uncertainties on MZ , ΓZ ,

and σ

hadron of 1.7, 1.2 MeV, and 0.011 nb, respectively.

Common luminosity errors

BHLUMI 4.04 [25] is used by all LEP collaborations for

small-angle Bhabha scattering leading to a common uncertainty

in their measured cross sections of 0.061% [26]. BHLUMI

does not include a correction for production of light fermion

pairs. OPAL explicitly corrects for this effect and reduces their

luminosity uncertainty to 0.054%, which is taken fully corre-

lated with the other experiments. The other three experiments

among themselves have a common uncertainty of 0.061%.

Common non-s channel uncertainties

The same standard model programs ALIBABA [16] and

TOPAZ0 [17] are used to calculate the non-s channel contri-

bution to the large angle Bhabha scattering [27]. As this

contribution is a function of the Z mass, which itself is a vari-

able in the fit, it is parametrized as a function of MZ by each

collaboration to properly track this contribution as MZ varies

in the fit. The common errors on Re and A(0,e)FB are 0.024 and

0.0014 respectively, and are correlated between them.

Common theoretical uncertainties: QED

There are large initial-state photon and fermion pair radia-

tion effects near the Z resonance, for which the best currently

available evaluations include contributions up to O(α3). To

estimate the remaining uncertainties, different schemes are in-

corporated in the standard model programs ZFITTER [5],

TOPAZ0 [17], and MIZA [28]. Comparing the different op-

tions leads to error estimates of 0.3 and 0.2 MeV on MZ and

ΓZ respectively, and of 0.02% on σ

hadron.

Common theoretical uncertainties: parametrization of

lineshape and asymmetries

To estimate uncertainties arising from ambiguities in the

model-independent parametrization of the differential cross-

section near the Z resonance, results from TOPAZ0 and ZFIT-

TER were compared by using ZFITTER to fit the cross sections

and asymmetries calculated using TOPAZ0. The resulting un-

certainties on MZ , ΓZ , σ

hadron, R(lepton), and A(0,ℓ)FB are

0.1 MeV, 0.1 MeV, 0.001 nb, 0.004, and 0.0001 respectively.

Thus, the overall theoretical errors on MZ , ΓZ , σ

hadron are

0.3 MeV, 0.2 MeV, and 0.008 nb respectively; on each R(lepton)

is 0.004 and on each A(0,ℓ)FB is 0.0001. Within the set of three

R(lepton)’s and the set of three A(0,ℓ)FB ’s, the respective errors

are fully correlated.

All the theory-related errors mentioned above utilize

Standard Model programs which need the Higgs mass and

running electromagnetic coupling constant as inputs; un-

certainties on these inputs will also lead to common er-

rors. All LEP collaborations used the same set of inputs

for Standard Model calculations: MZ = 91.187 GeV, the

Fermi constant GF = (1.16637 ± 0.00001) × 10−5 GeV−2 [29],

α(5)(MZ) = 1/128.877 ± 0.090 [30], αs(MZ) = 0.119 [31],

Mtop = 174.3 ± 5.1 GeV [31] and MHiggs = 150 GeV. The only

observable effect, on MZ , is due to the variation of MHiggs

between 100–1000 GeV (due to the variation of the γ/Z inter-

ference term which is taken from the Standard Model): MZ

changes by +0.23 MeV per unit change in log10 MHiggs/GeV,

which is not an error but a correction to be applied once MHiggs

is determined. The effect is much smaller than the error on

MZ (±2.1 MeV).

Methodology of combining the LEP experimental results

The LEP experimental results actually used for combination

are slightly modified from those published by the experiments

(which are given in the Listings below). This has been done

in order to facilitate the procedure by making the inputs more

consistent. These modified results are given explicitly in [24].

The main differences compared to the published results are (a)

consistent use of ZFITTER 6.23 and TOPAZ0 (the published

ALEPH results used ZFITTER 6.10); (b) use of the combined

energy-error matrix, which makes a difference of 0.1 MeV on

the MZ and ΓZ for L3 only as at that intersection the RF

modeling uncertainties are the largest.

Thus, nine-parameter sets from all four experiments with

their covariance matrices are used together with all the com-

mon errors correlations. A grand covariance matrix, V , is

constructed and a combined nine-parameter set is obtained by

minimizing χ2 = ∆T V −1 ∆, where ∆ is the vector of residu-

als of the combined parameter set to the results of individual

Page 18: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

628628628628Gauge&Higgs Boson Parti le ListingsZexperiments. Imposing lepton universality in the combination

results in the combined five parameter set.

Study of Z → bb and Z → cc

In the sector of c- and b-physics, the LEP experiments have

measured the ratios of partial widths Rb = Γ(Z → bb)/Γ(Z →hadrons), and Rc = Γ(Z → cc)/Γ(Z → hadrons), and the

forward-backward (charge) asymmetries AbbFB and Acc

FB. The

SLD experiment at SLC has measured the ratios Rc and Rb

and, utilizing the polarization of the electron beam, was able

to obtain the final state coupling parameters Ab and Ac from a

measurement of the left-right forward-backward asymmetry of

b− and c−quarks. The high precision measurement of Rc at

SLD was made possible owing to the small beam size and very

stable beam spot at SLC, coupled with a highly precise CCD

pixel detector. Several of the analyses have also determined

other quantities, in particular the semileptonic branching ratios,

B(b → ℓ−), B(b → c → ℓ+), and B(c → ℓ+), the average time-

integrated B0B0

mixing parameter χ and the probabilities for

a c–quark to fragment into a D+, a Ds, a D∗+ , or a charmed

baryon. The latter measurements do not concern properties of

the Z boson, and hence they do not appear in the Listing below.

However, for completeness, we will report at the end of this

minireview their values as obtained fitting the data contained

in the Z section. All these quantities are correlated with the

electroweak parameters, and since the mixture of b hadrons is

different from the one at the Υ(4S), their values might differ

from those measured at the Υ(4S).

All the above quantities are correlated to each other since:

• Several analyses (for example the lepton fits) deter-

mine more than one parameter simultaneously;

• Some of the electroweak parameters depend explic-

itly on the values of other parameters (for example

Rb depends on Rc);

• Common tagging and analysis techniques produce

common systematic uncertainties.

The LEP Electroweak Heavy Flavour Working Group has

developed [32] a procedure for combining the measurements tak-

ing into account known sources of correlation. The combining

procedure determines fourteen parameters: the six parameters

of interest in the electroweak sector, Rb, Rc, AbbFB, Acc

FB, Ab and

Ac and, in addition, B(b → ℓ−), B(b → c → ℓ+), B(c → ℓ+), χ,

f(D+), f(Ds), f(cbaryon) and P (c → D∗+)×B(D∗+ → π+D0),

to take into account their correlations with the electroweak

parameters. Before the fit both the peak and off-peak asym-

metries are translated to the common energy√

s = 91.26 GeV

using the predicted energy-dependence from ZFITTER [5].

Summary of the measurements and of the various kinds

of analysis

The measurements of Rb and Rc fall into two classes. In

the first, named single-tag measurement, a method for selecting

b and c events is applied and the number of tagged events is

counted. A second technique, named double-tag measurement,

has the advantage that the tagging efficiency is directly derived

from the data thereby reducing the systematic error on the

measurement.

The measurements in the b- and c-sector can be essentially

grouped in the following categories:

• Lifetime (and lepton) double-tagging measurements

of Rb. These are the most precise measurements

of Rb and obviously dominate the combined re-

sult. The main sources of systematics come from

the charm contamination and from estimating the

hemisphere b-tagging efficiency correlation;

• Analyses with D/D∗± to measure Rc. These mea-

surements make use of several different tagging

techniques (inclusive/exclusive double tag, exclu-

sive double tag, reconstruction of all weakly decay-

ing charmed states) and no assumptions are made

on the energy-dependence of charm fragmentation;

• A measurement of Rc using single leptons and

assuming B(b → c → ℓ+);

• Lepton fits which use hadronic events with one

or more leptons in the final state to measure the

asymmetries AbbFB and Acc

FB. Each analysis usually

gives several other electroweak parameters. The

dominant sources of systematics are due to lepton

identification, to other semileptonic branching ratios

and to the modeling of the semileptonic decay;

• Measurements of AbbFB using lifetime tagged events

with a hemisphere charge measurement. These

measurements dominate the combined result;

• Analyses with D/D∗± to measure AccFB or simulta-

neously AbbFB and Acc

FB;

• Measurements of Ab and Ac from SLD, using several

tagging methods (lepton, kaon, D/D∗, and vertex

mass). These quantities are directly extracted from

a measurement of the left–right forward–backward

asymmetry in cc and bb production using a polarized

electron beam.

Averaging procedure

All the measurements are provided by the LEP and SLD

Collaborations in the form of tables with a detailed breakdown

of the systematic errors of each measurement and its dependence

on other electroweak parameters.

The averaging proceeds via the following steps:

• Define and propagate a consistent set of external

inputs such as branching ratios, hadron lifetimes,

fragmentation models etc. All the measurements

are checked to ensure that all use a common set

of assumptions (for instance, since the QCD cor-

rections for the forward–backward asymmetries are

strongly dependent on the experimental conditions,

the data are corrected before combining);

Page 19: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

629629629629See key on page 601 Gauge&Higgs Boson Parti le ListingsZ• Form the full (statistical and systematic) covariance

matrix of the measurements. The systematic cor-

relations between different analyses are calculated

from the detailed error breakdown in the mea-

surement tables. The correlations relating several

measurements made by the same analysis are also

used;

• Take into account any explicit dependence of a

measurement on the other electroweak parameters.

As an example of this dependence, we illustrate

the case of the double-tag measurement of Rb,

where c-quarks constitute the main background.

The normalization of the charm contribution is not

usually fixed by the data and the measurement of

Rb depends on the assumed value of Rc, which can

be written as:

Rb = Rmeasb + a(Rc)

(Rc − Rusedc )

Rc, (11)

where Rmeasb is the result of the analysis which

assumed a value of Rc = Rusedc and a(Rc) is the

constant which gives the dependence on Rc;

• Perform a χ2 minimization with respect to the

combined electroweak parameters.

After the fit the average peak asymmetries AccFB and Abb

FB

are corrected for the energy shift from 91.26 GeV to MZ and for

QED (initial state radiation), γ exchange, and γZ interference

effects, to obtain the corresponding pole asymmetries A0,cFB and

A0,bFB.

This averaging procedure, using the fourteen parameters

described above, and applied to the data contained in the Z

particle listing below, gives the following results (where the last

8 parameters do not depend directly on the Z):

R0b = 0.21629± 0.00066

R0c = 0.1721 ± 0.0030

A0,bFB = 0.0992 ± 0.0016

A0,cFB = 0.0707 ± 0.0035

Ab = 0.923 ± 0.020

Ac = 0.670 ± 0.027

B(b → ℓ−) = 0.1071 ± 0.0022

B(b → c → ℓ+) = 0.0801 ± 0.0018

B(c → ℓ+) = 0.0969 ± 0.0031

χ = 0.1250 ± 0.0039

f(D+) = 0.235 ± 0.016

f(Ds) = 0.126 ± 0.026

f(cbaryon) = 0.093 ± 0.022

P (c → D∗+) × B(D∗+ → π+D0) = 0.1622 ± 0.0048

Among the non–electroweak observables, the B semileptonic

branching fraction B(b → ℓ−) is of special interest, since the

dominant error source on this quantity is the dependence on

the semileptonic decay model for b → ℓ−, with ∆B(b →ℓ−)b→ℓ−−model = 0.0012. Extensive studies have been made

to understand the size of this error. Among the electroweak

quantities, the quark asymmetries with leptons depend also

on the semileptonic decay model, while the asymmetries using

other methods usually do not. The fit implicitely requires that

the different methods give consistent results and this effectively

constrains the decay model, and thus reduces in principle the

error from this source in the fit result.

To obtain a conservative estimate of the modelling er-

ror, the above fit has been repeated removing all asymmetry

measurements. The results of the fit on B–decay related ob-

servables are [24]: B(b → ℓ−) = 0.1069 ± 0.0022, with

∆B(b → ℓ−)b→ℓ−−model = 0.0013, B(b → c → ℓ+) = 0.0802 ±0.0019 and χ = 0.1259 ± 0.0042.

References

1. R.N. Cahn, Phys. Rev. D36, 2666 (1987).

2. F.A. Berends et al., “Z Physics at LEP 1,” CERN Report89-08 (1989), Vol. 1, eds. G. Altarelli, R. Kleiss, and C.Verzegnassi, p. 89.

3. A. Borrelli et al., Nucl. Phys. B333, 357 (1990).

4. D. Bardin and G. Passarino, “Upgrading of Precision Cal-culations for Electroweak Observables,” hep-ph/9803425;D. Bardin, G. Passarino, and M. Grunewald, “PrecisionCalculation Project Report,” hep-ph/9902452.

5. D. Bardin et al., Z. Phys. C44, 493 (1989); Comp. Phys.Comm. 59, 303 (1990);D. Bardin et al., Nucl. Phys. B351, 1 (1991); Phys. Lett.B255, 290 (1991), and CERN-TH/6443/92 (1992); Comp.Phys. Comm. 133, 229 (2001).

6. G. Burgers et al., “Z Physics at LEP 1,” CERN Report89-08 (1989), Vol. 1, eds. G. Altarelli, R. Kleiss, and C.Verzegnassi, p. 55.

7. D.C. Kennedy and B.W. Lynn, Nucl. Phys. B322, 1(1989).

8. M. Consoli et al., “Z Physics at LEP 1,” CERN Report89-08 (1989), Vol. 1, eds. G. Altarelli, R. Kleiss, and C.Verzegnassi, p. 7.

9. M. Bohm et al., ibid, p. 203.

10. S. Jadach et al., ibid, p. 235.

11. R. Stuart, Phys. Lett. B262, 113 (1991).

12. A. Sirlin, Phys. Rev. Lett. 67, 2127 (1991).

13. A. Leike, T. Riemann, and J. Rose, Phys. Lett. B273, 513(1991).

14. See also D. Bardin et al., Phys. Lett. B206, 539 (1988).

15. The LEP Collaborations: ALEPH, DELPHI, L3, OPAL,the LEP Electroweak Working Group, CERN-PH-EP/2013-022, arXiv:1302.3415 [hep-ex], Phys.Rept.532 (2013) 119-244.

16. W. Beenakker, F.A. Berends, and S.C. van der Marck,Nucl. Phys. B349, 323 (1991).

17. G. Montagna et al., Nucl. Phys. B401, 3 (1993); Comp.Phys. Comm. 76, 328 (1993); Comp. Phys. Comm. 93,

Page 20: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

630630630630Gauge & Higgs Boson Parti le ListingsZ120 (1996);G. Montagna et al., Comp. Phys. Comm. 117, 278 (1999).

18. R. Assmann et al., (Working Group on LEP Energy), Eur.Phys. J. C6, 187 (1999).

19. R. Assmann et al., (Working Group on LEP Energy),Z. Phys. C66, 567 (1995).

20. L. Arnaudon et al., (Working Group on LEP Energy andLEP Collabs.), Phys. Lett. B307, 187 (1993).

21. L. Arnaudon et al., (Working Group on LEP Energy),CERN-PPE/92-125 (1992).

22. L. Arnaudon et al., Phys. Lett. B284, 431 (1992).

23. R. Bailey et al., ‘LEP Energy Calibration’ CERN-SL-90-95-AP, Proceedings of the “2nd European Particle Ac-

celerator Conference,” Nice, France, 12–16 June 1990,pp. 1765-1767.

24. The LEP Collabs.: ALEPH, DELPHI, L3, OPAL, theLEP Electroweak Working Group, and the SLD HeavyFlavour Group: Phys. Reports 427, 257 (2006).

25. S. Jadach et al., BHLUMI 4.04, Comp. Phys. Comm. 102,229 (1997);S. Jadach and O. Nicrosini, Event generators for Bhabhascattering, in Physics at LEP2, CERN-96-01 Vol. 2, Febru-ary 1996.

26. B.F.L. Ward et al., Phys. Lett. B450, 262 (1999).

27. W. Beenakker and G. Passarino, Phys. Lett. B425, 199(1998).

28. M. Martinez et al., Z. Phys. C49, 645 (1991);M. Martinez and F. Teubert, Z. Phys. C65, 267 (1995), up-dated with results summarized in S. Jadach, B. Pietrzyk,and M. Skrzypek, Phys. Lett. B456, 77 (1999) and Re-ports of the working group on precision calculations forthe Z resonance, CERN 95-03, ed. D. Bardin, W. Hollik,and G. Passarino, and references therein.

29. T. van Ritbergen and R. Stuart, Phys. Lett. B437, 201(1998); Phys. Rev. Lett. 82, 488 (1999).

30. S. Eidelman and F. Jegerlehner, Z. Phys. C67, 585 (1995);M. Steinhauser, Phys. Lett. B429, 158 (1998).

31. Particle Data Group (D.E. Groom et al.), Eur. Phys. J.C15, 1 (2000).

32. The LEP Experiments: ALEPH, DELPHI, L3, and OPALNucl. Instrum. Methods A378, 101 (1996).Z MASSZ MASSZ MASSZ MASSOUR FIT is obtained using the t pro edure and orrelations as determinedby the LEP Ele troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06). The t is performed using the Z mass and width, theZ hadroni pole ross se tion, the ratios of hadroni to leptoni partialwidths, and the Z pole forward-ba kward lepton asymmetries. This set isbelieved to be most free of orrelations.The Z -boson mass listed here orresponds to the mass parameter in aBreit-Wigner distribution with mass dependent width. The value is 34MeV greater than the real part of the position of the pole (in the energy-squared plane) in the Z -boson propagator. Also the LEP experimentshave generally assumed a xed value of the γ − Z interferen es termbased on the standard model. Keeping this term as free parameter leadsto a somewhat larger error on the tted Z mass. See ACCIARRI 00Q andABBIENDI 04G for a detailed investigation of both these issues.VALUE (GeV) EVTS DOCUMENT ID TECN COMMENT91.1876±0.0021 OUR FIT91.1876±0.0021 OUR FIT91.1876±0.0021 OUR FIT91.1876±0.0021 OUR FIT91.1852±0.0030 4.57M 1 ABBIENDI 01A OPAL Eee m= 8894 GeV91.1863±0.0028 4.08M 2 ABREU 00F DLPH Eee m= 8894 GeV91.1898±0.0031 3.96M 3 ACCIARRI 00C L3 Eee m= 8894 GeV91.1885±0.0031 4.57M 4 BARATE 00C ALEP Eee m= 8894 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •91.1872±0.0033 5 ABBIENDI 04G OPAL Eee m= LEP1 +130209 GeV91.272 ±0.032 ±0.033 6 ACHARD 04C L3 Eee m= 183209 GeV91.1875±0.0039 3.97M 7 ACCIARRI 00Q L3 Eee m= LEP1 +130189 GeV91.151 ±0.008 8 MIYABAYASHI 95 TOPZ Eee m= 57.8 GeV91.74 ±0.28 ±0.93 156 9 ALITTI 92B UA2 Epp m= 630 GeV90.9 ±0.3 ±0.2 188 10 ABE 89C CDF Epp m= 1.8 TeV91.14 ±0.12 480 11 ABRAMS 89B MRK2 Eee m= 8993 GeV93.1 ±1.0 ±3.0 24 12 ALBAJAR 89 UA1 Epp m= 546,630 GeV1ABBIENDI 01A error in ludes approximately 2.3 MeV due to statisti s and 1.8 MeV dueto LEP energy un ertainty.2The error in ludes 1.6 MeV due to LEP energy un ertainty.3The error in ludes 1.8 MeV due to LEP energy un ertainty.4BARATE 00C error in ludes approximately 2.4 MeV due to statisti s, 0.2MeV due toexperimental systemati s, and 1.7MeV due to LEP energy un ertainty.5ABBIENDI 04G obtain this result using the Smatrix formalism for a ombined t totheir ross se tion and asymmetry data at the Z peak and their data at 130209 GeV.The authors have orre ted the measurement for the 34 MeV shift with respe t to theBreitWigner ts.6ACHARD 04C sele t e+ e− → Z γ events with hard initialstate radiation. Z de ays toqq and muon pairs are onsidered. The t results obtained in the two samples are found onsistent to ea h other and ombined onsidering the un ertainty due to ISR modellingas fully orrelated.7ACCIARRI 00Q interpret the s-dependen e of the ross se tions and lepton forward-ba kward asymmetries in the framework of the S-matrix formalism. They t to their ross se tion and asymmetry data at high energies, using the results of S-matrix ts toZ -peak data (ACCIARRI 00C) as onstraints. The 130189 GeV data onstrains the γ/Zinterferen e term. The authors have orre ted the measurement for the 34.1 MeV shiftwith respe t to the Breit-Wigner ts. The error ontains a ontribution of ±2.3 MeVdue to the un ertainty on the γZ interferen e.8MIYABAYASHI 95 ombine their low energy total hadroni ross-se tion measurementwith the ACTON 93D data and perform a t using an S-matrix formalism. As expe ted,this result is below the mass values obtained with the standard Breit-Wigner parametriza-tion.9 Enters t through W/Z mass ratio given in the W Parti le Listings. The ALITTI 92Bsystemati error (±0.93) has two ontributions: one (±0.92) an els in mW /mZ andone (±0.12) is non an elling. These were added in quadrature.10 First error of ABE 89 is ombination of statisti al and systemati ontributions; se ondis mass s ale un ertainty.11ABRAMS 89B un ertainty in ludes 35 MeV due to the absolute energy measurement.12ALBAJAR 89 result is from a total sample of 33 Z → e+ e− events.Z WIDTHZ WIDTHZ WIDTHZ WIDTHOUR FIT is obtained using the t pro edure and orrelations as determinedby the LEP Ele troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06).VALUE (GeV) EVTS DOCUMENT ID TECN COMMENT2.4952±0.0023 OUR FIT2.4952±0.0023 OUR FIT2.4952±0.0023 OUR FIT2.4952±0.0023 OUR FIT2.4948±0.0041 4.57M 1 ABBIENDI 01A OPAL Eee m= 8894 GeV2.4876±0.0041 4.08M 2 ABREU 00F DLPH Eee m= 8894 GeV2.5024±0.0042 3.96M 3 ACCIARRI 00C L3 Eee m= 8894 GeV2.4951±0.0043 4.57M 4 BARATE 00C ALEP Eee m= 8894 GeV• • • We do not use the following data for averages, ts, limits, et . • • •2.4943±0.0041 5 ABBIENDI 04G OPAL Eee m= LEP1 +130209 GeV2.5025±0.0041 3.97M 6 ACCIARRI 00Q L3 Eee m= LEP1 +130189 GeV2.50 ±0.21 ±0.06 7 ABREU 96R DLPH Eee m= 91.2 GeV3.8 ±0.8 ±1.0 188 ABE 89C CDF Epp m= 1.8 TeV2.42 +0.45

−0.35 480 8 ABRAMS 89B MRK2 Eee m= 8993 GeV2.7 +1.2−1.0 ±1.3 24 9 ALBAJAR 89 UA1 Epp m= 546,630 GeV2.7 ±2.0 ±1.0 25 10 ANSARI 87 UA2 Epp m= 546,630 GeV1ABBIENDI 01A error in ludes approximately 3.6 MeV due to statisti s, 1 MeV due toevent sele tion systemati s, and 1.3 MeV due to LEP energy un ertainty.2The error in ludes 1.2 MeV due to LEP energy un ertainty.3The error in ludes 1.3 MeV due to LEP energy un ertainty.4BARATE 00C error in ludes approximately 3.8 MeV due to statisti s, 0.9MeV due toexperimental systemati s, and 1.3MeV due to LEP energy un ertainty.5ABBIENDI 04G obtain this result using the Smatrix formalism for a ombined t totheir ross se tion and asymmetry data at the Z peak and their data at 130209 GeV.The authors have orre ted the measurement for the 1 MeV shift with respe t to theBreitWigner ts.6ACCIARRI 00Q interpret the s-dependen e of the ross se tions and lepton forward-ba kward asymmetries in the framework of the S-matrix formalism. They t to their ross se tion and asymmetry data at high energies, using the results of S-matrix ts toZ -peak data (ACCIARRI 00C) as onstraints. The 130189 GeV data onstrains the γ/Zinterferen e term. The authors have orre ted the measurement for the 0.9 MeV shiftwith respe t to the Breit-Wigner ts.7ABREU 96R obtain this value from a study of the interferen e between initial and nalstate radiation in the pro ess e+ e− → Z → µ+µ−.8ABRAMS 89B un ertainty in ludes 50 MeV due to the miniSAM ba kground subtra tionerror.9ALBAJAR 89 result is from a total sample of 33 Z → e+ e− events.

Page 21: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

631631631631See key on page 601 Gauge&HiggsBosonParti leListingsZ10Quoted values of ANSARI 87 are from dire t t. Ratio of Z and W produ tion giveseither (Z) < (1.09±0.07) × (W ), CL = 90% or (Z) = (0.82+0.19−0.14±0.06) × (W ).Assuming Standard-Model value (W ) = 2.65 GeV then gives (Z) < 2.89 ± 0.19 or= 2.17+0.50

−0.37 ± 0.16. Z DECAY MODESZ DECAY MODESZ DECAY MODESZ DECAY MODES S ale fa tor/Mode Fra tion (i /) Conden e level1 e+ e− ( 3.363 ±0.004 ) %2 µ+µ− ( 3.366 ±0.007 ) %3 τ+ τ− ( 3.370 ±0.008 ) %4 ℓ+ ℓ− [a ( 3.3658±0.0023) %5 ℓ+ ℓ− ℓ+ ℓ− [b ( 3.30 ±0.31 )× 10−6 S=1.16 invisible (20.00 ±0.06 ) %7 hadrons (69.91 ±0.06 ) %8 (uu+ )/2 (11.6 ±0.6 ) %9 (dd+ss+bb )/3 (15.6 ±0.4 ) %10 (12.03 ±0.21 ) %11 bb (15.12 ±0.05 ) %12 bbbb ( 3.6 ±1.3 )× 10−413 g g g < 1.1 % CL=95%14 π0 γ < 2.01 × 10−5 CL=95%15 ηγ < 5.1 × 10−5 CL=95%16 ωγ < 6.5 × 10−4 CL=95%17 η′(958)γ < 4.2 × 10−5 CL=95%18 γ γ < 1.46 × 10−5 CL=95%19 π0π0 < 1.52 × 10−5 CL=95%20 γ γ γ < 1.0 × 10−5 CL=95%21 π±W∓ [ < 7 × 10−5 CL=95%22 ρ±W∓ [ < 8.3 × 10−5 CL=95%23 J/ψ(1S)X ( 3.51 +0.23−0.25 )× 10−3 S=1.124 J/ψ(1S)γ < 2.6 × 10−6 CL=95%25 ψ(2S)X ( 1.60 ±0.29 )× 10−326 χ 1(1P)X ( 2.9 ±0.7 )× 10−327 χ 2(1P)X < 3.2 × 10−3 CL=90%28 (1S) X +(2S) X+(3S) X ( 1.0 ±0.5 )× 10−429 (1S)X < 3.4 × 10−6 CL=95%30 (2S)X < 6.5 × 10−6 CL=95%31 (3S)X < 5.4 × 10−6 CL=95%32 (D0 /D0) X (20.7 ±2.0 ) %33 D±X (12.2 ±1.7 ) %34 D∗(2010)±X [ (11.4 ±1.3 ) %35 Ds1(2536)±X ( 3.6 ±0.8 )× 10−336 DsJ (2573)±X ( 5.8 ±2.2 )× 10−337 D∗′(2629)±X sear hed for38 BX39 B∗X40 B+X [d ( 6.08 ±0.13 ) %41 B0s X [d ( 1.59 ±0.13 ) %42 B+ X sear hed for43 + X ( 1.54 ±0.33 ) %44 0 X seen45 bX seen46 b -baryon X [d ( 1.38 ±0.22 ) %47 anomalous γ+ hadrons [e < 3.2 × 10−3 CL=95%48 e+ e− γ [e < 5.2 × 10−4 CL=95%49 µ+µ− γ [e < 5.6 × 10−4 CL=95%50 τ+ τ− γ [e < 7.3 × 10−4 CL=95%51 ℓ+ ℓ−γ γ [f < 6.8 × 10−6 CL=95%52 qq γ γ [f < 5.5 × 10−6 CL=95%53 ν ν γ γ [f < 3.1 × 10−6 CL=95%54 e±µ∓ LF [ < 7.5 × 10−7 CL=95%55 e± τ∓ LF [ < 9.8 × 10−6 CL=95%56 µ± τ∓ LF [ < 1.2 × 10−5 CL=95%57 pe L,B < 1.8 × 10−6 CL=95%58 pµ L,B < 1.8 × 10−6 CL=95%[a ℓ indi ates ea h type of lepton (e, µ, and τ), not sum over them.[b Here ℓ indi ates e or µ.[ The value is for the sum of the harge states or parti le/antiparti lestates indi ated.

[d This value is updated using the produ t of (i) the Z → bbfra tion from this listing and (ii) the b-hadron fra tion in anunbiased sample of weakly de aying b-hadrons produ ed in Z -de ays provided by the Heavy Flavor Averaging Group (HFAG,http://www.sla .stanford.edu/xorg/hfag/os /PDG 2009/#FRACZ).[e See the Parti le Listings below for the γ energy range used in this mea-surement.[f For mγ γ = (60 ± 5) GeV.Z PARTIAL WIDTHSZ PARTIAL WIDTHSZ PARTIAL WIDTHSZ PARTIAL WIDTHS(e+ e−) 1(e+ e−) 1(e+ e−) 1(e+ e−) 1For the LEP experiments, this parameter is not dire tly used in the overall t but isderived using the t results; see the note \The Z boson" and ref. LEP-SLC 06.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT83.91±0.12 OUR FIT83.91±0.12 OUR FIT83.91±0.12 OUR FIT83.91±0.12 OUR FIT83.66±0.20 137.0K ABBIENDI 01A OPAL Eee m= 8894 GeV83.54±0.27 117.8k ABREU 00F DLPH Eee m= 8894 GeV84.16±0.22 124.4k ACCIARRI 00C L3 Eee m= 8894 GeV83.88±0.19 BARATE 00C ALEP Eee m= 8894 GeV82.89±1.20±0.89 1 ABE 95J SLD Eee m= 91.31 GeV1ABE 95J obtain this measurement from Bhabha events in a restri ted du ial region toimprove systemati s. They use the values 91.187 and 2.489 GeV for the Z mass andtotal de ay width to extra t this partial width.(µ+µ−) 2(µ+µ−) 2(µ+µ−) 2(µ+µ−) 2This parameter is not dire tly used in the overall t but is derived using the t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT83.99±0.18 OUR FIT83.99±0.18 OUR FIT83.99±0.18 OUR FIT83.99±0.18 OUR FIT84.03±0.30 182.8K ABBIENDI 01A OPAL Eee m= 8894 GeV84.48±0.40 157.6k ABREU 00F DLPH Eee m= 8894 GeV83.95±0.44 113.4k ACCIARRI 00C L3 Eee m= 8894 GeV84.02±0.28 BARATE 00C ALEP Eee m= 8894 GeV(τ+ τ−) 3(τ+ τ−) 3(τ+ τ−) 3(τ+ τ−) 3This parameter is not dire tly used in the overall t but is derived using the t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT84.08±0.22 OUR FIT84.08±0.22 OUR FIT84.08±0.22 OUR FIT84.08±0.22 OUR FIT83.94±0.41 151.5K ABBIENDI 01A OPAL Eee m= 8894 GeV83.71±0.58 104.0k ABREU 00F DLPH Eee m= 8894 GeV84.23±0.58 103.0k ACCIARRI 00C L3 Eee m= 8894 GeV84.38±0.31 BARATE 00C ALEP Eee m= 8894 GeV(ℓ+ ℓ−) 4(ℓ+ ℓ−) 4(ℓ+ ℓ−) 4(ℓ+ ℓ−) 4In our t (ℓ+ ℓ−) is dened as the partial Z width for the de ay into a pair of massless harged leptons. This parameter is not dire tly used in the 5-parameter t assuminglepton universality but is derived using the t results. See the note \The Z boson"and ref. LEP-SLC 06.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT83.984±0.086 OUR FIT83.984±0.086 OUR FIT83.984±0.086 OUR FIT83.984±0.086 OUR FIT83.82 ±0.15 471.3K ABBIENDI 01A OPAL Eee m= 8894 GeV83.85 ±0.17 379.4k ABREU 00F DLPH Eee m= 8894 GeV84.14 ±0.17 340.8k ACCIARRI 00C L3 Eee m= 8894 GeV84.02 ±0.15 500k BARATE 00C ALEP Eee m= 8894 GeV(invisible) 6(invisible) 6(invisible) 6(invisible) 6We use only dire t measurements of the invisible partial width using the single pho-ton hannel to obtain the average value quoted below. OUR FIT value is obtainedas a dieren e between the total and the observed partial widths assuming leptonuniversality.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT499.0± 1.5 OUR FIT499.0± 1.5 OUR FIT499.0± 1.5 OUR FIT499.0± 1.5 OUR FIT503 ±16 OUR AVERAGE503 ±16 OUR AVERAGE503 ±16 OUR AVERAGE503 ±16 OUR AVERAGE Error in ludes s ale fa tor of 1.2.498 ±12 ±12 1791 ACCIARRI 98G L3 Eee m= 8894 GeV539 ±26 ±17 410 AKERS 95C OPAL Eee m= 8894 GeV450 ±34 ±34 258 BUSKULIC 93L ALEP Eee m= 8894 GeV540 ±80 ±40 52 ADEVA 92 L3 Eee m= 8894 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •498.1± 2.6 1 ABBIENDI 01A OPAL Eee m= 8894 GeV498.1± 3.2 1 ABREU 00F DLPH Eee m= 8894 GeV499.1± 2.9 1 ACCIARRI 00C L3 Eee m= 8894 GeV499.1± 2.5 1 BARATE 00C ALEP Eee m= 8894 GeV1This is an indire t determination of (invisible) from a t to the visible Z de ay modes.

Page 22: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

632632632632Gauge & Higgs Boson Parti le ListingsZ(hadrons) 7(hadrons) 7(hadrons) 7(hadrons) 7This parameter is not dire tly used in the 5-parameter t assuming lepton universality,but is derived using the t results. See the note \The Z boson" and ref. LEP-SLC 06.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1744.4±2.0 OUR FIT1744.4±2.0 OUR FIT1744.4±2.0 OUR FIT1744.4±2.0 OUR FIT1745.4±3.5 4.10M ABBIENDI 01A OPAL Eee m= 8894 GeV1738.1±4.0 3.70M ABREU 00F DLPH Eee m= 8894 GeV1751.1±3.8 3.54M ACCIARRI 00C L3 Eee m= 8894 GeV1744.0±3.4 4.07M BARATE 00C ALEP Eee m= 8894 GeVZ BRANCHING RATIOSZ BRANCHING RATIOSZ BRANCHING RATIOSZ BRANCHING RATIOSOUR FIT is obtained using the t pro edure and orrelations as determinedby the LEP Ele troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06).(hadrons)/(e+ e−) 7/1(hadrons)/(e+ e−) 7/1(hadrons)/(e+ e−) 7/1(hadrons)/(e+ e−) 7/1VALUE EVTS DOCUMENT ID TECN COMMENT20.804± 0.050 OUR FIT20.804± 0.050 OUR FIT20.804± 0.050 OUR FIT20.804± 0.050 OUR FIT20.902± 0.084 137.0K 1 ABBIENDI 01A OPAL Eee m= 8894 GeV20.88 ± 0.12 117.8k ABREU 00F DLPH Eee m= 8894 GeV20.816± 0.089 124.4k ACCIARRI 00C L3 Eee m= 8894 GeV20.677± 0.075 2 BARATE 00C ALEP Eee m= 8894 GeV• • • We do not use the following data for averages, ts, limits, et . • • •27.0 +11.7

− 8.8 12 3 ABRAMS 89D MRK2 Eee m= 8993 GeV1ABBIENDI 01A error in ludes approximately 0.067 due to statisti s, 0.040 due to eventsele tion systemati s, 0.027 due to the theoreti al un ertainty in t- hannel predi tion,and 0.014 due to LEP energy un ertainty.2BARATE 00C error in ludes approximately 0.062 due to statisti s, 0.033 due to experi-mental systemati s, and 0.026 due to the theoreti al un ertainty in t- hannel predi tion.3ABRAMS 89D have in luded both statisti al and systemati un ertainties in their quotederrors.(hadrons)/(µ+µ−) 7/2(hadrons)/(µ+µ−) 7/2(hadrons)/(µ+µ−) 7/2(hadrons)/(µ+µ−) 7/2OUR FIT is obtained using the t pro edure and orrelations as determined by theLEP Ele troweak Working Group (see the note \The Z boson" and ref. LEP-SLC 06).VALUE EVTS DOCUMENT ID TECN COMMENT20.785±0.033 OUR FIT20.785±0.033 OUR FIT20.785±0.033 OUR FIT20.785±0.033 OUR FIT20.811±0.058 182.8K 1 ABBIENDI 01A OPAL Eee m= 8894 GeV20.65 ±0.08 157.6k ABREU 00F DLPH Eee m= 8894 GeV20.861±0.097 113.4k ACCIARRI 00C L3 Eee m= 8894 GeV20.799±0.056 2 BARATE 00C ALEP Eee m= 8894 GeV• • • We do not use the following data for averages, ts, limits, et . • • •18.9 +7.1

−5.3 13 3 ABRAMS 89D MRK2 Eee m= 8993 GeV1ABBIENDI 01A error in ludes approximately 0.050 due to statisti s and 0.027 due toevent sele tion systemati s.2BARATE 00C error in ludes approximately 0.053 due to statisti s and 0.021 due toexperimental systemati s.3ABRAMS 89D have in luded both statisti al and systemati un ertainties in their quotederrors.(hadrons)/(τ+ τ−) 7/3(hadrons)/(τ+ τ−) 7/3(hadrons)/(τ+ τ−) 7/3(hadrons)/(τ+ τ−) 7/3OUR FIT is obtained using the t pro edure and orrelations as determined by theLEP Ele troweak Working Group (see the note \The Z boson" and ref. LEP-SLC 06).VALUE EVTS DOCUMENT ID TECN COMMENT20.764±0.045 OUR FIT20.764±0.045 OUR FIT20.764±0.045 OUR FIT20.764±0.045 OUR FIT20.832±0.091 151.5K 1 ABBIENDI 01A OPAL Eee m= 8894 GeV20.84 ±0.13 104.0k ABREU 00F DLPH Eee m= 8894 GeV20.792±0.133 103.0k ACCIARRI 00C L3 Eee m= 8894 GeV20.707±0.062 2 BARATE 00C ALEP Eee m= 8894 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •15.2 +4.8−3.9 21 3 ABRAMS 89D MRK2 Eee m= 8993 GeV1ABBIENDI 01A error in ludes approximately 0.055 due to statisti s and 0.071 due toevent sele tion systemati s.2BARATE 00C error in ludes approximately 0.054 due to statisti s and 0.033 due toexperimental systemati s.3ABRAMS 89D have in luded both statisti al and systemati un ertainties in their quotederrors.(hadrons)/(ℓ+ ℓ−

) 7/4(hadrons)/(ℓ+ ℓ−) 7/4(hadrons)/(ℓ+ ℓ−) 7/4(hadrons)/(ℓ+ ℓ−) 7/4

ℓ indi ates ea h type of lepton (e, µ, and τ), not sum over them.Our t result is obtained requiring lepton universality.VALUE EVTS DOCUMENT ID TECN COMMENT20.767±0.025 OUR FIT20.767±0.025 OUR FIT20.767±0.025 OUR FIT20.767±0.025 OUR FIT20.823±0.044 471.3K 1 ABBIENDI 01A OPAL Eee m= 8894 GeV20.730±0.060 379.4k ABREU 00F DLPH Eee m= 8894 GeV20.810±0.060 340.8k ACCIARRI 00C L3 Eee m= 8894 GeV20.725±0.039 500k 2 BARATE 00C ALEP Eee m= 8894 GeV• • • We do not use the following data for averages, ts, limits, et . • • •18.9 +3.6

−3.2 46 ABRAMS 89B MRK2 Eee m= 8993 GeV

1ABBIENDI 01A error in ludes approximately 0.034 due to statisti s and 0.027 due toevent sele tion systemati s.2BARATE 00C error in ludes approximately 0.033 due to statisti s, 0.020 due to experi-mental systemati s, and 0.005 due to the theoreti al un ertainty in t- hannel predi tion.(hadrons)/total 7/(hadrons)/total 7/(hadrons)/total 7/(hadrons)/total 7/This parameter is not dire tly used in the overall t but is derived using the t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (%) DOCUMENT ID69.911±0.056 OUR FIT69.911±0.056 OUR FIT69.911±0.056 OUR FIT69.911±0.056 OUR FIT(e+ e−)/total 1/(e+ e−)/total 1/(e+ e−)/total 1/(e+ e−)/total 1/This parameter is not dire tly used in the overall t but is derived using the t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (%) DOCUMENT ID3.3632±0.0042 OUR FIT3.3632±0.0042 OUR FIT3.3632±0.0042 OUR FIT3.3632±0.0042 OUR FIT(µ+µ−)/total 2/(µ+µ−)/total 2/(µ+µ−)/total 2/(µ+µ−)/total 2/This parameter is not dire tly used in the overall t but is derived using the t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (%) DOCUMENT ID3.3662±0.0066 OUR FIT3.3662±0.0066 OUR FIT3.3662±0.0066 OUR FIT3.3662±0.0066 OUR FIT(µ+µ−)/(e+ e−) 2/1(µ+µ−)/(e+ e−) 2/1(µ+µ−)/(e+ e−) 2/1(µ+µ−)/(e+ e−) 2/1This parameter is not dire tly used in the overall t but is derived using the t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE DOCUMENT ID1.0009±0.0028 OUR FIT1.0009±0.0028 OUR FIT1.0009±0.0028 OUR FIT1.0009±0.0028 OUR FIT(τ+ τ−)/total 3/(τ+ τ−)/total 3/(τ+ τ−)/total 3/(τ+ τ−)/total 3/This parameter is not dire tly used in the overall t but is derived using the t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (%) DOCUMENT ID3.3696±0.0083 OUR FIT3.3696±0.0083 OUR FIT3.3696±0.0083 OUR FIT3.3696±0.0083 OUR FIT(τ+ τ−)/(e+ e−) 3/1(τ+ τ−)/(e+ e−) 3/1(τ+ τ−)/(e+ e−) 3/1(τ+ τ−)/(e+ e−) 3/1This parameter is not dire tly used in the overall t but is derived using the t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE DOCUMENT ID1.0019±0.0032 OUR FIT1.0019±0.0032 OUR FIT1.0019±0.0032 OUR FIT1.0019±0.0032 OUR FIT(ℓ+ ℓ−)/total 4/(ℓ+ ℓ−)/total 4/(ℓ+ ℓ−)/total 4/(ℓ+ ℓ−)/total 4/

ℓ indi ates ea h type of lepton (e, µ, and τ), not sum over them.Our t result assumes lepton universality.This parameter is not dire tly used in the overall t but is derived using the t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (%) DOCUMENT ID3.3658±0.0023 OUR FIT3.3658±0.0023 OUR FIT3.3658±0.0023 OUR FIT3.3658±0.0023 OUR FIT(ℓ+ ℓ− ℓ+ ℓ−)/total 5/(ℓ+ ℓ− ℓ+ ℓ−)/total 5/(ℓ+ ℓ− ℓ+ ℓ−)/total 5/(ℓ+ ℓ− ℓ+ ℓ−)/total 5/Here ℓ indi ates either e or µ.VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT3.30±0.31 OUR AVERAGE3.30±0.31 OUR AVERAGE3.30±0.31 OUR AVERAGE3.30±0.31 OUR AVERAGE Error in ludes s ale fa tor of 1.1.3.20±0.25±0.13 172 AAD 14N ATLS Epp m = 7, 8 TeV4.2 +0.9

−0.8 ±0.2 28 CHATRCHYAN12BN CMS Epp m = 7 TeV(invisible)/total 6/(invisible)/total 6/(invisible)/total 6/(invisible)/total 6/See the data, the note, and the t result for the partial width, 6, above.VALUE (%) DOCUMENT ID20.000±0.055 OUR FIT20.000±0.055 OUR FIT20.000±0.055 OUR FIT20.000±0.055 OUR FIT((uu+ )/2)/(hadrons) 8/7((uu+ )/2)/(hadrons) 8/7((uu+ )/2)/(hadrons) 8/7((uu+ )/2)/(hadrons) 8/7This quantity is the bran hing ratio of Z → \up-type" quarks to Z → hadrons. Ex eptACKERSTAFF 97T the values of Z → \up-type" and Z → \down-type" bran hings areextra ted from measurements of (hadrons), and (Z → γ+ jets) where γ is a high-energy (>5 or 7 GeV) isolated photon. As the experiments use dierent pro eduresand slightly dierent values of MZ , (hadrons) and αs in their extra tion pro edures,our average has to be taken with aution.VALUE DOCUMENT ID TECN COMMENT0.166±0.009 OUR AVERAGE0.166±0.009 OUR AVERAGE0.166±0.009 OUR AVERAGE0.166±0.009 OUR AVERAGE0.172+0.011−0.010 1 ABBIENDI 04E OPAL Eee m = 91.2 GeV0.160±0.019±0.019 2 ACKERSTAFF 97T OPAL Eee m= 8894 GeV0.137+0.038−0.054 3 ABREU 95X DLPH Eee m= 8894 GeV0.137±0.033 4 ADRIANI 93 L3 Eee m= 91.2 GeV1ABBIENDI 04E sele t photons with energy > 7 GeV and use (hadrons) = 1744.4 ± 2.0MeV and αs = 0.1172 ± 0.002 to obtain u = 300+19

−18 MeV.2ACKERSTAFF 97T measure uu/(d d+uu+s s ) = 0.258 ± 0.031 ± 0.032. Toobtain this bran hing ratio authors use R +Rb = 0.380 ± 0.010. This measurement isfully negatively orrelated with the measurement of d d ,s s/(d d + uu + s s ) givenin the next data blo k.3ABREU 95X use MZ = 91.187 ± 0.009 GeV, (hadrons) = 1725 ± 12 MeV and αs =0.123± 0.005. To obtain this bran hing ratio we divide their value of C2/3 = 0.91+0.25−0.36by their value of (3C1/3 + 2C2/3) = 6.66 ± 0.05.4ADRIANI 93 use MZ = 91.181 ± 0.022 GeV, (hadrons) = 1742 ± 19 MeV and αs =0.125± 0.009. To obtain this bran hing ratio we divide their value of C2/3 = 0.92± 0.22by their value of (3C1/3 + 2C2/3) = 6.720 ± 0.076.

Page 23: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

633633633633See key on page 601 Gauge&HiggsBosonParti leListingsZ((dd+ss+bb )/3)/(hadrons) 9/7((dd+ss+bb )/3)/(hadrons) 9/7((dd+ss+bb )/3)/(hadrons) 9/7((dd+ss+bb )/3)/(hadrons) 9/7This quantity is the bran hing ratio of Z → \down-type" quarks to Z → hadrons.Ex ept ACKERSTAFF 97T the values of Z → \up-type" and Z → \down-type"bran hings are extra ted from measurements of (hadrons), and (Z → γ+ jets)where γ is a high-energy (>5 or 7 GeV) isolated photon. As the experiments usedierent pro edures and slightly dierent values of MZ , (hadrons) and αs in theirextra tion pro edures, our average has to be taken with aution.VALUE DOCUMENT ID TECN COMMENT0.223±0.006 OUR AVERAGE0.223±0.006 OUR AVERAGE0.223±0.006 OUR AVERAGE0.223±0.006 OUR AVERAGE0.218±0.007 1 ABBIENDI 04E OPAL Eee m = 91.2 GeV0.230±0.010±0.010 2 ACKERSTAFF 97T OPAL Eee m= 8894 GeV0.243+0.036−0.026 3 ABREU 95X DLPH Eee m= 8894 GeV0.243±0.022 4 ADRIANI 93 L3 Eee m= 91.2 GeV1ABBIENDI 04E sele t photons with energy > 7 GeV and use (hadrons) = 1744.4 ± 2.0MeV and αs = 0.1172 ± 0.002 to obtain d = 381 ± 12 MeV.2ACKERSTAFF 97T measure d d ,s s/(d d+uu+s s ) = 0.371 ± 0.016 ± 0.016. Toobtain this bran hing ratio authors use R +Rb = 0.380 ± 0.010. This measurement isfully negatively orrelated with the measurement of uu/(d d +uu +s s ) presentedin the previous data blo k.3ABREU 95X use MZ = 91.187 ± 0.009 GeV, (hadrons) = 1725 ± 12 MeV and αs =0.123± 0.005. To obtain this bran hing ratio we divide their value of C1/3 = 1.62+0.24

−0.17by their value of (3C1/3 + 2C2/3) = 6.66 ± 0.05.4ADRIANI 93 use MZ = 91.181 ± 0.022 GeV, (hadrons) = 1742 ± 19 MeV and αs =0.125± 0.009. To obtain this bran hing ratio we divide their value of C1/3 = 1.63± 0.15by their value of (3C1/3 + 2C2/3) = 6.720 ± 0.076.R = ( )/(hadrons) 10/7R = ( )/(hadrons) 10/7R = ( )/(hadrons) 10/7R = ( )/(hadrons) 10/7OUR FIT is obtained by a simultaneous t to several - and b-quark measurementsas explained in the note \The Z boson" and ref. LEP-SLC 06.The Standard Model predi ts R = 0.1723 for mt = 174.3 GeV and MH = 150 GeV.VALUE DOCUMENT ID TECN COMMENT0.1721±0.0030 OUR FIT0.1721±0.0030 OUR FIT0.1721±0.0030 OUR FIT0.1721±0.0030 OUR FIT0.1744±0.0031±0.0021 1 ABE 05F SLD Eee m=91.28 GeV0.1665±0.0051±0.0081 2 ABREU 00 DLPH Eee m= 8894 GeV0.1698±0.0069 3 BARATE 00B ALEP Eee m= 8894 GeV0.180 ±0.011 ±0.013 4 ACKERSTAFF 98E OPAL Eee m= 8894 GeV0.167 ±0.011 ±0.012 5 ALEXANDER 96R OPAL Eee m= 8894 GeV• • • We do not use the following data for averages, ts, limits, et . • • •0.1623±0.0085±0.0209 6 ABREU 95D DLPH Eee m= 8894 GeV1ABE 05F use hadroni Z de ays olle ted during 199698 to obtain an enri hed sampleof events using a double tag method. The single tag is obtained with a neuralnetwork trained to perform avor dis rimination using as input several signatures ( or-re ted se ondary vertex mass, vertex de ay length, multipli ity and total momentum ofthe hemisphere). A multitag approa h is used, dening 4 regions of the output value ofthe neural network and Rc is extra ted from a simultaneous t to the ount rates of the4 dierent tags. The quoted systemati error in ludes an un ertainty of ±0.0006 due tothe un ertainty on Rb.2ABREU 00 obtain this result properly ombining the measurement from the D∗+ pro-du tion rate (R = 0.1610 ± 0.0104 ± 0.0077 ± 0.0043 (BR)) with that from the overall harm ounting (R = 0.1692 ± 0.0047 ± 0.0063 ± 0.0074 (BR)) in events. The sys-temati error in ludes an un ertainty of ±0.0054 due to the un ertainty on the harmedhadron bran hing fra tions.3BARATE 00B use ex lusive de ay modes to independently determine the quantitiesR ×f( → X), X=D0, D+, D+s , and . Estimating R ×f( → / )= 0.0034,they simply sum over all the harm de ays to obtain R = 0.1738 ± 0.0047 ± 0.0088 ±0.0075(BR). This is ombined with all previous ALEPH measurements (BARATE 98Tand BUSKULIC 94G, R = 0.1681 ± 0.0054 ± 0.0062) to obtain the quoted value.4ACKERSTAFF 98E use an in lusive/ex lusive double tag. In one jet D∗± mesons areex lusively re onstru ted in several de ay hannels and in the opposite jet a slow pion(opposite harge in lusive D∗±) tag is used. The b ontent of this sample is measuredby the simultaneous dete tion of a lepton in one jet and an in lusively re onstru tedD∗± meson in the opposite jet. The systemati error in ludes an un ertainty of ±0.006due to the external bran hing ratios.5ALEXANDER 96R obtain this value via dire t harm ounting, summing the partial ontributions from D0, D+, D+s , and + , and assuming that strange- harmed baryonsa ount for the 15% of the + produ tion. An un ertainty of ±0.005 due to theun ertainties in the harm hadron bran hing ratios is in luded in the overall systemati s.6ABREU 95D perform a maximum likelihood t to the ombined p and pT distributionsof single and dilepton samples. The se ond error in ludes an un ertainty of ±0.0124due to models and bran hing ratios.Rb = (bb)/(hadrons) 11/7Rb = (bb)/(hadrons) 11/7Rb = (bb)/(hadrons) 11/7Rb = (bb)/(hadrons) 11/7OUR FIT is obtained by a simultaneous t to several - and b-quark measurementsas explained in the note \The Z boson" and ref. LEP-SLC 06.The Standard Model predi ts Rb=0.21581 for mt=174.3 GeV and MH=150 GeV.VALUE DOCUMENT ID TECN COMMENT0.21629±0.00066 OUR FIT0.21629±0.00066 OUR FIT0.21629±0.00066 OUR FIT0.21629±0.00066 OUR FIT0.21594±0.00094±0.00075 1 ABE 05F SLD Eee m=91.28 GeV0.2174 ±0.0015 ±0.0028 2 ACCIARRI 00 L3 Eee m= 8993 GeV0.2178 ±0.0011 ±0.0013 3 ABBIENDI 99B OPAL Eee m= 8894 GeV0.21634±0.00067±0.00060 4 ABREU 99B DLPH Eee m= 8894 GeV0.2159 ±0.0009 ±0.0011 5 BARATE 97F ALEP Eee m= 8894 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •0.2145 ±0.0089 ±0.0067 6 ABREU 95D DLPH Eee m= 8894 GeV0.219 ±0.006 ±0.005 7 BUSKULIC 94G ALEP Eee m= 8894 GeV0.251 ±0.049 ±0.030 8 JACOBSEN 91 MRK2 Eee m= 91 GeV1ABE 05F use hadroni Z de ays olle ted during 199698 to obtain an enri hed sampleof bb events using a double tag method. The single btag is obtained with a neuralnetwork trained to perform avor dis rimination using as input several signatures ( or-re ted se ondary vertex mass, vertex de ay length, multipli ity and total momentum ofthe hemisphere; the key tag is obtained requiring the se ondary vertex orre ted massto be above the Dmeson mass). ABE 05F obtain Rb =0.21604 ± 0.00098 ± 0.00074where the systemati error in ludes an un ertainty of ±0.00012 due to the un ertainty onRc. The value reported here is obtained properly ombining with ABE 98D. The quotedsystemati error in ludes an un ertainty of ±0.00012 due to the un ertainty on Rc.2ACCIARRI 00 obtain this result using a double-tagging te hnique, with a high pT leptontag and an impa t parameter tag in opposite hemispheres.3ABBIENDI 99B tag Z → bb de ays using leptons and/or separated de ay verti es. Theb-tagging eÆ ien y is measured dire tly from the data using a double-tagging te hnique.4ABREU 99B obtain this result ombining in a multivariate analysis several tagging meth-ods (impa t parameter and se ondary vertex re onstru tion, omplemented by eventshape variables). For R dierent from its Standard Model value of 0.172, Rb varies as−0.024×(R 0.172).5BARATE 97F ombine the lifetime-mass hemisphere tag (BARATE 97E) with event shapeinformation and lepton tag to identify Z → bb andidates. They further use - andud s-sele tion tags to identify the ba kground. For R dierent from its Standard Modelvalue of 0.172, Rb varies as −0.019×(R − 0.172).6ABREU 95D perform a maximum likelihood t to the ombined p and pT distributionsof single and dilepton samples. The se ond error in ludes an un ertainty of ±0.0023due to models and bran hing ratios.7BUSKULIC 94G perform a simultaneous t to the p and pT spe tra of both single anddilepton events.8 JACOBSEN 91 tagged bb events by requiring oin iden e of ≥ 3 tra ks with signi antimpa t parameters using vertex dete tor. Systemati error in ludes lifetime and de ayun ertainties (±0.014).(bbbb)/(hadrons) 12/7(bbbb)/(hadrons) 12/7(bbbb)/(hadrons) 12/7(bbbb)/(hadrons) 12/7VALUE (units 10−4) DOCUMENT ID TECN COMMENT5.2±1.9 OUR AVERAGE5.2±1.9 OUR AVERAGE5.2±1.9 OUR AVERAGE5.2±1.9 OUR AVERAGE3.6±1.7±2.7 1 ABBIENDI 01G OPAL Eee m= 8894 GeV6.0±1.9±1.4 2 ABREU 99U DLPH Eee m= 8894 GeV1ABBIENDI 01G use a sample of four-jet events from hadroni Z de ays. To enhan e thebbbb signal, at least three of the four jets are required to have a signi antly deta hedse ondary vertex.2ABREU 99U for e hadroni Z de ays into 3 jets to use all the available phase spa eand require a b tag for every jet. This de ay mode in ludes primary and se ondary 4bprodu tion, e.g, from gluon splitting to bb.(g g g)/(hadrons) 13/7(g g g)/(hadrons) 13/7(g g g)/(hadrons) 13/7(g g g)/(hadrons) 13/7VALUE CL% DOCUMENT ID TECN COMMENT

<1.6× 10−2<1.6× 10−2<1.6× 10−2<1.6× 10−2 95 1 ABREU 96S DLPH Eee m= 8894 GeV1This bran hing ratio is slightly dependent on the jet-nder algorithm. The value we quoteis obtained using the JADE algorithm, while using the DURHAM algorithm ABREU 96Sobtain an upper limit of 1.5× 10−2.(π0 γ)/total 14/(π0 γ)/total 14/(π0 γ)/total 14/(π0 γ)/total 14/VALUE CL% DOCUMENT ID TECN COMMENT

<2.01× 10−5<2.01× 10−5<2.01× 10−5<2.01× 10−5 95 AALTONEN 14E CDF Epp m = 1.96 TeV<5.2 × 10−5 95 1 ACCIARRI 95G L3 Eee m= 8894 GeV<5.5 × 10−5 95 ABREU 94B DLPH Eee m= 8894 GeV<2.1 × 10−4 95 DECAMP 92 ALEP Eee m= 8894 GeV<1.4 × 10−4 95 AKRAWY 91F OPAL Eee m= 8894 GeV1This limit is for both de ay modes Z → π0 γ

/γ γ whi h are indistinguishable in ACCIA-RRI 95G.(ηγ

)/total 15/(ηγ)/total 15/(ηγ)/total 15/(ηγ)/total 15/VALUE CL% DOCUMENT ID TECN COMMENT

<7.6× 10−5 95 ACCIARRI 95G L3 Eee m= 8894 GeV<8.0× 10−5 95 ABREU 94B DLPH Eee m= 8894 GeV<5.1× 10−5<5.1× 10−5<5.1× 10−5<5.1× 10−5 95 DECAMP 92 ALEP Eee m= 8894 GeV<2.0× 10−4 95 AKRAWY 91F OPAL Eee m= 8894 GeV(ωγ

)/total 16/(ωγ)/total 16/(ωγ)/total 16/(ωγ)/total 16/VALUE CL% DOCUMENT ID TECN COMMENT

<6.5× 10−4<6.5× 10−4<6.5× 10−4<6.5× 10−4 95 ABREU 94B DLPH Eee m= 8894 GeV(η′(958)γ)/total 17/(η′(958)γ)/total 17/(η′(958)γ)/total 17/(η′(958)γ)/total 17/VALUE CL% DOCUMENT ID TECN COMMENT<4.2× 10−5<4.2× 10−5<4.2× 10−5<4.2× 10−5 95 DECAMP 92 ALEP Eee m= 8894 GeV(γ γ

)/total 18/(γ γ)/total 18/(γ γ)/total 18/(γ γ)/total 18/This de ay would violate the Landau-Yang theorem.VALUE CL% DOCUMENT ID TECN COMMENT

<1.46× 10−5<1.46× 10−5<1.46× 10−5<1.46× 10−5 95 AALTONEN 14E CDF Epp m = 1.96 TeV<5.2 × 10−5 95 1 ACCIARRI 95G L3 Eee m= 8894 GeV<5.5 × 10−5 95 ABREU 94B DLPH Eee m= 8894 GeV<1.4 × 10−4 95 AKRAWY 91F OPAL Eee m= 8894 GeV1This limit is for both de ay modes Z → π0 γ

/γ γ whi h are indistinguishable in ACCIA-RRI 95G.

Page 24: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

634634634634Gauge&HiggsBosonParti leListingsZ(π0π0)/total 19/(π0π0)/total 19/(π0π0)/total 19/(π0π0)/total 19/VALUE CL% DOCUMENT ID TECN COMMENT<1.52× 10−5<1.52× 10−5<1.52× 10−5<1.52× 10−5 95 AALTONEN 14E CDF Epp m = 1.96 TeV(γ γ γ

)/total 20/(γ γ γ)/total 20/(γ γ γ)/total 20/(γ γ γ)/total 20/VALUE CL% DOCUMENT ID TECN COMMENT

<1.0× 10−5<1.0× 10−5<1.0× 10−5<1.0× 10−5 95 1 ACCIARRI 95C L3 Eee m= 8894 GeV<1.7× 10−5 95 1 ABREU 94B DLPH Eee m= 8894 GeV<6.6× 10−5 95 AKRAWY 91F OPAL Eee m= 8894 GeV1Limit derived in the ontext of omposite Z model.(π±W∓)/total 21/(π±W∓)/total 21/(π±W∓)/total 21/(π±W∓)/total 21/The value is for the sum of the harge states indi ated.VALUE CL% DOCUMENT ID TECN COMMENT<7× 10−5<7× 10−5<7× 10−5<7× 10−5 95 DECAMP 92 ALEP Eee m= 8894 GeV(ρ±W∓)/total 22/(ρ±W∓)/total 22/(ρ±W∓)/total 22/(ρ±W∓)/total 22/The value is for the sum of the harge states indi ated.VALUE CL% DOCUMENT ID TECN COMMENT<8.3× 10−5<8.3× 10−5<8.3× 10−5<8.3× 10−5 95 DECAMP 92 ALEP Eee m= 8894 GeV(J/ψ(1S)X)/total 23/(J/ψ(1S)X)/total 23/(J/ψ(1S)X)/total 23/(J/ψ(1S)X)/total 23/VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT3.51+0.23

−0.25 OUR AVERAGE3.51+0.23−0.25 OUR AVERAGE3.51+0.23−0.25 OUR AVERAGE3.51+0.23−0.25 OUR AVERAGE Error in ludes s ale fa tor of 1.1.3.21±0.21+0.19

−0.28 553 1 ACCIARRI 99F L3 Eee m= 8894 GeV3.9 ±0.2 ±0.3 511 2 ALEXANDER 96B OPAL Eee m= 8894 GeV3.73±0.39±0.36 153 3 ABREU 94P DLPH Eee m= 8894 GeV1ACCIARRI 99F ombine µ+µ− and e+ e− J/ψ(1S) de ay hannels. The bran hing ratiofor prompt J/ψ(1S) produ tion is measured to be (2.1± 0.6± 0.4+0.4−0.2(theor.))×10−4.2ALEXANDER 96B identify J/ψ(1S) from the de ays into lepton pairs. (4.8 ± 2.4)% ofthis bran hing ratio is due to prompt J/ψ(1S) produ tion (ALEXANDER 96N).3Combining µ+µ− and e+ e− hannels and taking into a ount the ommon systemati errors. (7.7+6.3

−5.4)% of this bran hing ratio is due to prompt J/ψ(1S) produ tion.(J/ψ(1S)γ)/total 24/(J/ψ(1S)γ)/total 24/(J/ψ(1S)γ)/total 24/(J/ψ(1S)γ)/total 24/VALUE CL% DOCUMENT ID TECN COMMENT<2.6× 10−6<2.6× 10−6<2.6× 10−6<2.6× 10−6 95 1 AAD 15I ATLS Epp m = 8 TeV1AAD 15I use events with the highest pT muon in the pair required to have pT > 20GeV, the dimuon mass required to be within 0.2 GeV of the J/ψ(1S) mass and it'stransverse momentum required to be > 36 GeV. The photon is also required to have it'spT > 36 GeV.(ψ(2S)X)/total 25/(ψ(2S)X)/total 25/(ψ(2S)X)/total 25/(ψ(2S)X)/total 25/VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.60±0.29 OUR AVERAGE1.60±0.29 OUR AVERAGE1.60±0.29 OUR AVERAGE1.60±0.29 OUR AVERAGE1.6 ±0.5 ±0.3 39 1 ACCIARRI 97J L3 Eee m= 8894 GeV1.6 ±0.3 ±0.2 46.9 2 ALEXANDER 96B OPAL Eee m= 8894 GeV1.60±0.73±0.33 5.4 3 ABREU 94P DLPH Eee m= 8894 GeV1ACCIARRI 97J measure this bran hing ratio via the de ay hannel ψ(2S) → ℓ+ ℓ− (ℓ= µ, e).2ALEXANDER 96B measure this bran hing ratio via the de ay hannel ψ(2S) →J/ψπ+ π−, with J/ψ → ℓ+ ℓ−.3ABREU 94P measure this bran hing ratio via de ay hannel ψ(2S) → J/ψπ+π−, withJ/ψ → µ+µ−.(χ 1(1P)X)/total 26/(χ 1(1P)X)/total 26/(χ 1(1P)X)/total 26/(χ 1(1P)X)/total 26/VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.9±0.7 OUR AVERAGE2.9±0.7 OUR AVERAGE2.9±0.7 OUR AVERAGE2.9±0.7 OUR AVERAGE2.7±0.6±0.5 33 1 ACCIARRI 97J L3 Eee m= 8894 GeV5.0±2.1+1.5

−0.9 6.4 2 ABREU 94P DLPH Eee m= 8894 GeV1ACCIARRI 97J measure this bran hing ratio via the de ay hannel χ 1 → J/ψ + γ,with J/ψ → ℓ+ ℓ− (ℓ = µ, e). The M(ℓ+ ℓ− γ)M(ℓ+ ℓ−) mass dieren e spe trumis tted with two gaussian shapes for χ 1 and χ 2.2This bran hing ratio is measured via the de ay hannel χ 1 → J/ψ + γ, with J/ψ →µ+µ−.(χ 2(1P)X)/total 27/(χ 2(1P)X)/total 27/(χ 2(1P)X)/total 27/(χ 2(1P)X)/total 27/VALUE CL% DOCUMENT ID TECN COMMENT

<3.2× 10−3<3.2× 10−3<3.2× 10−3<3.2× 10−3 90 1 ACCIARRI 97J L3 Eee m= 8894 GeV1ACCIARRI 97J derive this limit via the de ay hannel χ 2 → J/ψ + γ, with J/ψ →ℓ+ ℓ− (ℓ = µ, e). The M(ℓ+ ℓ− γ)M(ℓ+ ℓ−) mass dieren e spe trum is tted withtwo gaussian shapes for χ 1 and χ 2.((1S) X+(2S) X +(3S) X)/total 28/ = (29+30+31)/((1S) X+(2S) X +(3S) X)/total 28/ = (29+30+31)/((1S) X+(2S) X +(3S) X)/total 28/ = (29+30+31)/((1S) X+(2S) X +(3S) X)/total 28/ = (29+30+31)/VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.0±0.4±0.221.0±0.4±0.221.0±0.4±0.221.0±0.4±0.22 6.4 1 ALEXANDER 96F OPAL Eee m= 8894 GeV1ALEXANDER 96F identify the (whi h refers to any of the three lowest bound states)through its de ay into e+ e− and µ+µ−. The systemati error in ludes an un ertaintyof ±0.2 due to the produ tion me hanism.

((1S)X)/total 29/((1S)X)/total 29/((1S)X)/total 29/((1S)X)/total 29/VALUE CL% DOCUMENT ID TECN COMMENT<3.4× 10−6<3.4× 10−6<3.4× 10−6<3.4× 10−6 95 1 AAD 15I ATLS Epp m = 8 TeV• • • We do not use the following data for averages, ts, limits, et . • • •<4.4× 10−5 95 2 ACCIARRI 99F L3 Eee m= 8894 GeV1AAD 15I use events with the highest pT muon in the pair required to have pT > 20 GeV,the dimuon mass required to be in the range 812 GeV and it's transverse momentumrequired to be > 36 GeV. The photon is also required to have it's pT > 36 GeV.2ACCIARRI 99F sear h for (1S) through its de ay into ℓ+ ℓ− (ℓ = e or µ).((2S)X)/total 30/((2S)X)/total 30/((2S)X)/total 30/((2S)X)/total 30/VALUE CL% DOCUMENT ID TECN COMMENT< 6.5× 10−6< 6.5× 10−6< 6.5× 10−6< 6.5× 10−6 95 1 AAD 15I ATLS Epp m = 8 TeV• • • We do not use the following data for averages, ts, limits, et . • • •<13.9× 10−5 95 2 ACCIARRI 97R L3 Eee m= 8894 GeV1AAD 15I use events with the highest pT muon in the pair required to have pT > 20 GeV,the dimuon mass required to be in the range 812 GeV and it's transverse momentumrequired to be > 36 GeV. The photon is also required to have it's pT > 36 GeV.2ACCIARRI 97R sear h for (2S) through its de ay into ℓ+ ℓ− (ℓ = e or µ).((3S)X)/total 31/((3S)X)/total 31/((3S)X)/total 31/((3S)X)/total 31/VALUE CL% DOCUMENT ID TECN COMMENT<5.4× 10−6<5.4× 10−6<5.4× 10−6<5.4× 10−6 95 1 AAD 15I ATLS Epp m = 8 TeV• • • We do not use the following data for averages, ts, limits, et . • • •<9.4× 10−5 95 2 ACCIARRI 97R L3 Eee m= 8894 GeV1AAD 15I use events with the highest pT muon in the pair required to have pT > 20 GeV,the dimuon mass required to be in the range 812 GeV and it's transverse momentumrequired to be > 36 GeV. The photon is also required to have it's pT > 36 GeV.2ACCIARRI 97R sear h for (3S) through its de ay into ℓ+ ℓ− (ℓ = e or µ).((D0 /D0) X)/(hadrons) 32/7((D0 /D0) X)/(hadrons) 32/7((D0 /D0) X)/(hadrons) 32/7((D0 /D0) X)/(hadrons) 32/7VALUE EVTS DOCUMENT ID TECN COMMENT0.296±0.019±0.0210.296±0.019±0.0210.296±0.019±0.0210.296±0.019±0.021 369 1 ABREU 93I DLPH Eee m= 8894 GeV1The (D0 /D0) states in ABREU 93I are dete ted by the K π de ay mode. This is a orre ted result (see the erratum of ABREU 93I).(D±X)/(hadrons) 33/7(D±X)/(hadrons) 33/7(D±X)/(hadrons) 33/7(D±X)/(hadrons) 33/7VALUE EVTS DOCUMENT ID TECN COMMENT0.174±0.016±0.0180.174±0.016±0.0180.174±0.016±0.0180.174±0.016±0.018 539 1 ABREU 93I DLPH Eee m= 8894 GeV1The D± states in ABREU 93I are dete ted by the K ππ de ay mode. This is a orre tedresult (see the erratum of ABREU 93I).(D∗(2010)±X)/(hadrons) 34/7(D∗(2010)±X)/(hadrons) 34/7(D∗(2010)±X)/(hadrons) 34/7(D∗(2010)±X)/(hadrons) 34/7The value is for the sum of the harge states indi ated.VALUE EVTS DOCUMENT ID TECN COMMENT0.163±0.019 OUR AVERAGE0.163±0.019 OUR AVERAGE0.163±0.019 OUR AVERAGE0.163±0.019 OUR AVERAGE Error in ludes s ale fa tor of 1.3.0.155±0.010±0.013 358 1 ABREU 93I DLPH Eee m= 8894 GeV0.21 ±0.04 362 2 DECAMP 91J ALEP Eee m= 8894 GeV1D∗(2010)± in ABREU 93I are re onstru ted from D0π±, with D0 → K−π+. Thenew CLEO II measurement of B(D∗± → D0π±) = (68.1 ± 1.6) % is used. This is a orre ted result (see the erratum of ABREU 93I).2DECAMP 91J report B(D∗(2010)+ → D0π+) B(D0 → K−π+) (D∗(2010)±X)/ (hadrons) = (5.11 ± 0.34) × 10−3. They obtained the above number assumingB(D0 → K−π+) = (3.62±0.34±0.44)% and B(D∗(2010)+ → D0π+) = (55±4)%.We have res aled their original result of 0.26 ± 0.05 taking into a ount the new CLEOII bran hing ratio B(D∗(2010)+ → D0π+) = (68.1 ± 1.6)%.(Ds1(2536)±X)/(hadrons) 35/7(Ds1(2536)±X)/(hadrons) 35/7(Ds1(2536)±X)/(hadrons) 35/7(Ds1(2536)±X)/(hadrons) 35/7Ds1(2536)± is an expe ted orbitally-ex ited state of the Ds meson.VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.52±0.09±0.060.52±0.09±0.060.52±0.09±0.060.52±0.09±0.06 92 1 HEISTER 02B ALEP Eee m= 8894 GeV1HEISTER 02B re onstru t this meson in the de ay modes Ds1(2536)± → D∗±K0 andDs1(2536)± → D∗0K±. The quoted bran hing ratio assumes that the de ay width ofthe Ds1(2536) is saturated by the two measured de ay modes.(DsJ (2573)±X)/(hadrons) 36/7(DsJ (2573)±X)/(hadrons) 36/7(DsJ (2573)±X)/(hadrons) 36/7(DsJ (2573)±X)/(hadrons) 36/7DsJ (2573)± is an expe ted orbitally-ex ited state of the Ds meson.VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.83±0.29+0.07

−0.130.83±0.29+0.07−0.130.83±0.29+0.07−0.130.83±0.29+0.07−0.13 64 1 HEISTER 02B ALEP Eee m= 8894 GeV1HEISTER 02B re onstru t this meson in the de ay mode D∗s2(2573)± → D0K±. Thequoted bran hing ratio assumes that the dete ted de ay mode represents 45% of the fullde ay width.(D∗′(2629)±X)/(hadrons) 37/7(D∗′(2629)±X)/(hadrons) 37/7(D∗′(2629)±X)/(hadrons) 37/7(D∗′(2629)±X)/(hadrons) 37/7D∗′(2629)± is a predi ted radial ex itation of the D∗(2010)± meson.VALUE DOCUMENT ID TECN COMMENTsear hed forsear hed forsear hed forsear hed for 1 ABBIENDI 01N OPAL Eee m= 8894 GeV1ABBIENDI 01N sear hed for the de ay mode D∗′(2629)± → D∗±π+π− withD∗+ → D0π+, and D0 → K−π+. They quote a 95% CL limit for Z →D∗′(2629)±×B(D∗′(2629)+ → D∗+π+π−) < 3.1× 10−3.

Page 25: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

635635635635See key on page 601 Gauge&HiggsBosonParti leListingsZ(B∗X)/[(BX)+ (B∗X)] 39/(38+39)(B∗X)/[(BX)+ (B∗X)] 39/(38+39)(B∗X)/[(BX)+ (B∗X)] 39/(38+39)(B∗X)/[(BX)+ (B∗X)] 39/(38+39)As the experiments assume dierent values of the b-baryon ontribution, our averageshould be taken with aution.VALUE EVTS DOCUMENT ID TECN COMMENT0.75 ±0.04 OUR AVERAGE0.75 ±0.04 OUR AVERAGE0.75 ±0.04 OUR AVERAGE0.75 ±0.04 OUR AVERAGE0.760±0.036±0.083 1 ACKERSTAFF 97M OPAL Eee m= 8894 GeV0.771±0.026±0.070 2 BUSKULIC 96D ALEP Eee m= 8894 GeV0.72 ±0.03 ±0.06 3 ABREU 95R DLPH Eee m= 8894 GeV0.76 ±0.08 ±0.06 1378 4 ACCIARRI 95B L3 Eee m= 8894 GeV1ACKERSTAFF 97M use an in lusive B re onstru tion method and assume a (13.2 ±4.1)% b-baryon ontribution. The value refers to a b- avored meson mixture of Bu , Bd ,and Bs .2BUSKULIC 96D use an in lusive re onstru tion of B hadrons and assume a (12.2 ±4.3)% b-baryon ontribution. The value refers to a b- avored mixture of Bu , Bd , andBs .3ABREU 95R use an in lusive B-re onstru tion method and assume a (10± 4)% b-baryon ontribution. The value refers to a b- avored meson mixture of Bu , Bd , and Bs .4ACCIARRI 95B assume a 9.4% b-baryon ontribution. The value refers to a b- avoredmixture of Bu , Bd , and Bs .(B+X)/(hadrons) 40/7(B+X)/(hadrons) 40/7(B+X)/(hadrons) 40/7(B+X)/(hadrons) 40/7\OUR EVALUATION" is obtained using our urrent values for f(b → B+) and Rb= (bb)/(hadrons). We al ulate (B+ X)/(hadrons) = Rb × f(b → B+). Thede ay fra tion f(b → B+) was provided by the Heavy Flavor Averaging Group (HFAG,http://www.sla .stanford.edu/xorg/hfag/os /PDG 2009/#FRACZ).VALUE DOCUMENT ID TECN COMMENT0.0869±0.0019 OUR EVALUATION0.0869±0.0019 OUR EVALUATION0.0869±0.0019 OUR EVALUATION0.0869±0.0019 OUR EVALUATION0.0887±0.00300.0887±0.00300.0887±0.00300.0887±0.0030 1 ABDALLAH 03K DLPH Eee m = 8894 GeV1ABDALLAH 03K measure the produ tion fra tion of B+ mesons in hadroni Z de aysf(B+) = (40.99 ± 0.82 ± 1.11)%. The value quoted here is obtained multiplying thisprodu tion fra tion by our value of Rb = (b b)/(hadrons).(B0s X)/(hadrons) 41/7(B0s X)/(hadrons) 41/7(B0s X)/(hadrons) 41/7(B0s X)/(hadrons) 41/7\OUR EVALUATION" is obtained using our urrent values for f(b → B0s ) and Rb= (bb)/(hadrons). We al ulate (B0s )/(hadrons) = Rb × f(b → B0s ). Thede ay fra tion f(b → B0s ) was provided by the Heavy Flavor Averaging Group (HFAG,http://www.sla .stanford.edu/xorg/hfag/os /PDG 2009/#FRACZ).VALUE DOCUMENT ID TECN COMMENT0.0227±0.0019 OUR EVALUATION0.0227±0.0019 OUR EVALUATION0.0227±0.0019 OUR EVALUATION0.0227±0.0019 OUR EVALUATIONseen 1 ABREU 92M DLPH Eee m= 8894 GeVseen 2 ACTON 92N OPAL Eee m= 8894 GeVseen 3 BUSKULIC 92E ALEP Eee m= 8894 GeV1ABREU 92M reported value is (B0s X)∗B(B0s → Ds µνµX) ∗B(Ds → φπ)/(hadrons)= (18 ± 8) × 10−5.2ACTON 92N nd eviden e for B0s produ tion using Ds -ℓ orrelations, with D+s → φπ+and K∗(892)K+. Assuming Rb from the Standard Model and averaging over the e andµ hannels, authors measure the produ t bran hing fra tion to be f(b → B0s )×B(B0s →D−s ℓ+ νℓX)×B(D−s → φπ−) = (3.9 ± 1.1 ± 0.8)× 10−4.3BUSKULIC 92E nd eviden e for B0s produ tion using Ds -ℓ orrelations, with D+s →φπ+ and K∗(892)K+. Using B(D+s → φπ+) = (2.7 ± 0.7)% and summing up thee and µ hannels, the weighted average produ t bran hing fra tion is measured to beB(b → B0s )×B(B0s → D−s ℓ+ νℓX) = 0.040 ± 0.011+0.010

−0.012.(B+ X)/(hadrons) 42/7(B+ X)/(hadrons) 42/7(B+ X)/(hadrons) 42/7(B+ X)/(hadrons) 42/7VALUE DOCUMENT ID TECN COMMENTsear hed for 1 ACKERSTAFF 98O OPAL Eee m= 8894 GeVsear hed for 2 ABREU 97E DLPH Eee m= 8894 GeVsear hed for 3 BARATE 97H ALEP Eee m= 8894 GeV1ACKERSTAFF 98O sear hed for the de ay modes B → J/ψπ+, J/ψa+1 , andJ/ψℓ+ νℓ, with J/ψ → ℓ+ ℓ−, ℓ = e,µ. The number of andidates (ba kground) forthe three de ay modes is 2 (0.63± 0.2), 0 (1.10± 0.22), and 1 (0.82± 0.19) respe tively.Interpreting the 2B → J/ψπ+ andidates as signal, they report (B+ X)×B(B →J/ψπ+)/(hadrons) =(3.8+5.0−2.4± 0.5)×10−5. Interpreted as ba kground, the 90% CLbounds are (B+ X)∗B(B → J/ψπ+)/(hadrons) < 1.06×10−4, (B+ X)∗B(B →J/ψa+1 )/(hadrons) < 5.29 × 10−4, (B+ X)∗B(B → J/ψℓ+ νℓ)/(hadrons) <6.96 × 10−5.2ABREU 97E sear hed for the de ay modes B → J/ψπ+, J/ψℓ+ νℓ, and J/ψ (3π)+,with J/ψ → ℓ+ ℓ−, ℓ = e,µ. The number of andidates (ba kground) for the three de aymodes is 1 (1.7), 0 (0.3), and 1 (2.3) respe tively. They report the following 90% CL lim-its: (B+ X)∗B(B → J/ψπ+)/(hadrons) <(1.050.84)× 10−4, (B+ X)∗B(B →J/ψℓνℓ)/(hadrons) <(5.85.0) × 10−5, (B+ X)∗B(B → J/ψ (3π)+)/(hadrons)

< 1.75× 10−4, where the ranges are due to the predi ted B lifetime (0.41.4) ps.3BARATE 97H sear hed for the de ay modes B → J/ψπ+ and J/ψℓ+ νℓ withJ/ψ → ℓ+ ℓ−, ℓ = e,µ. The number of andidates (ba kground) for the two de- ay modes is 0 (0.44) and 2 (0.81) respe tively. They report the following 90% CLlimits: (B+ X)∗B(B → J/ψπ+)/(hadrons) < 3.6× 10−5 and (B+ X)∗B(B →J/ψℓ+ νℓ)/(hadrons) < 5.2× 10−5.

(+ X)/(hadrons) 43/7(+ X)/(hadrons) 43/7(+ X)/(hadrons) 43/7(+ X)/(hadrons) 43/7VALUE DOCUMENT ID TECN COMMENT0.022±0.005 OUR AVERAGE0.022±0.005 OUR AVERAGE0.022±0.005 OUR AVERAGE0.022±0.005 OUR AVERAGE0.024±0.005±0.006 1 ALEXANDER 96R OPAL Eee m = 8894 GeV0.021±0.003±0.005 2 BUSKULIC 96Y ALEP Eee m = 8894 GeV1ALEXANDER 96R measure Rb × f(b → + X ) × B(+ → pK−π+) = (0.122 ±0.023 ± 0.010)% in hadroni Z de ays; the value quoted here is obtained using our bestvalue B(+ → pK−π+) = (5.0± 1.3)%. The rst error is the total experiment's errorand the se ond error is the systemati error due to the bran hing fra tion un ertainty.2BUSKULIC 96Y obtain the produ tion fra tion of + baryons in hadroni Z de aysf(b → + X ) = 0.110 ± 0.014 ± 0.006 using B(+ → pK−π+) = (4.4 ± 0.6)%; wehave res aled using our best value B(+ → pK−π+) = (5.0± 1.3)% obtaining f(b →+ X ) = 0.097 ± 0.013 ± 0.025 where the rst error is their total experiment's errorand the se ond error is the systemati error due to the bran hing fra tion un ertainty.The value quoted here is obtained multiplying this produ tion fra tion by our value ofRb = (bb)/(hadrons).( 0 X)/(hadrons) 44/7( 0 X)/(hadrons) 44/7( 0 X)/(hadrons) 44/7( 0 X)/(hadrons) 44/7VALUE DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •seen 1 ABDALLAH 05C DLPH Eee m = 8894 GeV1ABDALLAH 05C sear hed for the harmed strange baryon 0 in the de ay hannel0 → −π+ (− → π−). The produ tion rate is measured to be f0 × B(0 →−π+) = (4.7 ± 1.4 ± 1.1)× 10−4 per hadroni Z de ay.(bX)/(hadrons) 45/7(bX)/(hadrons) 45/7(bX)/(hadrons) 45/7(bX)/(hadrons) 45/7Here b is used as a notation for the strange b-baryon states −b and 0b .VALUE DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •seen 1 ABDALLAH 05C DLPH Eee m = 8894 GeVseen 2 BUSKULIC 96T ALEP Eee m = 8894 GeVseen 3 ABREU 95V DLPH Eee m = 8894 GeV1ABDALLAH 05C sear hed for the beauty strange baryon b in the in lusive semileptoni de ay hannel b → − ℓ− νℓX . Eviden e for the b produ tion is seen from theobservation of ∓ produ tion a ompanied by a lepton of the same sign. From the ex essof \right-sign" pairs ∓ ℓ∓ ompared to \wrong-sign" pairs ∓ ℓ± the produ tion rateis measured to be B(b → b) × B(b → − ℓ−X ) = (3.0 ± 1.0 ± 0.3)× 10−4 perlepton spe ies, averaged over ele trons and muons.2BUSKULIC 96T investigate -lepton orrelations and nd a signi ant ex ess of \rightsign" pairs ∓ ℓ∓ ompared to \wrongsign" pairs ∓ ℓ±. This ex ess is interpretedas eviden e for b semileptoni de ay. The measured produ t bran hing ratio is B(b →b) × B(b → X X ℓ− νℓ) × B(X → −X ′) = (5.4 ± 1.1 ± 0.8) × 10−4 perlepton spe ies, averaged over ele trons and muons, with X a harmed baryon.3ABREU 95V observe an ex ess of \right-sign" pairs ∓ ℓ∓ ompared to \wrong-sign"pairs ∓ ℓ± in jets: this ex ess is interpreted as eviden e for the beauty strange baryonb produ tion, with b → − ℓ− νℓX . They nd that the probability for this signal to ome from non b-baryon de ays is less than 5× 10−4 and that b de ays an a ountfor less than 10% of these events. The b produ tion rate is then measured to be B(b →b) × B(b → − ℓ−X ) = (5.9 ± 2.1 ± 1.0) × 10−4 per lepton spe ies, averagedover ele trons and muons.(b -baryon X)/(hadrons) 46/7(b -baryon X)/(hadrons) 46/7(b -baryon X)/(hadrons) 46/7(b -baryon X)/(hadrons) 46/7\OUR EVALUATION" is obtained using our urrent values for f(b → b-baryon) andRb = (bb)/(hadrons). We al ulate (b-baryon X)/(hadrons) = Rb × f(b →b-baryon). The de ay fra tion f(b → b-baryon) was provided by the Heavy FlavorAveraging Group (HFAG, http://www.sla .stanford.edu/xorg/hfag/os /PDG 2009).VALUE DOCUMENT ID TECN COMMENT0.0197±0.0032 OUR EVALUATION0.0197±0.0032 OUR EVALUATION0.0197±0.0032 OUR EVALUATION0.0197±0.0032 OUR EVALUATION0.0221±0.0015±0.00580.0221±0.0015±0.00580.0221±0.0015±0.00580.0221±0.0015±0.0058 1 BARATE 98V ALEP Eee m= 8894 GeV1BARATE 98V use the overall number of identied protons in b-hadron de ays to measuref(b → b-baryon) = 0.102 ± 0.007 ± 0.027. They assume BR(b-baryon→ pX ) =(58 ± 6)% and BR(B0s → pX ) = (8.0 ± 4.0)%. The value quoted here is obtainedmultiplying this produ tion fra tion by our value of Rb = (bb)/(hadrons).(anomalous γ+hadrons)/total 47/(anomalous γ+hadrons)/total 47/(anomalous γ+hadrons)/total 47/(anomalous γ+hadrons)/total 47/Limits on additional sour es of prompt photons beyond expe tations for nal-statebremsstrahlung.VALUE CL% DOCUMENT ID TECN COMMENT<3.2× 10−3<3.2× 10−3<3.2× 10−3<3.2× 10−3 95 1 AKRAWY 90J OPAL Eee m= 8894 GeV1AKRAWY 90J report (γX) < 8.2 MeV at 95%CL. They assume a three-body γ qqdistribution and use E(γ) > 10 GeV.(e+ e−γ

)/total 48/(e+ e−γ)/total 48/(e+ e−γ)/total 48/(e+ e−γ)/total 48/VALUE CL% DOCUMENT ID TECN COMMENT

<5.2× 10−4<5.2× 10−4<5.2× 10−4<5.2× 10−4 95 1 ACTON 91B OPAL Eee m= 91.2 GeV1ACTON 91B looked for isolated photons with E>2% of beam energy (> 0.9 GeV).(µ+µ− γ)/total 49/(µ+µ− γ)/total 49/(µ+µ− γ)/total 49/(µ+µ− γ)/total 49/VALUE CL% DOCUMENT ID TECN COMMENT

<5.6× 10−4<5.6× 10−4<5.6× 10−4<5.6× 10−4 95 1 ACTON 91B OPAL Eee m= 91.2 GeV1ACTON 91B looked for isolated photons with E>2% of beam energy (> 0.9 GeV).

Page 26: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

636636636636Gauge&HiggsBosonParti leListingsZ(τ+ τ− γ)/total 50/(τ+ τ− γ)/total 50/(τ+ τ− γ)/total 50/(τ+ τ− γ)/total 50/VALUE CL% DOCUMENT ID TECN COMMENT

<7.3× 10−4<7.3× 10−4<7.3× 10−4<7.3× 10−4 95 1 ACTON 91B OPAL Eee m= 91.2 GeV1ACTON 91B looked for isolated photons with E>2% of beam energy (> 0.9 GeV).(ℓ+ ℓ−γ γ)/total 51/(ℓ+ ℓ−γ γ)/total 51/(ℓ+ ℓ−γ γ)/total 51/(ℓ+ ℓ−γ γ)/total 51/The value is the sum over ℓ = e, µ, τ .VALUE CL% DOCUMENT ID TECN COMMENT

<6.8× 10−6<6.8× 10−6<6.8× 10−6<6.8× 10−6 95 1 ACTON 93E OPAL Eee m= 8894 GeV1For mγ γ = 60 ± 5 GeV.(qq γ γ)/total 52/(qq γ γ)/total 52/(qq γ γ)/total 52/(qq γ γ)/total 52/VALUE CL% DOCUMENT ID TECN COMMENT

<5.5× 10−6<5.5× 10−6<5.5× 10−6<5.5× 10−6 95 1 ACTON 93E OPAL Eee m= 8894 GeV1For mγ γ = 60 ± 5 GeV.(ν ν γ γ)/total 53/(ν ν γ γ)/total 53/(ν ν γ γ)/total 53/(ν ν γ γ)/total 53/VALUE CL% DOCUMENT ID TECN COMMENT

<3.1× 10−6<3.1× 10−6<3.1× 10−6<3.1× 10−6 95 1 ACTON 93E OPAL Eee m= 8894 GeV1For mγ γ = 60 ± 5 GeV.(e±µ∓)/total 54/(e±µ∓)/total 54/(e±µ∓)/total 54/(e±µ∓)/total 54/Test of lepton family number onservation. The value is for the sum of the hargestates indi ated.VALUE CL% DOCUMENT ID TECN COMMENT<7.5× 10−7<7.5× 10−7<7.5× 10−7<7.5× 10−7 95 AAD 14AU ATLS Epp m = 8 TeV<2.5× 10−6 95 ABREU 97C DLPH Eee m= 8894 GeV<1.7× 10−6 95 AKERS 95W OPAL Eee m= 8894 GeV<0.6× 10−5 95 ADRIANI 93I L3 Eee m= 8894 GeV<2.6× 10−5 95 DECAMP 92 ALEP Eee m= 8894 GeV(e±µ∓)/(e+ e−) 54/1(e±µ∓)/(e+ e−) 54/1(e±µ∓)/(e+ e−) 54/1(e±µ∓)/(e+ e−) 54/1Test of lepton family number onservation. The value is for the sum of the hargestates indi ated.VALUE CL% DOCUMENT ID TECN COMMENT<0.07<0.07<0.07<0.07 90 ALBAJAR 89 UA1 Epp m= 546,630 GeV(e± τ∓

)/total 55/(e± τ∓)/total 55/(e± τ∓)/total 55/(e± τ∓)/total 55/Test of lepton family number onservation. The value is for the sum of the hargestates indi ated.VALUE CL% DOCUMENT ID TECN COMMENT

<2.2× 10−5 95 ABREU 97C DLPH Eee m= 8894 GeV<9.8× 10−6<9.8× 10−6<9.8× 10−6<9.8× 10−6 95 AKERS 95W OPAL Eee m= 8894 GeV<1.3× 10−5 95 ADRIANI 93I L3 Eee m= 8894 GeV<1.2× 10−4 95 DECAMP 92 ALEP Eee m= 8894 GeV(µ± τ∓

)/total 56/(µ± τ∓)/total 56/(µ± τ∓)/total 56/(µ± τ∓)/total 56/Test of lepton family number onservation. The value is for the sum of the hargestates indi ated.VALUE CL% DOCUMENT ID TECN COMMENT

<1.2× 10−5<1.2× 10−5<1.2× 10−5<1.2× 10−5 95 ABREU 97C DLPH Eee m= 8894 GeV<1.7× 10−5 95 AKERS 95W OPAL Eee m= 8894 GeV<1.9× 10−5 95 ADRIANI 93I L3 Eee m= 8894 GeV<1.0× 10−4 95 DECAMP 92 ALEP Eee m= 8894 GeV(pe)/total 57/(pe)/total 57/(pe)/total 57/(pe)/total 57/Test of baryon number and lepton number onservations. Charge onjugate states areimplied.VALUE CL% DOCUMENT ID TECN COMMENT<1.8× 10−6<1.8× 10−6<1.8× 10−6<1.8× 10−6 95 1 ABBIENDI 99I OPAL Eee m= 8894 GeV1ABBIENDI 99I give the 95%CL limit on the partial width (Z0 → pe)< 4.6 KeV andwe have transformed it into a bran hing ratio.(pµ

)/total 58/(pµ)/total 58/(pµ)/total 58/(pµ)/total 58/Test of baryon number and lepton number onservations. Charge onjugate states areimplied.VALUE CL% DOCUMENT ID TECN COMMENT

<1.8× 10−6<1.8× 10−6<1.8× 10−6<1.8× 10−6 95 1 ABBIENDI 99I OPAL Eee m= 8894 GeV1ABBIENDI 99I give the 95%CL limit on the partial width (Z0 → pµ)< 4.4 KeV andwe have transformed it into a bran hing ratio.AVERAGE PARTICLE MULTIPLICITIES IN HADRONIC Z DECAYAVERAGE PARTICLE MULTIPLICITIES IN HADRONIC Z DECAYAVERAGE PARTICLE MULTIPLICITIES IN HADRONIC Z DECAYAVERAGE PARTICLE MULTIPLICITIES IN HADRONIC Z DECAYSummed over parti le and antiparti le, when appropriate.⟨Nγ

⟩⟨Nγ

⟩⟨Nγ

⟩⟨Nγ

⟩VALUE DOCUMENT ID TECN COMMENT20.97±0.02±1.1520.97±0.02±1.1520.97±0.02±1.1520.97±0.02±1.15 ACKERSTAFF 98A OPAL Eee m= 91.2 GeV

⟨Nπ±⟩⟨Nπ±⟩⟨Nπ±⟩⟨Nπ±⟩VALUE DOCUMENT ID TECN COMMENT17.03 ±0.16 OUR AVERAGE17.03 ±0.16 OUR AVERAGE17.03 ±0.16 OUR AVERAGE17.03 ±0.16 OUR AVERAGE17.007±0.209 ABE 04C SLD Eee m= 91.2 GeV17.26 ±0.10 ±0.88 ABREU 98L DLPH Eee m= 91.2 GeV17.04 ±0.31 BARATE 98V ALEP Eee m= 91.2 GeV17.05 ±0.43 AKERS 94P OPAL Eee m= 91.2 GeV

⟨Nπ0⟩⟨Nπ0⟩⟨Nπ0⟩⟨Nπ0⟩VALUE DOCUMENT ID TECN COMMENT9.76±0.26 OUR AVERAGE9.76±0.26 OUR AVERAGE9.76±0.26 OUR AVERAGE9.76±0.26 OUR AVERAGE9.55±0.06±0.75 ACKERSTAFF 98A OPAL Eee m= 91.2 GeV9.63±0.13±0.63 BARATE 97J ALEP Eee m= 91.2 GeV9.90±0.02±0.33 ACCIARRI 96 L3 Eee m= 91.2 GeV9.2 ±0.2 ±1.0 ADAM 96 DLPH Eee m= 91.2 GeV⟨Nη

⟩⟨Nη

⟩⟨Nη

⟩⟨Nη

⟩VALUE DOCUMENT ID TECN COMMENT1.01±0.08 OUR AVERAGE1.01±0.08 OUR AVERAGE1.01±0.08 OUR AVERAGE1.01±0.08 OUR AVERAGE Error in ludes s ale fa tor of 1.3. See the ideogram below.1.20±0.04±0.11 HEISTER 02C ALEP Eee m= 91.2 GeV0.97±0.03±0.11 ACKERSTAFF 98A OPAL Eee m= 91.2 GeV0.93±0.01±0.09 ACCIARRI 96 L3 Eee m= 91.2 GeVWEIGHTED AVERAGE1.01±0.08 (Error scaled by 1.3)

ACCIARRI 96 L3 0.9ACKERSTAFF 98A OPAL 0.2HEISTER 02C ALEP 2.5

χ2

3.5(Confidence Level = 0.171)

0.6 0.8 1 1.2 1.4 1.6 1.8⟨Nη

⟨Nρ±⟩⟨Nρ±⟩⟨Nρ±⟩⟨Nρ±⟩VALUE DOCUMENT ID TECN COMMENT2.57±0.15 OUR AVERAGE2.57±0.15 OUR AVERAGE2.57±0.15 OUR AVERAGE2.57±0.15 OUR AVERAGE2.59±0.03±0.16 1 BEDDALL 09 ALEPH ar hive, Eee m= 91.2 GeV2.40±0.06±0.43 ACKERSTAFF 98A OPAL Eee m= 91.2 GeV1BEDDALL 09 analyse 3.2 million hadroni Z de ays as ar hived by ALEPH ollaborationand report a value of 2.59 ± 0.03 ± 0.15 ± 0.04. The rst error is statisti al, the se ondsystemati , and the third arises from extrapolation to full phase spa e. We ombine thesystemati errors in quadrature.

⟨Nρ0⟩⟨Nρ0⟩⟨Nρ0⟩⟨Nρ0⟩VALUE DOCUMENT ID TECN COMMENT1.24±0.10 OUR AVERAGE1.24±0.10 OUR AVERAGE1.24±0.10 OUR AVERAGE1.24±0.10 OUR AVERAGE Error in ludes s ale fa tor of 1.1.1.19±0.10 ABREU 99J DLPH Eee m= 91.2 GeV1.45±0.06±0.20 BUSKULIC 96H ALEP Eee m= 91.2 GeV⟨Nω

⟩⟨Nω

⟩⟨Nω

⟩⟨Nω

⟩VALUE DOCUMENT ID TECN COMMENT1.02±0.06 OUR AVERAGE1.02±0.06 OUR AVERAGE1.02±0.06 OUR AVERAGE1.02±0.06 OUR AVERAGE1.00±0.03±0.06 HEISTER 02C ALEP Eee m= 91.2 GeV1.04±0.04±0.14 ACKERSTAFF 98A OPAL Eee m= 91.2 GeV1.17±0.09±0.15 ACCIARRI 97D L3 Eee m= 91.2 GeV⟨Nη′

⟩⟨Nη′⟩⟨Nη′⟩⟨Nη′⟩VALUE DOCUMENT ID TECN COMMENT0.17 ±0.05 OUR AVERAGE0.17 ±0.05 OUR AVERAGE0.17 ±0.05 OUR AVERAGE0.17 ±0.05 OUR AVERAGE Error in ludes s ale fa tor of 2.4.0.14 ±0.01 ±0.02 ACKERSTAFF 98A OPAL Eee m= 91.2 GeV0.25 ±0.04 1 ACCIARRI 97D L3 Eee m= 91.2 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •0.068±0.018±0.016 2 BUSKULIC 92D ALEP Eee m= 91.2 GeV1ACCIARRI 97D obtain this value averaging over the two de ay hannels η′ → π+π− ηand η′ → ρ0 γ.2BUSKULIC 92D obtain this value for x> 0.1.

Page 27: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

637637637637See key on page 601 Gauge&HiggsBosonParti leListingsZ⟨Nf0(980)⟩⟨Nf0(980)⟩⟨Nf0(980)⟩⟨Nf0(980)⟩VALUE DOCUMENT ID TECN COMMENT0.147±0.011 OUR AVERAGE0.147±0.011 OUR AVERAGE0.147±0.011 OUR AVERAGE0.147±0.011 OUR AVERAGE0.164±0.021 ABREU 99J DLPH Eee m= 91.2 GeV0.141±0.007±0.011 ACKERSTAFF 98Q OPAL Eee m= 91.2 GeV⟨Na0(980)±⟩⟨Na0(980)±⟩⟨Na0(980)±⟩⟨Na0(980)±⟩VALUE DOCUMENT ID TECN COMMENT0.27±0.04±0.100.27±0.04±0.100.27±0.04±0.100.27±0.04±0.10 ACKERSTAFF 98A OPAL Eee m= 91.2 GeV⟨Nφ

⟩⟨Nφ

⟩⟨Nφ

⟩⟨Nφ

⟩VALUE DOCUMENT ID TECN COMMENT0.098±0.006 OUR AVERAGE0.098±0.006 OUR AVERAGE0.098±0.006 OUR AVERAGE0.098±0.006 OUR AVERAGE Error in ludes s ale fa tor of 2.0. See the ideogram below.0.105±0.008 ABE 99E SLD Eee m= 91.2 GeV0.091±0.002±0.003 ACKERSTAFF 98Q OPAL Eee m= 91.2 GeV0.104±0.003±0.007 ABREU 96U DLPH Eee m= 91.2 GeV0.122±0.004±0.008 BUSKULIC 96H ALEP Eee m= 91.2 GeVWEIGHTED AVERAGE0.098±0.006 (Error scaled by 2.0)

BUSKULIC 96H ALEP 7.3ABREU 96U DLPH 0.7ACKERSTAFF 98Q OPAL 3.5ABE 99E SLD 0.8

χ2

12.4(Confidence Level = 0.0063)

0.08 0.1 0.12 0.14 0.16 0.18⟨Nφ

⟨Nf2(1270)⟩⟨Nf2(1270)⟩⟨Nf2(1270)⟩⟨Nf2(1270)⟩VALUE DOCUMENT ID TECN COMMENT0.169±0.025 OUR AVERAGE0.169±0.025 OUR AVERAGE0.169±0.025 OUR AVERAGE0.169±0.025 OUR AVERAGE Error in ludes s ale fa tor of 1.4.0.214±0.038 ABREU 99J DLPH Eee m= 91.2 GeV0.155±0.011±0.018 ACKERSTAFF 98Q OPAL Eee m= 91.2 GeV⟨Nf1(1285)⟩⟨Nf1(1285)⟩⟨Nf1(1285)⟩⟨Nf1(1285)⟩VALUE DOCUMENT ID TECN COMMENT0.165±0.0510.165±0.0510.165±0.0510.165±0.051 1 ABDALLAH 03H DLPH Eee m= 91.2 GeV1ABDALLAH 03H assume a K K π bran hing ratio of (9.0 ± 0.4)%.⟨Nf1(1420)⟩⟨Nf1(1420)⟩⟨Nf1(1420)⟩⟨Nf1(1420)⟩VALUE DOCUMENT ID TECN COMMENT0.056±0.0120.056±0.0120.056±0.0120.056±0.012 1 ABDALLAH 03H DLPH Eee m= 91.2 GeV1ABDALLAH 03H assume a K K π bran hing ratio of 100%.⟨Nf ′2(1525)⟩⟨Nf ′2(1525)⟩⟨Nf ′2(1525)⟩⟨Nf ′2(1525)⟩VALUE DOCUMENT ID TECN COMMENT0.012±0.0060.012±0.0060.012±0.0060.012±0.006 ABREU 99J DLPH Eee m= 91.2 GeV⟨NK±

⟩⟨NK±⟩⟨NK±⟩⟨NK±⟩VALUE DOCUMENT ID TECN COMMENT2.24 ±0.04 OUR AVERAGE2.24 ±0.04 OUR AVERAGE2.24 ±0.04 OUR AVERAGE2.24 ±0.04 OUR AVERAGE2.203±0.071 ABE 04C SLD Eee m= 91.2 GeV2.21 ±0.05 ±0.05 ABREU 98L DLPH Eee m= 91.2 GeV2.26 ±0.12 BARATE 98V ALEP Eee m= 91.2 GeV2.42 ±0.13 AKERS 94P OPAL Eee m= 91.2 GeV

⟨NK0⟩⟨NK0⟩⟨NK0⟩⟨NK0⟩VALUE DOCUMENT ID TECN COMMENT2.039±0.025 OUR AVERAGE2.039±0.025 OUR AVERAGE2.039±0.025 OUR AVERAGE2.039±0.025 OUR AVERAGE Error in ludes s ale fa tor of 1.3. See the ideogram below.2.093±0.004±0.029 BARATE 00O ALEP Eee m= 91.2 GeV2.01 ±0.08 ABE 99E SLD Eee m= 91.2 GeV2.024±0.006±0.042 ACCIARRI 97L L3 Eee m= 91.2 GeV1.962±0.022±0.056 ABREU 95L DLPH Eee m= 91.2 GeV1.99 ±0.01 ±0.04 AKERS 95U OPAL Eee m= 91.2 GeV

WEIGHTED AVERAGE2.039±0.025 (Error scaled by 1.3)

AKERS 95U OPAL 1.4ABREU 95L DLPH 1.6ACCIARRI 97L L3 0.1ABE 99E SLD 0.1BARATE 00O ALEP 3.4

χ2

6.7(Confidence Level = 0.152)

1.8 1.9 2 2.1 2.2 2.3⟨NK0⟩

⟨NK∗(892)±⟩⟨NK∗(892)±⟩⟨NK∗(892)±⟩⟨NK∗(892)±⟩VALUE DOCUMENT ID TECN COMMENT0.72 ±0.05 OUR AVERAGE0.72 ±0.05 OUR AVERAGE0.72 ±0.05 OUR AVERAGE0.72 ±0.05 OUR AVERAGE0.712±0.031±0.059 ABREU 95L DLPH Eee m= 91.2 GeV0.72 ±0.02 ±0.08 ACTON 93 OPAL Eee m= 91.2 GeV⟨NK∗(892)0⟩⟨NK∗(892)0⟩⟨NK∗(892)0⟩⟨NK∗(892)0⟩VALUE DOCUMENT ID TECN COMMENT0.739±0.022 OUR AVERAGE0.739±0.022 OUR AVERAGE0.739±0.022 OUR AVERAGE0.739±0.022 OUR AVERAGE0.707±0.041 ABE 99E SLD Eee m= 91.2 GeV0.74 ±0.02 ±0.02 ACKERSTAFF 97S OPAL Eee m= 91.2 GeV0.77 ±0.02 ±0.07 ABREU 96U DLPH Eee m= 91.2 GeV0.83 ±0.01 ±0.09 BUSKULIC 96H ALEP Eee m= 91.2 GeV0.97 ±0.18 ±0.31 ABREU 93 DLPH Eee m= 91.2 GeV⟨NK∗2(1430)⟩⟨NK∗2(1430)⟩⟨NK∗2(1430)⟩⟨NK∗2(1430)⟩VALUE DOCUMENT ID TECN COMMENT0.073±0.0230.073±0.0230.073±0.0230.073±0.023 ABREU 99J DLPH Eee m= 91.2 GeV• • • We do not use the following data for averages, ts, limits, et . • • •0.19 ±0.04 ±0.06 1 AKERS 95X OPAL Eee m= 91.2 GeV1AKERS 95X obtain this value for x< 0.3.⟨ND±

⟩⟨ND±⟩⟨ND±⟩⟨ND±⟩VALUE DOCUMENT ID TECN COMMENT0.187±0.020 OUR AVERAGE0.187±0.020 OUR AVERAGE0.187±0.020 OUR AVERAGE0.187±0.020 OUR AVERAGE Error in ludes s ale fa tor of 1.5. See the ideogram below.0.170±0.009±0.014 ALEXANDER 96R OPAL Eee m= 91.2 GeV0.251±0.026±0.025 BUSKULIC 94J ALEP Eee m= 91.2 GeV0.199±0.019±0.024 1 ABREU 93I DLPH Eee m= 91.2 GeV1See ABREU 95 (erratum).

WEIGHTED AVERAGE0.187±0.020 (Error scaled by 1.5)

ABREU 93I DLPH 0.2BUSKULIC 94J ALEP 3.1ALEXANDER 96R OPAL 1.1

χ2

4.3(Confidence Level = 0.114)

0.1 0.15 0.2 0.25 0.3 0.35 0.4⟨ND±

Page 28: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

638638638638Gauge&HiggsBosonParti leListingsZ⟨ND0⟩⟨ND0⟩⟨ND0⟩⟨ND0⟩VALUE DOCUMENT ID TECN COMMENT0.462±0.026 OUR AVERAGE0.462±0.026 OUR AVERAGE0.462±0.026 OUR AVERAGE0.462±0.026 OUR AVERAGE0.465±0.017±0.027 ALEXANDER 96R OPAL Eee m= 91.2 GeV0.518±0.052±0.035 BUSKULIC 94J ALEP Eee m= 91.2 GeV0.403±0.038±0.044 1 ABREU 93I DLPH Eee m= 91.2 GeV1See ABREU 95 (erratum).⟨ND±s ⟩⟨ND±s ⟩⟨ND±s ⟩⟨ND±s ⟩VALUE DOCUMENT ID TECN COMMENT0.131±0.010±0.0180.131±0.010±0.0180.131±0.010±0.0180.131±0.010±0.018 ALEXANDER 96R OPAL Eee m= 91.2 GeV⟨ND∗(2010)±⟩⟨ND∗(2010)±⟩⟨ND∗(2010)±⟩⟨ND∗(2010)±⟩VALUE DOCUMENT ID TECN COMMENT0.183 ±0.008 OUR AVERAGE0.183 ±0.008 OUR AVERAGE0.183 ±0.008 OUR AVERAGE0.183 ±0.008 OUR AVERAGE0.1854±0.0041±0.0091 1 ACKERSTAFF 98E OPAL Eee m= 91.2 GeV0.187 ±0.015 ±0.013 BUSKULIC 94J ALEP Eee m= 91.2 GeV0.171 ±0.012 ±0.016 2 ABREU 93I DLPH Eee m= 91.2 GeV1ACKERSTAFF 98E systemati error in ludes an un ertainty of ±0.0069 due to thebran hing ratios B(D∗+ → D0π+) = 0.683±0.014 and B(D0 → K−π+) = 0.0383±0.0012.2 See ABREU 95 (erratum).⟨NDs1(2536)+⟩⟨NDs1(2536)+⟩⟨NDs1(2536)+⟩⟨NDs1(2536)+⟩VALUE (units 10−3) DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •2.9+0.7

−0.6±0.2 1 ACKERSTAFF 97W OPAL Eee m= 91.2 GeV1ACKERSTAFF 97W obtain this value for x> 0.6 and with the assumption that its de aywidth is saturated by the D∗K nal states.⟨NB∗

⟩⟨NB∗⟩⟨NB∗⟩⟨NB∗⟩VALUE DOCUMENT ID TECN COMMENT0.28±0.01±0.030.28±0.01±0.030.28±0.01±0.030.28±0.01±0.03 1 ABREU 95R DLPH Eee m= 91.2 GeV1ABREU 95R quote this value for a avor-averaged ex ited state.

⟨NJ/ψ(1S)⟩⟨NJ/ψ(1S)⟩⟨NJ/ψ(1S)⟩⟨NJ/ψ(1S)⟩VALUE DOCUMENT ID TECN COMMENT0.0056±0.0003±0.00040.0056±0.0003±0.00040.0056±0.0003±0.00040.0056±0.0003±0.0004 1 ALEXANDER 96B OPAL Eee m= 91.2 GeV1ALEXANDER 96B identify J/ψ(1S) from the de ays into lepton pairs.⟨Nψ(2S)⟩⟨Nψ(2S)⟩⟨Nψ(2S)⟩⟨Nψ(2S)⟩VALUE DOCUMENT ID TECN COMMENT0.0023±0.0004±0.00030.0023±0.0004±0.00030.0023±0.0004±0.00030.0023±0.0004±0.0003 ALEXANDER 96B OPAL Eee m= 91.2 GeV⟨Np⟩⟨Np⟩⟨Np⟩⟨Np⟩VALUE DOCUMENT ID TECN COMMENT1.046±0.026 OUR AVERAGE1.046±0.026 OUR AVERAGE1.046±0.026 OUR AVERAGE1.046±0.026 OUR AVERAGE1.054±0.035 ABE 04C SLD Eee m= 91.2 GeV1.08 ±0.04 ±0.03 ABREU 98L DLPH Eee m= 91.2 GeV1.00 ±0.07 BARATE 98V ALEP Eee m= 91.2 GeV0.92 ±0.11 AKERS 94P OPAL Eee m= 91.2 GeV⟨N(1232)++⟩⟨N(1232)++⟩⟨N(1232)++⟩⟨N(1232)++⟩VALUE DOCUMENT ID TECN COMMENT0.087±0.033 OUR AVERAGE0.087±0.033 OUR AVERAGE0.087±0.033 OUR AVERAGE0.087±0.033 OUR AVERAGE Error in ludes s ale fa tor of 2.4.0.079±0.009±0.011 ABREU 95W DLPH Eee m= 91.2 GeV0.22 ±0.04 ±0.04 ALEXANDER 95D OPAL Eee m= 91.2 GeV⟨N⟩⟨N⟩⟨N⟩⟨N⟩VALUE DOCUMENT ID TECN COMMENT0.388±0.009 OUR AVERAGE0.388±0.009 OUR AVERAGE0.388±0.009 OUR AVERAGE0.388±0.009 OUR AVERAGE Error in ludes s ale fa tor of 1.7. See the ideogram below.0.404±0.002±0.007 BARATE 00O ALEP Eee m= 91.2 GeV0.395±0.022 ABE 99E SLD Eee m= 91.2 GeV0.364±0.004±0.017 ACCIARRI 97L L3 Eee m= 91.2 GeV0.374±0.002±0.010 ALEXANDER 97D OPAL Eee m= 91.2 GeV0.357±0.003±0.017 ABREU 93L DLPH Eee m= 91.2 GeV

WEIGHTED AVERAGE0.388±0.009 (Error scaled by 1.7)

ABREU 93L DLPH 3.2ALEXANDER 97D OPAL 1.9ACCIARRI 97L L3 1.9ABE 99E SLD 0.1BARATE 00O ALEP 4.8

χ2

11.9(Confidence Level = 0.018)

0.3 0.35 0.4 0.45 0.5⟨N⟩

⟨N(1520)⟩⟨N(1520)⟩⟨N(1520)⟩⟨N(1520)⟩VALUE DOCUMENT ID TECN COMMENT0.0224±0.0027 OUR AVERAGE0.0224±0.0027 OUR AVERAGE0.0224±0.0027 OUR AVERAGE0.0224±0.0027 OUR AVERAGE0.029 ±0.005 ±0.005 ABREU 00P DLPH Eee m= 91.2 GeV0.0213±0.0021±0.0019 ALEXANDER 97D OPAL Eee m= 91.2 GeV⟨N+⟩⟨N+⟩⟨N+⟩⟨N+⟩VALUE DOCUMENT ID TECN COMMENT0.107±0.010 OUR AVERAGE0.107±0.010 OUR AVERAGE0.107±0.010 OUR AVERAGE0.107±0.010 OUR AVERAGE0.114±0.011±0.009 ACCIARRI 00J L3 Eee m= 91.2 GeV0.099±0.008±0.013 ALEXANDER 97E OPAL Eee m= 91.2 GeV⟨N−

⟩⟨N−⟩⟨N−⟩⟨N−⟩VALUE DOCUMENT ID TECN COMMENT0.082±0.007 OUR AVERAGE0.082±0.007 OUR AVERAGE0.082±0.007 OUR AVERAGE0.082±0.007 OUR AVERAGE0.081±0.002±0.010 ABREU 00P DLPH Eee m= 91.2 GeV0.083±0.006±0.009 ALEXANDER 97E OPAL Eee m= 91.2 GeV

⟨N++−⟩⟨N++−⟩⟨N++−⟩⟨N++−⟩VALUE DOCUMENT ID TECN COMMENT0.181±0.018 OUR AVERAGE0.181±0.018 OUR AVERAGE0.181±0.018 OUR AVERAGE0.181±0.018 OUR AVERAGE0.182±0.010±0.016 1 ALEXANDER 97E OPAL Eee m= 91.2 GeV0.170±0.014±0.061 ABREU 95O DLPH Eee m= 91.2 GeV1We have ombined the values of ⟨N+⟩ and ⟨N−

⟩ from ALEXANDER 97E addingthe statisti al and systemati errors of the two nal states separately in quadrature. Ifisospin symmetry is assumed this value be omes 0.174 ± 0.010 ± 0.015.⟨N0⟩⟨N0⟩⟨N0⟩⟨N0⟩VALUE DOCUMENT ID TECN COMMENT0.076±0.010 OUR AVERAGE0.076±0.010 OUR AVERAGE0.076±0.010 OUR AVERAGE0.076±0.010 OUR AVERAGE0.095±0.015±0.013 ACCIARRI 00J L3 Eee m= 91.2 GeV0.071±0.012±0.013 ALEXANDER 97E OPAL Eee m= 91.2 GeV0.070±0.010±0.010 ADAM 96B DLPH Eee m= 91.2 GeV⟨N(++−+0)/3⟩⟨N(++−+0)/3⟩⟨N(++−+0)/3⟩⟨N(++−+0)/3⟩VALUE DOCUMENT ID TECN COMMENT0.084±0.005±0.0080.084±0.005±0.0080.084±0.005±0.0080.084±0.005±0.008 ALEXANDER 97E OPAL Eee m= 91.2 GeV⟨N(1385)+⟩⟨N(1385)+⟩⟨N(1385)+⟩⟨N(1385)+⟩VALUE DOCUMENT ID TECN COMMENT0.0239±0.0009±0.00120.0239±0.0009±0.00120.0239±0.0009±0.00120.0239±0.0009±0.0012 ALEXANDER 97D OPAL Eee m= 91.2 GeV⟨N(1385)−⟩⟨N(1385)−⟩⟨N(1385)−⟩⟨N(1385)−⟩VALUE DOCUMENT ID TECN COMMENT0.0240±0.0010±0.00140.0240±0.0010±0.00140.0240±0.0010±0.00140.0240±0.0010±0.0014 ALEXANDER 97D OPAL Eee m= 91.2 GeV⟨N(1385)++(1385)−⟩⟨N(1385)++(1385)−⟩⟨N(1385)++(1385)−⟩⟨N(1385)++(1385)−⟩VALUE DOCUMENT ID TECN COMMENT0.046 ±0.004 OUR AVERAGE0.046 ±0.004 OUR AVERAGE0.046 ±0.004 OUR AVERAGE0.046 ±0.004 OUR AVERAGE Error in ludes s ale fa tor of 1.6.0.0479±0.0013±0.0026 ALEXANDER 97D OPAL Eee m= 91.2 GeV0.0382±0.0028±0.0045 ABREU 95O DLPH Eee m= 91.2 GeV⟨N−

⟩⟨N−⟩⟨N−⟩⟨N−⟩VALUE DOCUMENT ID TECN COMMENT0.0258±0.0009 OUR AVERAGE0.0258±0.0009 OUR AVERAGE0.0258±0.0009 OUR AVERAGE0.0258±0.0009 OUR AVERAGE0.0247±0.0009±0.0025 ABDALLAH 06E DLPH Eee m = 91.2 GeV0.0259±0.0004±0.0009 ALEXANDER 97D OPAL Eee m = 91.2 GeV

Page 29: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

639639639639See key on page 601 Gauge & Higgs Boson Parti le ListingsZ⟨N(1530)0⟩⟨N(1530)0⟩⟨N(1530)0⟩⟨N(1530)0⟩VALUE DOCUMENT ID TECN COMMENT0.0059±0.0011 OUR AVERAGE0.0059±0.0011 OUR AVERAGE0.0059±0.0011 OUR AVERAGE0.0059±0.0011 OUR AVERAGE Error in ludes s ale fa tor of 2.3.0.0045±0.0005±0.0006 ABDALLAH 05C DLPH Eee m= 91.2 GeV0.0068±0.0005±0.0004 ALEXANDER 97D OPAL Eee m= 91.2 GeV⟨N−

⟩⟨N−⟩⟨N−⟩⟨N−⟩VALUE DOCUMENT ID TECN COMMENT0.00164±0.00028 OUR AVERAGE0.00164±0.00028 OUR AVERAGE0.00164±0.00028 OUR AVERAGE0.00164±0.00028 OUR AVERAGE0.0018 ±0.0003 ±0.0002 ALEXANDER 97D OPAL Eee m= 91.2 GeV0.0014 ±0.0002 ±0.0004 ADAM 96B DLPH Eee m= 91.2 GeV

⟨N+ ⟩⟨N+ ⟩⟨N+ ⟩⟨N+ ⟩VALUE DOCUMENT ID TECN COMMENT0.078±0.012±0.0120.078±0.012±0.0120.078±0.012±0.0120.078±0.012±0.012 ALEXANDER 96R OPAL Eee m= 91.2 GeV⟨ND⟩⟨ND⟩⟨ND⟩⟨ND⟩VALUE (units 10−6) DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •5.9±1.8±0.5 1 SCHAEL 06A ALEP Eee m = 91.2 GeV1SCHAEL 06A obtain this anti-deuteron produ tion rate per hadroni Z de ay in theanti-deuteron momentum range from 0.62 to 1.03 GeV/ .⟨N harged ⟩⟨N harged ⟩⟨N harged ⟩⟨N harged ⟩VALUE DOCUMENT ID TECN COMMENT20.76±0.16 OUR AVERAGE20.76±0.16 OUR AVERAGE20.76±0.16 OUR AVERAGE20.76±0.16 OUR AVERAGE Error in ludes s ale fa tor of 2.1. See the ideogram below.20.46±0.01±0.11 ACHARD 03G L3 Eee m= 91.2 GeV21.21±0.01±0.20 ABREU 99 DLPH Eee m= 91.2 GeV21.05±0.20 AKERS 95Z OPAL Eee m= 91.2 GeV20.91±0.03±0.22 BUSKULIC 95R ALEP Eee m= 91.2 GeV21.40±0.43 ACTON 92B OPAL Eee m= 91.2 GeV20.71±0.04±0.77 ABREU 91H DLPH Eee m= 91.2 GeV20.7 ±0.7 ADEVA 91I L3 Eee m= 91.2 GeV20.1 ±1.0 ±0.9 ABRAMS 90 MRK2 Eee m= 91.1 GeV

WEIGHTED AVERAGE20.76±0.16 (Error scaled by 2.1)

ABRAMS 90 MRK2ADEVA 91I L3ABREU 91H DLPHACTON 92B OPAL 2.2BUSKULIC 95R ALEP 0.5AKERS 95Z OPAL 2.1ABREU 99 DLPH 5.1ACHARD 03G L3 7.3

χ2

17.2(Confidence Level = 0.0018)

19 20 21 22 23 24⟨N harged⟩Z HADRONIC POLE CROSS SECTIONZ HADRONIC POLE CROSS SECTIONZ HADRONIC POLE CROSS SECTIONZ HADRONIC POLE CROSS SECTIONOUR FIT is obtained using the t pro edure and orrelations as determinedby the LEP Ele troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06). This quantity is dened as

σ0h = 12πM2Z (e+ e−) (hadrons)2ZIt is one of the parameters used in the Z lineshape t.VALUE (nb) EVTS DOCUMENT ID TECN COMMENT41.541±0.037 OUR FIT41.541±0.037 OUR FIT41.541±0.037 OUR FIT41.541±0.037 OUR FIT41.501±0.055 4.10M 1 ABBIENDI 01A OPAL Eee m= 8894 GeV41.578±0.069 3.70M ABREU 00F DLPH Eee m= 8894 GeV41.535±0.055 3.54M ACCIARRI 00C L3 Eee m= 8894 GeV41.559±0.058 4.07M 2 BARATE 00C ALEP Eee m= 8894 GeV• • • We do not use the following data for averages, ts, limits, et . • • •42 ±4 450 ABRAMS 89B MRK2 Eee m= 89.293.0 GeV1ABBIENDI 01A error in ludes approximately 0.031 due to statisti s, 0.033 due to eventsele tion systemati s, 0.029 due to un ertainty in luminosity measurement, and 0.011due to LEP energy un ertainty.2BARATE 00C error in ludes approximately 0.030 due to statisti s, 0.026 due to experi-mental systemati s, and 0.025 due to un ertainty in luminosity measurement.

Z VECTOR COUPLINGSZ VECTOR COUPLINGSZ VECTOR COUPLINGSZ VECTOR COUPLINGSThese quantities are the ee tive ve tor ouplings of the Z to hargedleptons. Their magnitude is derived from a measurement of the Z line-shape and the forward-ba kward lepton asymmetries as a fun tion of en-ergy around the Z mass. The relative sign among the ve tor to axial-ve tor ouplings is obtained from a measurement of the Z asymmetry parame-ters, Ae , Aµ, and Aτ . By onvention the sign of geA is xed to be negative(and opposite to that of gνe obtained using νe s attering measurements).For the light quarks, the sign of the ouplings is assigned onsistently withthis assumption. The t values quoted below orrespond to global nine- orve-parameter ts to lineshape, lepton forward-ba kward asymmetry, andAe , Aµ, and Aτ measurements. See the note \The Z boson" and ref.LEP-SLC 06 for details. Where pp and e p data is quoted, OUR FIT value orresponds to a weighted average of this with the LEP/SLD t result.g eVg eVg eVg eVVALUE EVTS DOCUMENT ID TECN COMMENT−0.03817±0.00047 OUR FIT−0.03817±0.00047 OUR FIT−0.03817±0.00047 OUR FIT−0.03817±0.00047 OUR FIT−0.058 ±0.016 ±0.007 5026 1 ACOSTA 05M CDF Epp m= 1.96 TeV−0.0346 ±0.0023 137.0K 2 ABBIENDI 01O OPAL Eee m= 8894 GeV−0.0412 ±0.0027 124.4k 3 ACCIARRI 00C L3 Eee m= 8894 GeV−0.0400 ±0.0037 BARATE 00C ALEP Eee m= 8894 GeV−0.0414 ±0.0020 4 ABE 95J SLD Eee m= 91.31 GeV1ACOSTA 05M determine the forwardba kward asymmetry of e+ e− pairs produ ed viaqq → Z/γ∗ → e+ e− in 15 M(e+ e−) ee tive mass bins ranging from 40 GeV to 600GeV. These results are used to obtain the ve tor and axialve tor ouplings of the Z toe+ e−, assuming the quark ouplings are as predi ted by the standard model. Higherorder radiative orre tions have not been taken into a ount.2ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba kward lepton asymmetries.3ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba kward lepton asymmetries.4ABE 95J obtain this result ombining polarized Bhabha results with the ALR measure-ment of ABE 94C. The Bhabha results alone give −0.0507 ± 0.0096 ± 0.0020.gµVgµVgµVgµVVALUE EVTS DOCUMENT ID TECN COMMENT−0.0367±0.0023 OUR FIT−0.0367±0.0023 OUR FIT−0.0367±0.0023 OUR FIT−0.0367±0.0023 OUR FIT−0.0388+0.0060

−0.0064 182.8K 1 ABBIENDI 01O OPAL Eee m= 8894 GeV−0.0386±0.0073 113.4k 2 ACCIARRI 00C L3 Eee m= 8894 GeV−0.0362±0.0061 BARATE 00C ALEP Eee m= 8894 GeV• • • We do not use the following data for averages, ts, limits, et . • • •−0.0413±0.0060 66143 3 ABBIENDI 01K OPAL Eee m= 8993 GeV1ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba kward lepton asymmetries.2ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba kward lepton asymmetries.3ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry whi htakes into a ount ee ts of initial state radiation on an event by event basis and ofinitial-nal state interferen e.g τVg τVg τVg τVVALUE EVTS DOCUMENT ID TECN COMMENT−0.0366±0.0010 OUR FIT−0.0366±0.0010 OUR FIT−0.0366±0.0010 OUR FIT−0.0366±0.0010 OUR FIT−0.0365±0.0023 151.5K 1 ABBIENDI 01O OPAL Eee m= 8894 GeV−0.0384±0.0026 103.0k 2 ACCIARRI 00C L3 Eee m= 8894 GeV−0.0361±0.0068 BARATE 00C ALEP Eee m= 8894 GeV1ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba kward lepton asymmetries.2ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba kward lepton asymmetries.g ℓVg ℓVg ℓVg ℓVVALUE EVTS DOCUMENT ID TECN COMMENT−0.03783±0.00041 OUR FIT−0.03783±0.00041 OUR FIT−0.03783±0.00041 OUR FIT−0.03783±0.00041 OUR FIT−0.0358 ±0.0014 471.3K 1 ABBIENDI 01O OPAL Eee m= 8894 GeV−0.0397 ±0.0020 379.4k 2 ABREU 00F DLPH Eee m= 8894 GeV−0.0397 ±0.0017 340.8k 3 ACCIARRI 00C L3 Eee m= 8894 GeV−0.0383 ±0.0018 500k BARATE 00C ALEP Eee m= 8894 GeV1ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba kward lepton asymmetries.2Using forward-ba kward lepton asymmetries.3ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba kward lepton asymmetries.guVguVguVguVVALUE EVTS DOCUMENT ID TECN COMMENT0.25 +0.07

−0.06 OUR AVERAGE0.25 +0.07−0.06 OUR AVERAGE0.25 +0.07−0.06 OUR AVERAGE0.25 +0.07−0.06 OUR AVERAGE0.201±0.112 156k 1 ABAZOV 11D D0 Epp m = 1.97 TeV0.27 ±0.13 1500 2 AKTAS 06 H1 e± p → νe (νe )X ,√

s ≈ 300 GeV0.24 +0.28−0.11 3 LEP-SLC 06 Eee m = 8894 GeV0.399+0.152−0.188±0.066 5026 4 ACOSTA 05M CDF Epp m= 1.96 TeV

Page 30: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

640640640640Gauge & Higgs Boson Parti le ListingsZ1ABAZOV 11D study pp → Z /γ∗ e+ e− events using 5 fb−1 data at √s = 1.96 TeV.The andidate events are sele ted by requiring two isolated ele tromagneti showers withET > 25 GeV, at least one ele tron in the entral region and the di-ele tron mass in therange 501000 GeV. From the forward-ba kward asymmetry, determined as a fun tion ofthe di-ele tron mass, they derive the axial and ve tor ouplings of the u- and d- quarksand the value of sin2θℓeff = 0.2309 ± 0.0008(stat)±0.0006(syst).2AKTAS 06 t the neutral urrent (1.5 ≤ Q2 ≤ 30,000 GeV2) and harged urrent(1.5 ≤ Q2 ≤ 15,000 GeV2) dierential ross se tions. In the determination of the u-quark ouplings the ele tron and d-quark ouplings are xed to their standard modelvalues.3 LEP-SLC 06 is a ombination of the results from LEP and SLC experiments using lightquark tagging. s- and d-quark ouplings are assumed to be identi al.4ACOSTA 05M determine the forward-ba kward asymmetry of e+ e− pairs produ ed viaqq → Z /γ∗ → e+ e− in 15 M(e+ e−) ee tive mass bins ranging from 40 GeV to600 GeV. These results are used to obtain the ve tor and axial-ve tor ouplings of theZ to the light quarks, assuming the ele tron ouplings are as predi ted by the StandardModel. Higher order radiative orre tions have not been taken into a ount.gdVgdVgdVgdVVALUE EVTS DOCUMENT ID TECN COMMENT

−0.33 +0.05−0.06 OUR AVERAGE−0.33 +0.05−0.06 OUR AVERAGE−0.33 +0.05−0.06 OUR AVERAGE−0.33 +0.05−0.06 OUR AVERAGE

−0.351±0.251 156k 1 ABAZOV 11D D0 Epp m = 1.97 TeV−0.33 ±0.33 1500 2 AKTAS 06 H1 e± p → νe (νe )X ,√

s ≈ 300 GeV−0.33 +0.05

−0.07 3 LEP-SLC 06 Eee m = 8894 GeV−0.226+0.635

−0.290±0.090 5026 4 ACOSTA 05M CDF Epp m= 1.96 TeV1ABAZOV 11D study pp → Z /γ∗ e+ e− events using 5 fb−1 data at √s = 1.96 TeV.The andidate events are sele ted by requiring two isolated ele tromagneti showers withET > 25 GeV, at least one ele tron in the entral region and the di-ele tron mass in therange 501000 GeV. From the forward-ba kward asymmetry, determined as a fun tion ofthe di-ele tron mass, they derive the axial and ve tor ouplings of the u- and d- quarksand the value of sin2θℓeff = 0.2309 ± 0.0008(stat)±0.0006(syst).2AKTAS 06 t the neutral urrent (1.5 ≤ Q2 ≤ 30,000 GeV2) and harged urrent(1.5 ≤ Q2 ≤ 15,000 GeV2) dierential ross se tions. In the determination of the d-quark ouplings the ele tron and u-quark ouplings are xed to their standard modelvalues.3 LEP-SLC 06 is a ombination of the results from LEP and SLC experiments using lightquark tagging. s- and d-quark ouplings are assumed to be identi al.4ACOSTA 05M determine the forward-ba kward asymmetry of e+ e− pairs produ ed viaqq → Z /γ∗ → e+ e− in 15 M(e+ e−) ee tive mass bins ranging from 40 GeV to600 GeV. These results are used to obtain the ve tor and axial-ve tor ouplings of theZ to the light quarks, assuming the ele tron ouplings are as predi ted by the StandardModel. Higher order radiative orre tions have not been taken into a ount.Z AXIAL-VECTOR COUPLINGSZ AXIAL-VECTOR COUPLINGSZ AXIAL-VECTOR COUPLINGSZ AXIAL-VECTOR COUPLINGSThese quantities are the ee tive axial-ve tor ouplings of the Z to hargedleptons. Their magnitude is derived from a measurement of the Z line-shape and the forward-ba kward lepton asymmetries as a fun tion of en-ergy around the Z mass. The relative sign among the ve tor to axial-ve tor ouplings is obtained from a measurement of the Z asymmetry parame-ters, Ae , Aµ, and Aτ . By onvention the sign of geA is xed to be negative(and opposite to that of gνe obtained using νe s attering measurements).For the light quarks, the sign of the ouplings is assigned onsistently withthis assumption. The t values quoted below orrespond to global nine- orve-parameter ts to lineshape, lepton forward-ba kward asymmetry, andAe , Aµ, and Aτ measurements. See the note \The Z boson" and ref.LEP-SLC 06 for details. Where pp and e p data is quoted, OUR FIT value orresponds to a weighted average of this with the LEP/SLD t result.g eAg eAg eAg eAVALUE EVTS DOCUMENT ID TECN COMMENT

−0.50111±0.00035 OUR FIT−0.50111±0.00035 OUR FIT−0.50111±0.00035 OUR FIT−0.50111±0.00035 OUR FIT−0.528 ±0.123 ±0.059 5026 1 ACOSTA 05M CDF Epp m= 1.96 TeV−0.50062±0.00062 137.0K 2 ABBIENDI 01O OPAL Eee m= 8894 GeV−0.5015 ±0.0007 124.4k 3 ACCIARRI 00C L3 Eee m= 8894 GeV−0.50166±0.00057 BARATE 00C ALEP Eee m= 8894 GeV−0.4977 ±0.0045 4 ABE 95J SLD Eee m= 91.31 GeV1ACOSTA 05M determine the forwardba kward asymmetry of e+ e− pairs produ ed viaqq → Z/γ∗ → e+ e− in 15 M(e+ e−) ee tive mass bins ranging from 40 GeV to 600GeV. These results are used to obtain the ve tor and axialve tor ouplings of the Z toe+ e−, assuming the quark ouplings are as predi ted by the standard model. Higherorder radiative orre tions have not been taken into a ount.2ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba kward lepton asymmetries.3ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba kward lepton asymmetries.4ABE 95J obtain this result ombining polarized Bhabha results with the ALR measure-ment of ABE 94C. The Bhabha results alone give −0.4968 ± 0.0039 ± 0.0027.

gµAgµAgµAgµAVALUE EVTS DOCUMENT ID TECN COMMENT−0.50120±0.00054 OUR FIT−0.50120±0.00054 OUR FIT−0.50120±0.00054 OUR FIT−0.50120±0.00054 OUR FIT−0.50117±0.00099 182.8K 1 ABBIENDI 01O OPAL Eee m= 8894 GeV−0.5009 ±0.0014 113.4k 2 ACCIARRI 00C L3 Eee m= 8894 GeV−0.50046±0.00093 BARATE 00C ALEP Eee m= 8894 GeV• • • We do not use the following data for averages, ts, limits, et . • • •−0.520 ±0.015 66143 3 ABBIENDI 01K OPAL Eee m= 8993 GeV1ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba kward lepton asymmetries.2ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba kward lepton asymmetries.3ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry whi htakes into a ount ee ts of initial state radiation on an event by event basis and ofinitial-nal state interferen e.g τAg τAg τAg τAVALUE EVTS DOCUMENT ID TECN COMMENT−0.50204±0.00064 OUR FIT−0.50204±0.00064 OUR FIT−0.50204±0.00064 OUR FIT−0.50204±0.00064 OUR FIT−0.50165±0.00124 151.5K 1 ABBIENDI 01O OPAL Eee m= 8894 GeV−0.5023 ±0.0017 103.0k 2 ACCIARRI 00C L3 Eee m= 8894 GeV−0.50216±0.00100 BARATE 00C ALEP Eee m= 8894 GeV1ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba kward lepton asymmetries.2ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba kward lepton asymmetries.g ℓAg ℓAg ℓAg ℓAVALUE EVTS DOCUMENT ID TECN COMMENT−0.50123±0.00026 OUR FIT−0.50123±0.00026 OUR FIT−0.50123±0.00026 OUR FIT−0.50123±0.00026 OUR FIT−0.50089±0.00045 471.3K 1 ABBIENDI 01O OPAL Eee m= 8894 GeV−0.5007 ±0.0005 379.4k ABREU 00F DLPH Eee m= 8894 GeV−0.50153±0.00053 340.8k 2 ACCIARRI 00C L3 Eee m= 8894 GeV−0.50150±0.00046 500k BARATE 00C ALEP Eee m= 8894 GeV1ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba kward lepton asymmetries.2ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba kward lepton asymmetries.guAguAguAguAVALUE EVTS DOCUMENT ID TECN COMMENT0.50 +0.04

−0.06 OUR AVERAGE0.50 +0.04−0.06 OUR AVERAGE0.50 +0.04−0.06 OUR AVERAGE0.50 +0.04−0.06 OUR AVERAGE0.501±0.110 156k 1 ABAZOV 11D D0 Epp m = 1.97 TeV0.57 ±0.08 1500 2 AKTAS 06 H1 e± p → νe (νe )X ,√

s ≈ 300 GeV0.47 +0.05−0.33 3 LEP-SLC 06 Eee m = 8894 GeV0.441+0.207−0.173±0.067 5026 4 ACOSTA 05M CDF Epp m= 1.96 TeV1ABAZOV 11D study pp → Z /γ∗ e+ e− events using 5 fb−1 data at √s = 1.96 TeV.The andidate events are sele ted by requiring two isolated ele tromagneti showers withET > 25 GeV, at least one ele tron in the entral region and the di-ele tron mass in therange 501000 GeV. From the forward-ba kward asymmetry, determined as a fun tion ofthe di-ele tron mass, they derive the axial and ve tor ouplings of the u- and d- quarksand the value of sin2θℓ

eff = 0.2309 ± 0.0008(stat)±0.0006(syst).2AKTAS 06 t the neutral urrent (1.5 ≤ Q2 ≤ 30,000 GeV2) and harged urrent(1.5 ≤ Q2 ≤ 15,000 GeV2) dierential ross se tions. In the determination of the u-quark ouplings the ele tron and d-quark ouplings are xed to their standard modelvalues.3 LEP-SLC 06 is a ombination of the results from LEP and SLC experiments using lightquark tagging. s- and d-quark ouplings are assumed to be identi al.4ACOSTA 05M determine the forward-ba kward asymmetry of e+ e− pairs produ ed viaqq → Z /γ∗ → e+ e− in 15 M(e+ e−) ee tive mass bins ranging from 40 GeV to600 GeV. These results are used to obtain the ve tor and axial-ve tor ouplings of theZ to the light quarks, assuming the ele tron ouplings are as predi ted by the StandardModel. Higher order radiative orre tions have not been taken into a ount.gdAgdAgdAgdAVALUE EVTS DOCUMENT ID TECN COMMENT−0.523+0.050

−0.029 OUR AVERAGE−0.523+0.050−0.029 OUR AVERAGE−0.523+0.050−0.029 OUR AVERAGE−0.523+0.050−0.029 OUR AVERAGE

−0.497±0.165 156k 1 ABAZOV 11D D0 Epp m = 1.97 TeV−0.80 ±0.24 1500 2 AKTAS 06 H1 e± p → νe (νe )X ,√

s ≈ 300 GeV−0.52 +0.05

−0.03 3 LEP-SLC 06 Eee m = 8894 GeV−0.016+0.346

−0.536±0.091 5026 4 ACOSTA 05M CDF Epp m= 1.96 TeV1ABAZOV 11D study pp → Z /γ∗ e+ e− events using 5 fb−1 data at √s = 1.96 TeV.The andidate events are sele ted by requiring two isolated ele tromagneti showers withET > 25 GeV, at least one ele tron in the entral region and the di-ele tron mass in therange 501000 GeV. From the forward-ba kward asymmetry, determined as a fun tion ofthe di-ele tron mass, they derive the axial and ve tor ouplings of the u- and d- quarksand the value of sin2θℓeff = 0.2309 ± 0.0008(stat)±0.0006(syst).

Page 31: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

641641641641See key on page 601 Gauge&HiggsBosonParti leListingsZ2AKTAS 06 t the neutral urrent (1.5 ≤ Q2 ≤ 30,000 GeV2) and harged urrent(1.5 ≤ Q2 ≤ 15,000 GeV2) dierential ross se tions. In the determination of the d-quark ouplings the ele tron and u-quark ouplings are xed to their standard modelvalues.3 LEP-SLC 06 is a ombination of the results from LEP and SLC experiments using lightquark tagging. s- and d-quark ouplings are assumed to be identi al.4ACOSTA 05M determine the forward-ba kward asymmetry of e+ e− pairs produ ed viaqq → Z /γ∗ → e+ e− in 15 M(e+ e−) ee tive mass bins ranging from 40 GeV to600 GeV. These results are used to obtain the ve tor and axial-ve tor ouplings of theZ to the light quarks, assuming the ele tron ouplings are as predi ted by the StandardModel. Higher order radiative orre tions have not been taken into a ount.Z COUPLINGS TO NEUTRAL LEPTONSZ COUPLINGS TO NEUTRAL LEPTONSZ COUPLINGS TO NEUTRAL LEPTONSZ COUPLINGS TO NEUTRAL LEPTONSAveraging over neutrino spe ies, the invisible Z de ay width determinesthe ee tive neutrino oupling gνℓ . For gνe and gνµ , νe e and νµ es attering results are ombined with geA and geV measurements at the Zmass to obtain gνe and gνµ following NOVIKOV 93C.gνℓgνℓgνℓgνℓVALUE DOCUMENT ID COMMENT0.50076±0.000760.50076±0.000760.50076±0.000760.50076±0.00076 1 LEP-SLC 06 Eee m = 8894 GeV1From invisible Z -de ay width.gνegνegνegνeVALUE DOCUMENT ID TECN COMMENT0.528±0.0850.528±0.0850.528±0.0850.528±0.085 1 VILAIN 94 CHM2 From νµ e and νe e s attering1VILAIN 94 derive this value from their value of gνµ and their ratio gνe /gνµ =1.05+0.15−0.18.gνµgνµgνµgνµVALUE DOCUMENT ID TECN COMMENT0.502±0.0170.502±0.0170.502±0.0170.502±0.017 1 VILAIN 94 CHM2 From νµ e s attering1VILAIN 94 derive this value from their measurement of the ouplings ge νµA = −0.503 ±0.017 and ge νµV = −0.035± 0.017 obtained from νµ e s attering. We have re-evaluatedthis value using the urrent PDG values for geA and geV .Z ASYMMETRY PARAMETERSZ ASYMMETRY PARAMETERSZ ASYMMETRY PARAMETERSZ ASYMMETRY PARAMETERSFor ea h fermion-antifermion pair oupling to the Z these quantities aredened as Af = 2g fV g fA(g fV )2 + (g fA)2where gfV and gfA are the ee tive ve tor and axial-ve tor ouplings. Fortheir relation to the various lepton asymmetries see the note \The Z bo-son" and ref. LEP-SLC 06.AeAeAeAe Using polarized beams, this quantity an also be measured as (σL − σR )/ (σL + σR ),where σL and σR are the e+ e− produ tion ross se tions for Z bosons produ ed withleft-handed and right-handed ele trons respe tively.VALUE EVTS DOCUMENT ID TECN COMMENT0.1515±0.0019 OUR AVERAGE0.1515±0.0019 OUR AVERAGE0.1515±0.0019 OUR AVERAGE0.1515±0.0019 OUR AVERAGE0.1454±0.0108±0.0036 144810 1 ABBIENDI 01O OPAL Eee m= 8894 GeV0.1516±0.0021 559000 2 ABE 01B SLD Eee m= 91.24 GeV0.1504±0.0068±0.0008 3 HEISTER 01 ALEP Eee m= 8894 GeV0.1382±0.0116±0.0005 105000 4 ABREU 00E DLPH Eee m= 8894 GeV0.1678±0.0127±0.0030 137092 5 ACCIARRI 98H L3 Eee m= 8894 GeV0.162 ±0.041 ±0.014 89838 6 ABE 97 SLD Eee m= 91.27 GeV0.202 ±0.038 ±0.008 7 ABE 95J SLD Eee m= 91.31 GeV1ABBIENDI 01O t for Ae and Aτ from measurements of the τ polarization at varying

τ produ tion angles. The orrelation between Ae and Aτ is less than 0.03.2ABE 01B use the left-right produ tion and left-right forward-ba kward de ay asymmetriesin leptoni Z de ays to obtain a value of 0.1544 ± 0.0060. This is ombined with left-right produ tion asymmetry measurement using hadroni Z de ays (ABE 00B) to obtainthe quoted value.3HEISTER 01 obtain this result tting the τ polarization as a fun tion of the polarprodu tion angle of the τ .4ABREU 00E obtain this result tting the τ polarization as a fun tion of the polarτ produ tion angle. This measurement is a ombination of dierent analyses (ex lu-sive τ de ay modes, in lusive hadroni 1-prong re onstru tion, and a neural networkanalysis).5Derived from the measurement of forward-ba kward τ polarization asymmetry.6ABE 97 obtain this result from a measurement of the observed left-right hargeasymmetry, AobsQ = 0.225 ± 0.056 ± 0.019, in hadroni Z de ays. If they ombinethis value of AobsQ with their earlier measurement of Aobs

LRthey determine Ae to be0.1574 ± 0.0197 ± 0.0067 independent of the beam polarization.7ABE 95J obtain this result from polarized Bhabha s attering.

AµAµAµAµ This quantity is dire tly extra ted from a measurement of the left-right forward-ba kward asymmetry in µ+µ− produ tion at SLC using a polarized ele tron beam.This double asymmetry eliminates the dependen e on the Z -e-e oupling parameterAe .VALUE EVTS DOCUMENT ID TECN COMMENT0.142±0.0150.142±0.0150.142±0.0150.142±0.015 16844 1 ABE 01B SLD Eee m= 91.24 GeV• • • We do not use the following data for averages, ts, limits, et . • • •0.153±0.012 1.7M 2 AAD 15BT ATLS Epp m = 7 TeV1ABE 01B obtain this dire t measurement using the left-right produ tion and left-rightforward-ba kward polar angle asymmetries in µ+µ− de ays of the Z boson obtainedwith a polarized ele tron beam.2AAD 15BT study pp → Z → ℓ+ ℓ− events where ℓ is an ele tron or a muon in thedilepton mass region 701000 GeV. The ba kground in the Z peak region is estimatedto be < 1% for the muon hannel. The muon asymmetry parameter is derived fromthe measured forward-ba kward asymmetry assuming the value of the quark asymmetryparameter from the SM. For this reason it is not used in the average.AτAτAτAτ The LEP Collaborations derive this quantity from the measurement of the τ polariza-tion in Z → τ+ τ−. The SLD Collaboration dire tly extra ts this quantity from itsmeasured left-right forward-ba kward asymmetry in Z → τ+ τ− produ ed using apolarized e− beam. This double asymmetry eliminates the dependen e on the Z -e-e oupling parameter Ae .VALUE EVTS DOCUMENT ID TECN COMMENT0.143 ±0.004 OUR AVERAGE0.143 ±0.004 OUR AVERAGE0.143 ±0.004 OUR AVERAGE0.143 ±0.004 OUR AVERAGE0.1456±0.0076±0.0057 144810 1 ABBIENDI 01O OPAL Eee m= 8894 GeV0.136 ±0.015 16083 2 ABE 01B SLD Eee m= 91.24 GeV0.1451±0.0052±0.0029 3 HEISTER 01 ALEP Eee m= 8894 GeV0.1359±0.0079±0.0055 105000 4 ABREU 00E DLPH Eee m= 8894 GeV0.1476±0.0088±0.0062 137092 ACCIARRI 98H L3 Eee m= 8894 GeV1ABBIENDI 01O t for Ae and Aτ from measurements of the τ polarization at varying

τ produ tion angles. The orrelation between Ae and Aτ is less than 0.03.2ABE 01B obtain this dire t measurement using the left-right produ tion and left-rightforward-ba kward polar angle asymmetries in τ+ τ− de ays of the Z boson obtainedwith a polarized ele tron beam.3HEISTER 01 obtain this result tting the τ polarization as a fun tion of the polarprodu tion angle of the τ .4ABREU 00E obtain this result tting the τ polarization as a fun tion of the polarτ produ tion angle. This measurement is a ombination of dierent analyses (ex lu-sive τ de ay modes, in lusive hadroni 1-prong re onstru tion, and a neural networkanalysis).AsAsAsAs The SLD Collaboration dire tly extra ts this quantity by a simultaneous t to fourmeasured s-quark polar angle distributions orresponding to two states of e− polar-ization (positive and negative) and to the K+K− and K±K0S strange parti le taggingmodes in the hadroni nal states.VALUE EVTS DOCUMENT ID TECN COMMENT0.895±0.066±0.0620.895±0.066±0.0620.895±0.066±0.0620.895±0.066±0.062 2870 1 ABE 00D SLD Eee m= 91.2 GeV1ABE 00D tag Z → s s events by an absen e of B or D hadrons and the presen e in ea hhemisphere of a high momentum K± or K0S .A A A A This quantity is dire tly extra ted from a measurement of the left-right forward-ba kward asymmetry in produ tion at SLC using polarized ele tron beam. Thisdouble asymmetry eliminates the dependen e on the Z -e-e oupling parameter Ae .OUR FIT is obtained by a simultaneous t to several - and b-quark measurementsas explained in the note \The Z boson" and ref. LEP-SLC 06.VALUE DOCUMENT ID TECN COMMENT0.670 ±0.027 OUR FIT0.670 ±0.027 OUR FIT0.670 ±0.027 OUR FIT0.670 ±0.027 OUR FIT0.6712±0.0224±0.0157 1 ABE 05 SLD Eee m= 91.24 GeV

• • • We do not use the following data for averages, ts, limits, et . • • •0.583 ±0.055 ±0.055 2 ABE 02G SLD Eee m= 91.24 GeV0.688 ±0.041 3 ABE 01C SLD Eee m= 91.25 GeV1ABE 05 use hadroni Z de ays olle ted during 199698 to obtain an enri hed sample of events tagging on the invariant mass of re onstru ted se ondary de ay verti es. The harge of the underlying quark is obtained with an algorithm that takes into a ountthe net harge of the vertex as well as the harge of tra ks emanating from the vertex andidentied as kaons. This yields (9970 events) A = 0.6747 ± 0.0290 ± 0.0233. Takinginto a ount all orrelations with earlier results reported in ABE 02G and ABE 01C, theyobtain the quoted overall SLD result.2ABE 02G tag b and quarks through their semileptoni de ays into ele trons and muons.A maximum likelihood t is performed to extra t simultaneously Ab and A .3ABE 01C tag Z → events using two te hniques: ex lusive re onstru tion of D∗+, D+and D0 mesons and the soft pion tag for D∗+ → D0π+. The large ba kground fromD mesons produ ed in bb events is separated eÆ iently from the signal using pre isionvertex information. When ombining the A values from these two samples, are is takento avoid double ounting of events ommon to the two samples, and ommon systemati errors are properly taken into a ount.

Page 32: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

642642642642Gauge&HiggsBosonParti leListingsZAbAbAbAb This quantity is dire tly extra ted from a measurement of the left-right forward-ba kward asymmetry in bb produ tion at SLC using polarized ele tron beam. Thisdouble asymmetry eliminates the dependen e on the Z -e-e oupling parameter Ae .OUR FIT is obtained by a simultaneous t to several - and b-quark measurementsas explained in the note \The Z boson" and ref. LEP-SLC 06.VALUE EVTS DOCUMENT ID TECN COMMENT0.923 ±0.020 OUR FIT0.923 ±0.020 OUR FIT0.923 ±0.020 OUR FIT0.923 ±0.020 OUR FIT0.9170±0.0147±0.0145 1 ABE 05 SLD Eee m= 91.24 GeV• • • We do not use the following data for averages, ts, limits, et . • • •0.907 ±0.020 ±0.024 48028 2 ABE 03F SLD Eee m= 91.24 GeV0.919 ±0.030 ±0.024 3 ABE 02G SLD Eee m= 91.24 GeV0.855 ±0.088 ±0.102 7473 4 ABE 99L SLD Eee m= 91.27 GeV1ABE 05 use hadroni Z de ays olle ted during 199698 to obtain an enri hed sample ofbb events tagging on the invariant mass of re onstru ted se ondary de ay verti es. The harge of the underlying bquark is obtained with an algorithm that takes into a ountthe net harge of the vertex as well as the harge of tra ks emanating from the vertexand identied as kaons. This yields (25917 events) Ab = 0.9173 ± 0.0184 ± 0.0173.Taking into a ount all orrelations with earlier results reported in ABE 03F, ABE 02Gand ABE 99L, they obtain the quoted overall SLD result.2ABE 03F obtain an enri hed sample of bb events tagging on the invariant mass of a3-dimensional topologi ally re onstru ted se ondary de ay. The harge of the underlyingb quark is obtained using a self- alibrating tra k- harge method. For the 19961998 datasample they measure Ab = 0.906 ± 0.022 ± 0.023. The value quoted here is obtained ombining the above with the result of ABE 98I (19931995 data sample).3ABE 02G tag b and quarks through their semileptoni de ays into ele trons and muons.A maximum likelihood t is performed to extra t simultaneously Ab and A .4ABE 99L obtain an enri hed sample of bb events tagging with an in lusive vertex mass ut. For distinguishing b and b quarks they use the harge of identied K±.TRANSVERSE SPIN CORRELATIONS IN Z → τ+ τ−TRANSVERSE SPIN CORRELATIONS IN Z → τ+ τ−TRANSVERSE SPIN CORRELATIONS IN Z → τ+ τ−TRANSVERSE SPIN CORRELATIONS IN Z → τ+ τ−The orrelations between the transverse spin omponents of τ+ τ− pro-du ed in Z de ays may be expressed in terms of the ve tor and axial-ve tor ouplings:CTT = ∣∣gτA∣∣2−∣∣gτV ∣∣2

∣∣gτA∣∣2+∣∣gτV ∣∣2CTN = −2 ∣∣gτA∣∣∣∣gτV ∣∣∣∣gτA∣∣2+∣∣gτV ∣∣2 sin(gτV −gτA )CTT refers to the transverse-transverse (within the ollision plane) spin orrelation and CTN refers to the transverse-normal (to the ollision plane)spin orrelation.The longitudinal τ polarization Pτ (= −Aτ ) is given by:Pτ = −2 ∣∣gτA∣∣∣∣gτV ∣∣

∣∣gτA∣∣2+∣∣gτV ∣∣2 os(gτV −gτA )Here is the phase and the phase dieren e gτV −gτA an be obtainedusing both the measurements of CTN and Pτ .CTTCTTCTTCTTVALUE EVTS DOCUMENT ID TECN COMMENT1.01±0.12 OUR AVERAGE1.01±0.12 OUR AVERAGE1.01±0.12 OUR AVERAGE1.01±0.12 OUR AVERAGE0.87±0.20+0.10−0.12 9.1k ABREU 97G DLPH Eee m= 91.2 GeV1.06±0.13±0.05 120k BARATE 97D ALEP Eee m= 91.2 GeVCTNCTNCTNCTNVALUE EVTS DOCUMENT ID TECN COMMENT0.08±0.13±0.040.08±0.13±0.040.08±0.13±0.040.08±0.13±0.04 120k 1 BARATE 97D ALEP Eee m= 91.2 GeV1BARATE 97D ombine their value of CTN with the world average Pτ = −0.140± 0.007to obtain tan(gτV − gτA) = −0.57 ± 0.97.FORWARD-BACKWARD e+ e− → f f CHARGE ASYMMETRIESFORWARD-BACKWARD e+ e− → f f CHARGE ASYMMETRIESFORWARD-BACKWARD e+ e− → f f CHARGE ASYMMETRIESFORWARD-BACKWARD e+ e− → f f CHARGE ASYMMETRIESThese asymmetries are experimentally determined by tagging the respe -tive lepton or quark avor in e+ e− intera tions. Details of heavy a-vor ( - or b-quark) tagging at LEP are des ribed in the note on \TheZ boson" and ref. LEP-SLC 06. The Standard Model predi tions for LEPdata have been (re) omputed using the ZFITTER pa kage (version 6.36)with input parameters MZ=91.187 GeV, Mtop=174.3 GeV, MHiggs=150GeV, αs=0.119, α(5) (MZ )= 1/128.877 and the Fermi onstant GF=1.16637× 10−5 GeV−2 (see the note on \The Z boson" for referen es).For non-LEP data the Standard Model predi tions are as given by theauthors of the respe tive publi ations.A(0,e)FB CHARGE ASYMMETRY IN e+ e− → e+ e−A(0,e)FB CHARGE ASYMMETRY IN e+ e− → e+ e−A(0,e)FB CHARGE ASYMMETRY IN e+ e− → e+ e−A(0,e)FB CHARGE ASYMMETRY IN e+ e− → e+ e−OUR FIT is obtained using the t pro edure and orrelations as determinedby the LEP Ele troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06). For the Z peak, we report the pole asymmetry denedby (3/4)A2e as determined by the nine-parameter t to ross-se tion andlepton forward-ba kward asymmetry data.

STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN1.45±0.25 OUR FIT1.45±0.25 OUR FIT1.45±0.25 OUR FIT1.45±0.25 OUR FIT0.89±0.44 1.57 91.2 1 ABBIENDI 01A OPAL1.71±0.49 1.57 91.2 ABREU 00F DLPH1.06±0.58 1.57 91.2 ACCIARRI 00C L31.88±0.34 1.57 91.2 2 BARATE 00C ALEP1ABBIENDI 01A error in ludes approximately 0.38 due to statisti s, 0.16 due to eventsele tion systemati s, and 0.18 due to the theoreti al un ertainty in t- hannel predi tion.2BARATE 00C error in ludes approximately 0.31 due to statisti s, 0.06 due to experimentalsystemati s, and 0.13 due to the theoreti al un ertainty in t- hannel predi tion.A(0,µ)FB CHARGE ASYMMETRY IN e+ e− → µ+µ−A(0,µ)FB CHARGE ASYMMETRY IN e+ e− → µ+µ−A(0,µ)FB CHARGE ASYMMETRY IN e+ e− → µ+µ−A(0,µ)FB CHARGE ASYMMETRY IN e+ e− → µ+µ−OUR FIT is obtained using the t pro edure and orrelations as determinedby the LEP Ele troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06). For the Z peak, we report the pole asymmetry denedby (3/4)AeAµ as determined by the nine-parameter t to ross-se tionand lepton forward-ba kward asymmetry data.STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN1.69± 0.13 OUR FIT1.69± 0.13 OUR FIT1.69± 0.13 OUR FIT1.69± 0.13 OUR FIT1.59± 0.23 1.57 91.2 1 ABBIENDI 01A OPAL1.65± 0.25 1.57 91.2 ABREU 00F DLPH1.88± 0.33 1.57 91.2 ACCIARRI 00C L31.71± 0.24 1.57 91.2 2 BARATE 00C ALEP• • • We do not use the following data for averages, ts, limits, et . • • •9 ±30 −1.3 20 3 ABREU 95M DLPH7 ±26 −8.3 40 3 ABREU 95M DLPH−11 ±33 −24.1 57 3 ABREU 95M DLPH−62 ±17 −44.6 69 3 ABREU 95M DLPH−56 ±10 −63.5 79 3 ABREU 95M DLPH−13 ± 5 −34.4 87.5 3 ABREU 95M DLPH−29.0 + 5.0

− 4.8 ±0.5 −32.1 56.9 4 ABE 90I VNS− 9.9 ± 1.5 ±0.5 −9.2 35 HEGNER 90 JADE0.05± 0.22 0.026 91.14 5 ABRAMS 89D MRK2−43.4 ±17.0 −24.9 52.0 6 BACALA 89 AMY−11.0 ±16.5 −29.4 55.0 6 BACALA 89 AMY−30.0 ±12.4 −31.2 56.0 6 BACALA 89 AMY−46.2 ±14.9 −33.0 57.0 6 BACALA 89 AMY−29 ±13 −25.9 53.3 ADACHI 88C TOPZ+ 5.3 ± 5.0 ±0.5 −1.2 14.0 ADEVA 88 MRKJ−10.4 ± 1.3 ±0.5 −8.6 34.8 ADEVA 88 MRKJ−12.3 ± 5.3 ±0.5 −10.7 38.3 ADEVA 88 MRKJ−15.6 ± 3.0 ±0.5 −14.9 43.8 ADEVA 88 MRKJ− 1.0 ± 6.0 −1.2 13.9 BRAUNSCH... 88D TASS− 9.1 ± 2.3 ±0.5 −8.6 34.5 BRAUNSCH... 88D TASS−10.6 + 2.2

− 2.3 ±0.5 −8.9 35.0 BRAUNSCH... 88D TASS−17.6 + 4.4

− 4.3 ±0.5 −15.2 43.6 BRAUNSCH... 88D TASS− 4.8 ± 6.5 ±1.0 −11.5 39 BEHREND 87C CELL−18.8 ± 4.5 ±1.0 −15.5 44 BEHREND 87C CELL+ 2.7 ± 4.9 −1.2 13.9 BARTEL 86C JADE−11.1 ± 1.8 ±1.0 −8.6 34.4 BARTEL 86C JADE−17.3 ± 4.8 ±1.0 −13.7 41.5 BARTEL 86C JADE−22.8 ± 5.1 ±1.0 −16.6 44.8 BARTEL 86C JADE− 6.3 ± 0.8 ±0.2 −6.3 29 ASH 85 MAC− 4.9 ± 1.5 ±0.5 −5.9 29 DERRICK 85 HRS− 7.1 ± 1.7 −5.7 29 LEVI 83 MRK2−16.1 ± 3.2 −9.2 34.2 BRANDELIK 82C TASS1ABBIENDI 01A error is almost entirely on a ount of statisti s.2BARATE 00C error is almost entirely on a ount of statisti s.3ABREU 95M perform this measurement using radiative muon-pair events asso iated withhigh-energy isolated photons.4ABE 90I measurements in the range 50 ≤

√s ≤ 60.8 GeV.5ABRAMS 89D asymmetry in ludes both 9 µ+µ− and 15 τ+ τ− events.6BACALA 89 systemati error is about 5%.A(0,τ)FB CHARGE ASYMMETRY IN e+ e− → τ+ τ−A(0,τ)FB CHARGE ASYMMETRY IN e+ e− → τ+ τ−A(0,τ)FB CHARGE ASYMMETRY IN e+ e− → τ+ τ−A(0,τ)FB CHARGE ASYMMETRY IN e+ e− → τ+ τ−OUR FIT is obtained using the t pro edure and orrelations as determinedby the LEP Ele troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06). For the Z peak, we report the pole asymmetry denedby (3/4)AeAτ as determined by the nine-parameter t to ross-se tionand lepton forward-ba kward asymmetry data.STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN1.88± 0.17 OUR FIT1.88± 0.17 OUR FIT1.88± 0.17 OUR FIT1.88± 0.17 OUR FIT1.45± 0.30 1.57 91.2 1 ABBIENDI 01A OPAL2.41± 0.37 1.57 91.2 ABREU 00F DLPH2.60± 0.47 1.57 91.2 ACCIARRI 00C L31.70± 0.28 1.57 91.2 2 BARATE 00C ALEP

Page 33: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

643643643643See key on page 601 Gauge&HiggsBosonParti leListingsZ• • • We do not use the following data for averages, ts, limits, et . • • •

−32.8 + 6.4− 6.2 ±1.5 −32.1 56.9 3 ABE 90I VNS

− 8.1 ± 2.0 ±0.6 −9.2 35 HEGNER 90 JADE−18.4 ±19.2 −24.9 52.0 4 BACALA 89 AMY−17.7 ±26.1 −29.4 55.0 4 BACALA 89 AMY−45.9 ±16.6 −31.2 56.0 4 BACALA 89 AMY−49.5 ±18.0 −33.0 57.0 4 BACALA 89 AMY−20 ±14 −25.9 53.3 ADACHI 88C TOPZ−10.6 ± 3.1 ±1.5 −8.5 34.7 ADEVA 88 MRKJ− 8.5 ± 6.6 ±1.5 −15.4 43.8 ADEVA 88 MRKJ− 6.0 ± 2.5 ±1.0 8.8 34.6 BARTEL 85F JADE−11.8 ± 4.6 ±1.0 14.8 43.0 BARTEL 85F JADE− 5.5 ± 1.2 ±0.5 −0.063 29.0 FERNANDEZ 85 MAC− 4.2 ± 2.0 0.057 29 LEVI 83 MRK2−10.3 ± 5.2 −9.2 34.2 BEHREND 82 CELL− 0.4 ± 6.6 −9.1 34.2 BRANDELIK 82C TASS1ABBIENDI 01A error in ludes approximately 0.26 due to statisti s and 0.14 due to eventsele tion systemati s.2BARATE 00C error in ludes approximately 0.26 due to statisti s and 0.11 due to exper-imental systemati s.3ABE 90I measurements in the range 50 ≤

√s ≤ 60.8 GeV.4BACALA 89 systemati error is about 5%.A(0,ℓ)FB CHARGE ASYMMETRY IN e+ e− → ℓ+ ℓ−A(0,ℓ)FB CHARGE ASYMMETRY IN e+ e− → ℓ+ ℓ−A(0,ℓ)FB CHARGE ASYMMETRY IN e+ e− → ℓ+ ℓ−A(0,ℓ)FB CHARGE ASYMMETRY IN e+ e− → ℓ+ ℓ−For the Z peak, we report the pole asymmetry dened by (3/4)A2ℓasdetermined by the ve-parameter t to ross-se tion and lepton forward-ba kward asymmetry data assuming lepton universality. For details seethe note \The Z boson" and ref. LEP-SLC 06.STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN1.71±0.10 OUR FIT1.71±0.10 OUR FIT1.71±0.10 OUR FIT1.71±0.10 OUR FIT1.45±0.17 1.57 91.2 1 ABBIENDI 01A OPAL1.87±0.19 1.57 91.2 ABREU 00F DLPH1.92±0.24 1.57 91.2 ACCIARRI 00C L31.73±0.16 1.57 91.2 2 BARATE 00C ALEP1ABBIENDI 01A error in ludes approximately 0.15 due to statisti s, 0.06 due to eventsele tion systemati s, and 0.03 due to the theoreti al un ertainty in t- hannel predi tion.2BARATE 00C error in ludes approximately 0.15 due to statisti s, 0.04 due to experimentalsystemati s, and 0.02 due to the theoreti al un ertainty in t- hannel predi tion.A(0,u)FB CHARGE ASYMMETRY IN e+ e− → uuA(0,u)FB CHARGE ASYMMETRY IN e+ e− → uuA(0,u)FB CHARGE ASYMMETRY IN e+ e− → uuA(0,u)FB CHARGE ASYMMETRY IN e+ e− → uuSTD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN4.0±6.7±2.84.0±6.7±2.84.0±6.7±2.84.0±6.7±2.8 7.27.27.27.2 91.291.291.291.2 1 ACKERSTAFF 97T OPAL1ACKERSTAFF 97T measure the forward-ba kward asymmetry of various fast hadronsmade of light quarks. Then using SU(2) isospin symmetry and avor independen e fordown and strange quarks authors solve for the dierent quark types.A(0,s)FB CHARGE ASYMMETRY IN e+ e− → s sA(0,s)FB CHARGE ASYMMETRY IN e+ e− → s sA(0,s)FB CHARGE ASYMMETRY IN e+ e− → s sA(0,s)FB CHARGE ASYMMETRY IN e+ e− → s sThe s-quark asymmetry is derived from measurements of the forward-ba kward asymmetry of fast hadrons ontaining an s quark.STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN9.8 ±1.1 OUR AVERAGE9.8 ±1.1 OUR AVERAGE9.8 ±1.1 OUR AVERAGE9.8 ±1.1 OUR AVERAGE10.08±1.13±0.40 10.1 91.2 1 ABREU 00B DLPH6.8 ±3.5 ±1.1 10.1 91.2 2 ACKERSTAFF 97T OPAL1ABREU 00B tag the presen e of an s quark requiring a high-momentum-identied hargedkaon. The s-quark pole asymmetry is extra ted from the harged-kaon asymmetry tak-ing the expe ted d- and u-quark asymmetries from the Standard Model and using themeasured values for the - and b-quark asymmetries.2ACKERSTAFF 97T measure the forward-ba kward asymmetry of various fast hadronsmade of light quarks. Then using SU(2) isospin symmetry and avor independen e fordown and strange quarks authors solve for the dierent quark types. The value reportedhere orresponds then to the forward-ba kward asymmetry for \down-type" quarks.A(0, )FB CHARGE ASYMMETRY IN e+ e− → A(0, )FB CHARGE ASYMMETRY IN e+ e− → A(0, )FB CHARGE ASYMMETRY IN e+ e− → A(0, )FB CHARGE ASYMMETRY IN e+ e− → OUR FIT, whi h is obtained by a simultaneous t to several - and b-quark measurements as explained in the note \The Z boson" and ref.LEP-SLC 06, refers to the Z poleZ poleZ poleZ pole asymmetry. The experimental values,on the other hand, orrespond to the measurements arried out at therespe tive energies. STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN7.07± 0.35 OUR FIT7.07± 0.35 OUR FIT7.07± 0.35 OUR FIT7.07± 0.35 OUR FIT6.31± 0.93±0.65 6.35 91.26 1 ABDALLAH 04F DLPH5.68± 0.54±0.39 6.3 91.25 2 ABBIENDI 03P OPAL6.45± 0.57±0.37 6.10 91.21 3 HEISTER 02H ALEP6.59± 0.94±0.35 6.2 91.235 4 ABREU 99Y DLPH6.3 ± 0.9 ±0.3 6.1 91.22 5 BARATE 98O ALEP6.3 ± 1.2 ±0.6 6.1 91.22 6 ALEXANDER 97C OPAL8.3 ± 3.8 ±2.7 6.2 91.24 7 ADRIANI 92D L3

• • • We do not use the following data for averages, ts, limits, et . • • •3.1 ± 3.5 ±0.5 −3.5 89.43 1 ABDALLAH 04F DLPH11.0 ± 2.8 ±0.7 12.3 92.99 1 ABDALLAH 04F DLPH− 6.8 ± 2.5 ±0.9 −3.0 89.51 2 ABBIENDI 03P OPAL14.6 ± 2.0 ±0.8 12.2 92.95 2 ABBIENDI 03P OPAL−12.4 ±15.9 ±2.0 −9.6 88.38 3 HEISTER 02H ALEP− 2.3 ± 2.6 ±0.2 −3.8 89.38 3 HEISTER 02H ALEP− 0.3 ± 8.3 ±0.6 0.9 90.21 3 HEISTER 02H ALEP10.6 ± 7.7 ±0.7 9.6 92.05 3 HEISTER 02H ALEP11.9 ± 2.1 ±0.6 12.2 92.94 3 HEISTER 02H ALEP12.1 ±11.0 ±1.0 14.2 93.90 3 HEISTER 02H ALEP− 4.96± 3.68±0.53 −3.5 89.434 4 ABREU 99Y DLPH11.80± 3.18±0.62 12.3 92.990 4 ABREU 99Y DLPH− 1.0 ± 4.3 ±1.0 −3.9 89.37 5 BARATE 98O ALEP11.0 ± 3.3 ±0.8 12.3 92.96 5 BARATE 98O ALEP3.9 ± 5.1 ±0.9 −3.4 89.45 6 ALEXANDER 97C OPAL15.8 ± 4.1 ±1.1 12.4 93.00 6 ALEXANDER 97C OPAL−12.9 ± 7.8 ±5.5 −13.6 35 BEHREND 90D CELL7.7 ±13.4 ±5.0 −22.1 43 BEHREND 90D CELL−12.8 ± 4.4 ±4.1 −13.6 35 ELSEN 90 JADE−10.9 ±12.9 ±4.6 −23.2 44 ELSEN 90 JADE−14.9 ± 6.7 −13.3 35 OULD-SAADA 89 JADE1ABDALLAH 04F tag b and quarks using semileptoni de ays ombined with harge ow information from the hemisphere opposite to the lepton. Enri hed samples of and bb events are obtained using lifetime information.2ABBIENDI 03P tag heavy avors using events with one or two identied leptons. Thisallows the simultaneous tting of the b and quark forward-ba kward asymmetries aswell as the average B0-B0 mixing.3HEISTER 02H measure simultaneously b and quark forward-ba kward asymmetriesusing their semileptoni de ays to tag the quark harge. The avor separation is obtainedwith a dis riminating multivariate analysis.4ABREU 99Y tag Z → bb and Z → events by an ex lusive re onstru tion of severalD meson de ay modes (D∗+, D0, and D+ with their harge- onjugate states).5BARATE 98O tag Z → events requiring the presen e of high-momentum re on-stru ted D∗+, D+, or D0 mesons.6ALEXANDER 97C identify the b and events using a D/D∗ tag.7ADRIANI 92D use both ele tron and muon semileptoni de ays.A(0,b)FB CHARGE ASYMMETRY IN e+ e− → bbA(0,b)FB CHARGE ASYMMETRY IN e+ e− → bbA(0,b)FB CHARGE ASYMMETRY IN e+ e− → bbA(0,b)FB CHARGE ASYMMETRY IN e+ e− → bbOUR FIT, whi h is obtained by a simultaneous t to several - and b-quark measurements as explained in the note \The Z boson" and ref.LEP-SLC 06, refers to the Z poleZ poleZ poleZ pole asymmetry. The experimental values,on the other hand, orrespond to the measurements arried out at therespe tive energies. STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN9.92± 0.16 OUR FIT9.92± 0.16 OUR FIT9.92± 0.16 OUR FIT9.92± 0.16 OUR FIT9.58± 0.32± 0.14 9.68 91.231 1 ABDALLAH 05 DLPH10.04± 0.56± 0.25 9.69 91.26 2 ABDALLAH 04F DLPH9.72± 0.42± 0.15 9.67 91.25 3 ABBIENDI 03P OPAL9.77± 0.36± 0.18 9.69 91.26 4 ABBIENDI 02I OPAL9.52± 0.41± 0.17 9.59 91.21 5 HEISTER 02H ALEP10.00± 0.27± 0.11 9.63 91.232 6 HEISTER 01D ALEP7.62± 1.94± 0.85 9.64 91.235 7 ABREU 99Y DLPH9.60± 0.66± 0.33 9.69 91.26 8 ACCIARRI 99D L39.31± 1.01± 0.55 9.65 91.24 9 ACCIARRI 98U L39.4 ± 2.7 ± 2.2 9.61 91.22 10 ALEXANDER 97C OPAL• • • We do not use the following data for averages, ts, limits, et . • • •6.37± 1.43± 0.17 5.8 89.449 1 ABDALLAH 05 DLPH10.41± 1.15± 0.24 12.1 92.990 1 ABDALLAH 05 DLPH6.7 ± 2.2 ± 0.2 5.7 89.43 2 ABDALLAH 04F DLPH11.2 ± 1.8 ± 0.2 12.1 92.99 2 ABDALLAH 04F DLPH4.7 ± 1.8 ± 0.1 5.9 89.51 3 ABBIENDI 03P OPAL10.3 ± 1.5 ± 0.2 12.0 92.95 3 ABBIENDI 03P OPAL5.82± 1.53± 0.12 5.9 89.50 4 ABBIENDI 02I OPAL12.21± 1.23± 0.25 12.0 92.91 4 ABBIENDI 02I OPAL−13.1 ±13.5 ± 1.0 3.2 88.38 5 HEISTER 02H ALEP5.5 ± 1.9 ± 0.1 5.6 89.38 5 HEISTER 02H ALEP− 0.4 ± 6.7 ± 0.8 7.5 90.21 5 HEISTER 02H ALEP11.1 ± 6.4 ± 0.5 11.0 92.05 5 HEISTER 02H ALEP10.4 ± 1.5 ± 0.3 12.0 92.94 5 HEISTER 02H ALEP13.8 ± 9.3 ± 1.1 12.9 93.90 5 HEISTER 02H ALEP4.36± 1.19± 0.11 5.8 89.472 6 HEISTER 01D ALEP11.72± 0.97± 0.11 12.0 92.950 6 HEISTER 01D ALEP5.67± 7.56± 1.17 5.7 89.434 7 ABREU 99Y DLPH8.82± 6.33± 1.22 12.1 92.990 7 ABREU 99Y DLPH6.11± 2.93± 0.43 5.9 89.50 8 ACCIARRI 99D L313.71± 2.40± 0.44 12.2 93.10 8 ACCIARRI 99D L34.95± 5.23± 0.40 5.8 89.45 9 ACCIARRI 98U L311.37± 3.99± 0.65 12.1 92.99 9 ACCIARRI 98U L3− 8.6 ±10.8 ± 2.9 5.8 89.45 10 ALEXANDER 97C OPAL− 2.1 ± 9.0 ± 2.6 12.1 93.00 10 ALEXANDER 97C OPAL−71 ±34 + 7

− 8 −58 58.3 SHIMONAKA 91 TOPZ−22.2 ± 7.7 ± 3.5 −26.0 35 BEHREND 90D CELL

Page 34: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

644644644644Gauge & Higgs Boson Parti le ListingsZ−49.1 ±16.0 ± 5.0 −39.7 43 BEHREND 90D CELL−28 ±11 −23 35 BRAUNSCH... 90 TASS−16.6 ± 7.7 ± 4.8 −24.3 35 ELSEN 90 JADE−33.6 ±22.2 ± 5.2 −39.9 44 ELSEN 90 JADE3.4 ± 7.0 ± 3.5 −16.0 29.0 BAND 89 MAC−72 ±28 ±13 −56 55.2 SAGAWA 89 AMY1ABDALLAH 05 obtain an enri hed samples of bb events using lifetime information. Thequark (or antiquark) harge is determined with a neural network using the se ondaryvertex harge, the jet harge and parti le identi ation.2ABDALLAH 04F tag b and quarks using semileptoni de ays ombined with harge ow information from the hemisphere opposite to the lepton. Enri hed samples of and bb events are obtained using lifetime information.3ABBIENDI 03P tag heavy avors using events with one or two identied leptons. Thisallows the simultaneous tting of the b and quark forward-ba kward asymmetries aswell as the average B0-B0 mixing.4ABBIENDI 02I tag Z0 → bb de ays using a ombination of se ondary vertex and leptontags. The sign of the b-quark harge is determined using an in lusive tag based on jet,vertex, and kaon harges.5HEISTER 02H measure simultaneously b and quark forward-ba kward asymmetriesusing their semileptoni de ays to tag the quark harge. The avor separation is obtainedwith a dis riminating multivariate analysis.6HEISTER 01D tag Z → bb events using the impa t parameters of harged tra ks omplemented with information from displa ed verti es, event shape variables, and leptonidenti ation. The b-quark dire tion and harge is determined using the hemisphere harge method along with information from fast kaon tagging and harge estimators ofprimary and se ondary verti es. The hange in the quoted value due to variation of A FBand Rb is given as +0.103 (A FB 0.0651) −0.440 (Rb 0.21585).7ABREU 99Y tag Z → bb and Z → events by an ex lusive re onstru tion of severalD meson de ay modes (D∗+, D0, and D+ with their harge- onjugate states).8ACCIARRI 99D tag Z → bb events using high p and pT leptons. The analysis determinessimultaneously a mixing parameter χb = 0.1192 ± 0.0068 ± 0.0051 whi h is used to orre t the observed asymmetry.9ACCIARRI 98U tag Z → bb events using lifetime and measure the jet harge using thehemisphere harge.10ALEXANDER 97C identify the b and events using a D/D∗ tag.CHARGE ASYMMETRY IN e+ e− → qqCHARGE ASYMMETRY IN e+ e− → qqCHARGE ASYMMETRY IN e+ e− → qqCHARGE ASYMMETRY IN e+ e− → qqSummed over ve lighter avors.Experimental and Standard Model values are somewhat event-sele tiondependent. Standard Model expe tations ontain some assumptions onB0-B0 mixing and on other ele troweak parameters.STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN• • • We do not use the following data for averages, ts, limits, et . • • •− 0.76±0.12±0.15 91.2 1 ABREU 92I DLPH4.0 ±0.4 ±0.63 4.0 91.3 2 ACTON 92L OPAL9.1 ±1.4 ±1.6 9.0 57.9 ADACHI 91 TOPZ− 0.84±0.15±0.04 91 DECAMP 91B ALEP8.3 ±2.9 ±1.9 8.7 56.6 STUART 90 AMY11.4 ±2.2 ±2.1 8.7 57.6 ABE 89L VNS6.0 ±1.3 5.0 34.8 GREENSHAW 89 JADE8.2 ±2.9 8.5 43.6 GREENSHAW 89 JADE1ABREU 92I has 0.14 systemati error due to un ertainty of quark fragmentation.2ACTON 92L use the weight fun tion method on 259k sele ted Z → hadrons events.The systemati error in ludes a ontribution of 0.2 due to B0-B0 mixing ee t, 0.4due to Monte Carlo (MC) fragmentation un ertainties and 0.3 due to MC statisti s.ACTON 92L derive a value of sin2θeW to be 0.2321 ± 0.0017 ± 0.0028.CHARGE ASYMMETRY IN pp → Z → e+ e−CHARGE ASYMMETRY IN pp → Z → e+ e−CHARGE ASYMMETRY IN pp → Z → e+ e−CHARGE ASYMMETRY IN pp → Z → e+ e−STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN• • • We do not use the following data for averages, ts, limits, et . • • •5.2±5.9±0.4 91 ABE 91E CDFANOMALOUS Z Z γ, Z γ γ, AND Z Z V COUPLINGSANOMALOUS Z Z γ, Z γ γ, AND Z Z V COUPLINGSANOMALOUS Z Z γ, Z γ γ, AND Z Z V COUPLINGSANOMALOUS Z Z γ, Z γ γ, AND Z Z V COUPLINGSANOMALOUS ZZγ, Zγγ, AND ZZV COUPLINGS

Revised September 2013 by M.W. Grunewald (U. CollegeDublin and U. Ghent) and A. Gurtu (Formerly Tata Inst.).

In on-shell Zγ production, deviations from the Standard

Model for the Zγγ∗ and ZγZ∗ couplings may be described in

terms of eight parameters, hVi (i = 1, 4; V = γ, Z) [1]. The

parameters hγi describe the Zγγ∗ couplings and the param-

eters hZi the ZγZ∗ couplings. In this formalism hV

1 and hV2

lead to CP -violating and hV3 and hV

4 to CP -conserving effects.

All these anomalous contributions to the cross section increase

rapidly with center-of-mass energy. In order to ensure unitarity,

these parameters are usually described by a form-factor rep-

resentation, hVi (s) = hV

i/(1 + s/Λ2)n, where Λ is the energy

scale for the manifestation of a new phenomenon and n is a

sufficiently large power. By convention one uses n = 3 for hV1,3

and n = 4 for hV2,4. Usually limits on hV

i ’s are put assuming

some value of Λ, sometimes ∞.

In on-shell ZZ production, deviations from the Standard

Model for the ZZγ∗ and ZZZ∗ couplings may be described by

means of four anomalous couplings fVi (i = 4, 5; V = γ, Z) [2].

As above, the parameters fγi describe the ZZγ∗ couplings

and the parameters fZi the ZZZ∗ couplings. The anomalous

couplings fV5 lead to violation of C and P symmetries while fV

4

introduces CP violation. Also here, formfactors depending on

a scale Λ are used.

All these couplings hVi and fV

i are zero at tree level in

the Standard Model; they are measured in e+e−, pp and pp

collisions at LEP, Tevatron and LHC.

References

1. U. Baur and E.L. Berger Phys. Rev. D47, 4889 (1993).

2. K. Hagiwara et al., Nucl. Phys. B282, 253 (1987).hVihVihVihVi Combining the LEP-2 results taking into a ount the orrelations, the following 95%CL limits are derived [SCHAEL 13A:−0.12 < hZ1 < +0.11, −0.07 < hZ2 < +0.07,−0.19 < hZ3 < +0.06, −0.04 < hZ4 < +0.13,−0.05 < hγ1 < +0.05, −0.04 < hγ2 < +0.02,−0.05 < hγ3 < +0.00, +0.01 < hγ4 < +0.05.Some of the re ent results from the Tevatron and LHC experiments individually surpassthe ombined LEP-2 results in pre ision (see below).VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •1 KHACHATRY...15AC CMS Epp m = 8 TeV2 CHATRCHYAN14AB CMS Epp m = 7 TeV3 AAD 13AN ATLS Epp m = 7 TeV4 CHATRCHYAN13BI CMS Epp m = 7 TeV5 ABAZOV 12S D0 Epp m = 1.96 TeV6 AALTONEN 11S CDF Epp m = 1.96 TeV7 CHATRCHYAN11M CMS Epp m = 7 TeV8 ABAZOV 09L D0 Epp m = 1.96 TeV9 ABAZOV 07M D0 Epp m = 1.96 TeV10 ABDALLAH 07C DLPH Eee m = 183208 GeV11 ACHARD 04H L3 Eee m = 183208 GeV12 ABBIENDI,G 00C OPAL Eee m = 189 GeV13 ABBOTT 98M D0 Epp m = 1.8 TeV14 ABREU 98K DLPH Eee m = 161, 172 GeV1KHACHATRYAN 15AC study Z γ events in 8 TeV pp intera tions, where the Z de aysinto 2 same- avor, opposite sign leptons (e or µ) and a photon with pT > 15 GeV.The pT of a lepton is required to be > 20 GeV/ , their ee tive mass > 50 GeV, andthe photon should have a separation R > 0.7 with ea h lepton. The observed pTdistribution of the photons is used to extra t the 95% C.L. limits: −3.8 × 10−3 <hZ3 < 3.7 × 10−3, −3.1 × 10−5 < hZ4 < 3.0 × 10−5, −4.6 × 10−3 < hγ3 <4.6× 10−3, −3.6× 10−5 < hγ4 < 3.5× 10−5.

Page 35: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

645645645645See key on page 601 Gauge & Higgs Boson Parti le ListingsZ2CHATRCHYAN 14AB measure Z γ produ tion ross se tion for pγT

> 15 GeV and R(ℓγ)> 0.7, whi h is the separation between the γ and the nal state harged lepton (e orµ) in the azimuthal angle-pseudorapidity (φ − η) plane. The di-lepton mass is requiredto be > 50 GeV. After ba kground subtra tion the number of e e γ and µµγ events isdetermined to be 3160 ± 120 and 5030 ± 233 respe tively, ompatible with expe tationsfrom the SM. This leads to a 95% CL limits of −1 × 10−2 < hγ3 < 1 × 10−2,−9 × 10−5 < hγ4 < 9 × 10−5, −9× 10−3 < hZ3 < 9 × 10−3, −8× 10−5 <hZ4 < 8× 10−5, assuming hV1 and hV2 have SM values, V = γ or Z .3AAD 13AN study Z γ produ tion in pp ollisions. In events with no additional jet, 1417(2031) Z de ays to ele tron (muon) pairs are sele ted, with an expe ted ba kground of156 ± 54 (244 ± 64) events, as well as 662 Z de ays to neutrino pairs with an expe tedba kground of 302±42 events. Analysing the photon pT spe trum above 100 GeV yieldsthe 95% C.L. limts: −0.013 < hZ3 < 0.014, −8.7 × 10−5 < hZ4 < 8.7 × 10−5,−0.015 < hγ3 < 0.016, −9.4× 10−5 < hγ4 < 9.2× 10−5. Supersedes AAD 12BX.4 CHATRCHYAN 13BI determine the Z γ → ν ν γ ross se tion by sele ting events with aphoton of ET > 145 GeV and a 6ET > 130 GeV. 73 andidate events are observed withan expe ted SM ba kground of 30.2± 6.5. The ET spe trum of the photon is used to set95% C.L. limits as follows: ∣∣hZ3 ∣∣ < 2.7×10−3, ∣∣hZ4 ∣∣ < 1.3×10−5, ∣∣hγ3 ∣∣ < 2.9×10−3,∣∣hγ4 ∣∣ < 1.5× 10−5.5ABAZOV 12S study Z γ produ tion in pp ollisions at √s = 1.96 TeV using 6.2 fb−1 ofdata where the Z de ays to ele tron (muon) pairs and the photon has at least 10 GeVof transverse momentum. In data, 304 (308) di-ele tron (di-muon) events are observedwith an expe ted ba kground of 255 ± 16 (285 ± 24) events. Based on the photonpT spe trum, and in luding also earlier data and the Z → ν ν de ay mode (fromABAZOV 09L), the following 95% C.L. limits are reported: ∣∣hZ03∣∣ < 0.026, ∣∣hZ04∣∣ <0.0013, ∣∣hγ03∣∣ < 0.027, ∣∣hγ04∣∣ < 0.0014 for a form fa tor s ale of = 1.5 TeV.6AALTONEN 11S study Z γ events in pp intera tions at √s = 1.96 TeV with integratedluminosity 5.1 fb−1 for Z → e+ e− /µ+µ− and 4.9 fb−1 for Z → ν ν. For the harged lepton ase, the two leptons must be of the same avor with the transversemomentum/energy of one > 20 GeV and the other > 10 GeV. The isolated photonmust have ET > 50 GeV. They observe 91 events with 87.2 ± 7.8 events expe ted fromstandard model pro esses. For the ν ν ase they require solitary photons with ET > 25GeV and missing ET > 25 GeV and observe 85 events with standard model expe tationof 85.9 ± 5.6 events. Taking the form fa tor = 1.5 TeV they derive 95% C.L. limitsas ∣∣hγ3 ,Z ∣∣ < 0.022 and ∣∣hγ4 ,Z ∣∣ < 0.0009.7CHATRCHYAN 11M study Z γ produ tion in pp ollisions at √

s = 7 TeV using 36pb−1 pp data, where the Z de ays to e+ e− or µ+µ−. The total ross se tionsare measured for photon transverse energy EγT

> 10 GeV and spatial separation from harged leptons in the plane of pseudo rapidity and azimuthal angle R(ℓ,γ)> 0.7 withthe dilepton invariant mass requirement of Mℓℓ > 50 GeV. The number of e+ e− γ andµ+µ− γ andidates is 81 and 90 with estimated ba kgrounds of 20.5±2.5 and 27.3±3.2events respe tively. The 95% CL limits for Z Z γ ouplings are −0.05 < hZ3 < 0.06and −0.0005 < hZ4 < 0.0005, and for Z γ γ ouplings are −0.07 < hγ3 < 0.07 and−0.0005 < hγ4 < 0.0006.8ABAZOV 09L study Z γ, Z → ν ν produ tion in pp ollisions at 1.96 TeV C.M. energy.They sele t 51 events with a photon of transverse energy ET larger than 90 GeV, withan expe ted ba kground of 17 events. Based on the photon ET spe trum and in ludingalso Z de ays to harged leptons (from ABAZOV 07M), the following 95% CL limits arereported: ∣∣hγ30∣∣ < 0.033, ∣∣hγ40∣∣ < 0.0017, ∣∣hZ30∣∣ < 0.033, ∣∣hZ40∣∣ < 0.0017.9ABAZOV 07M use 968 pp → e+ e− /µ+µ− γX andidates, at 1.96 TeV enter ofmass energy, to tag pp → Z γ events by requiring ET (γ)> 7 GeV, lepton-gammaseparation Rℓγ > 0.7, and di-lepton invariant mass > 30 GeV. The ross se tion is inagreement with the SM predi tion. Using these Z γ events they obtain 95% C.L. limitson ea h hVi , keeping all others xed at their SM values. They report: −0.083 < hZ30 <0.082, −0.0053 < hZ40 < 0.0054, −0.085 < hγ30 < 0.084, −0.0053 < hγ40 < 0.0054,for the form fa tor s ale = 1.2 TeV.10Using data olle ted at √

s = 183208, ABDALLAH 07C sele t 1,877 e+ e− → Z γevents with Z → qq or ν ν, 171 e+ e− → Z Z events with Z → qq or lepton pair(ex ept an expli it τ pair), and 74 e+ e− → Z γ∗ events with a qqµ+µ− or qq e+ e−signature, to derive 95% CL limits on hVi . Ea h limit is derived with other parametersset to zero. They report: −0.23 < hZ1 < 0.23, −0.30 < hZ3 < 0.16, −0.14 < hγ1 <0.14, −0.049 < hγ3 < 0.044.11ACHARD 04H sele t 3515 e+ e− → Z γ events with Z → qq or ν ν at √s = 189209GeV to derive 95% CL limits on hVi . For deriving ea h limit the other parameters arexed at zero. They report: −0.153 < hZ1 < 0.141, −0.087 < hZ2 < 0.079, −0.220 <hZ3 < 0.112, −0.068 < hZ4 < 0.148, −0.057 < hγ1 < 0.057, −0.050 < hγ2 < 0.023,

−0.059 < hγ3 < 0.004, −0.004 < hγ4 < 0.042.12ABBIENDI,G 00C study e+ e− → Z γ events (with Z → qq and Z → ν ν)at 189 GeV to obtain the entral values (and 95% CL limits) of these ouplings:hZ1 = 0.000 ± 0.100 (−0.190, 0.190), hZ2 = 0.000 ± 0.068 (−0.128, 0.128), hZ3 =−0.074+0.102

−0.103 (−0.269, 0.119), hZ4 = 0.046 ± 0.068 (−0.084, 0.175), hγ1= 0.000 ±0.061 (−0.115, 0.115), hγ2= 0.000 ± 0.041 (−0.077, 0.077), hγ3= −0.080+0.039−0.041(−0.164, − 0.006), hγ4= 0.064+0.033

−0.030 (+0.007, + 0.134). The results are derivedassuming that only one oupling at a time is dierent from zero.13ABBOTT 98M study pp → Z γ + X, with Z → e+ e−, µ+µ−, ν ν at 1.8 TeV, toobtain 95% CL limits at = 750 GeV: ∣∣hZ30∣∣ < 0.36, ∣∣hZ40∣∣ < 0.05 (keeping hγi=0), and

∣∣hγ30∣∣ < 0.37, ∣∣hγ40∣∣ < 0.05 (keeping hZi =0). Limits on the CP-violating ouplings are∣∣hZ10∣∣ < 0.36, ∣∣hZ20∣∣ < 0.05 (keeping hγi =0), and ∣∣hγ10∣∣ < 0.37, ∣∣hγ20∣∣ < 0.05 (keepinghZi =0).

14ABREU 98K determine a 95% CL upper limit on σ(e+ e− → γ+ invisible parti les) <2.5 pb using 161 and 172 GeV data. This is used to set 95% CL limits on ∣∣hγ30∣∣ < 0.8 and∣∣hZ30∣∣ < 1.3, derived at a s ale =1 TeV and with n=3 in the form fa tor representation.f Vif Vif Vif Vi Combining the LEP-2 results taking into a ount the orrelations, the following 95%CL limits are derived [SCHAEL 13A:

−0.28 < f Z4 < +0.32, −0.34 < f Z5 < +0.35,−0.17 < f γ4 < +0.19, −0.35 < f γ5 < +0.32.Some of the re ent results from the Tevatron and LHC experiments individually surpassthe ombined LEP-2 results in pre ision (see below).VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •1 KHACHATRY...15B CMS Epp m = 8 TeV2 KHACHATRY...15BC CMS Epp m = 7, 8 TeV3 AAD 13Z ATLS Epp m = 7 TeV4 CHATRCHYAN13B CMS Epp m = 7 TeV5 SCHAEL 09 ALEP Eee m = 192209 GeV6 ABAZOV 08K D0 Epp m = 1.96 TeV7 ABDALLAH 07C DLPH Eee m = 183208 GeV8 ABBIENDI 04C OPAL9 ACHARD 03D L31KHACHATRYAN 15B study Z Z produ tion in 8 TeV pp ollisions. In the de ay modesZ Z → 4e, 4µ, 2e 2µ, 54, 75, 148 events are observed, with an expe ted ba kground of2.2 ± 0.9, 1.2 ± 0.6, and 2.4 ± 1.0 events, respe tively. Analysing the 4-lepton invariantmass spe trum in the range from 110 GeV to 1200 GeV, the following 95% C.L. limitsare obtained: ∣∣fZ4 ∣∣ < 0.004, ∣∣f Z5 ∣∣ < 0.004, ∣∣f γ4 ∣∣ < 0.005, ∣∣f γ5 ∣∣ < 0.005.2KHACHATRYAN 15BC use the ross se tion measurement of the nal state pp → Z Z →2ℓ2ν, (ℓ being an ele tron or a muon) at 7 and 8 TeV to put limits on these triple gauge ouplings. Ee tive mass of the harged lepton pair is required to be in the range83.598.5 GeV and the dilepton pT > 45 GeV. The redu ed missing ET is requiredto be > 65 GeV, whi h takes into a ount the fake missing ET due to dete tor ee ts.The numbers of e+ e− and µ+µ− events sele ted are 35 and 40 at 7 TeV and 176 and271 at 8 TeV respe tively. The produ tion ross se tions so obtained are in agreementwith SM predi tions. The following 95% C.L. limits are set: −0.0028 < fZ4 < 0.0032,−0.0037 < f γ4 < 0.0033, −0.0029 < fZ5 < 0.0031, −0.0033 < f γ5 < 0.0037.Combining with previous results (KHACHATRYAN 15B and CHATRCHYAN 13B) whi hin lude 7 TeV and 8 TeV data on the nal states pp → Z Z → 2ℓ2ℓ′ where ℓ and ℓ′ arean ele tron or a muon, the best limits are −0.0022 < fZ4 < 0.0026, −0029 < f γ4 <0.0026, −0.0023 < fZ5 < 0.0023, −0026 < f γ5 < 0.0027.3AAD 13Z study Z Z produ tion in pp ollisions at √

s = 7 TeV. In the Z Z →ℓ+ ℓ− ℓ′+ ℓ′− nal state they observe a total of 66 events with an expe ted ba kgroundof 0.9± 1.3. In the Z Z → ℓ+ ℓ− ν ν nal state they observe a total of 87 events with anexpe ted ba kground of 46.9± 5.2. The limits on anomalous TGCs are determined usingthe observed and expe ted numbers of these Z Z events binned in pZT . The 95% C.L.are as follows: for form fa tor s ale = ∞, −0.015 < f γ4 < 0.015, −0.013 < fZ4 <0.013, −0.016 < f γ5 < 0.015, −0.013 < f Z5 < 0.013; for form fa tor s ale =3 TeV, −0.022 < f γ4 < 0.023, −0.019 < fZ4 < 0.019, −0.023 < f γ5 < 0.023,−0.020 < fZ5 < 0.019.4CHATRCHYAN 13B study Z Z produ tion in pp ollisions and sele t 54 Z Z andidatesin the Z de ay hannel with ele trons or muons with an expe ted ba kground of 1.4± 0.5events. The resulting 95% C.L. ranges are: −0.013 < f γ4 < 0.015, −0.011 < fZ4 <0.012, −0.014 < f γ5 < 0.014, −0.012 < fZ5 < 0.012.5Using data olle ted in the enter of mass energy range 192209 GeV, SCHAEL 09 sele t318 e+ e− → Z Z events with 319.4 expe ted from the standard model. Using thisdata they derive the following 95% CL limits: −0.321 < f γ4 < 0.318, −0.534 < fZ4 <0.534, −0.724 < f γ5 < 0.733, −1.194 < fZ5 < 1.190.6ABAZOV 08K sear h for Z Z and Z γ∗ events with 1 fb−1 pp data at √s = 1.96 TeV in(e e)(e e), (µµ)(µµ), (e e)(µµ) nal states requiring the lepton pair masses to be > 30GeV. They observe 1 event, whi h is onsistent with an expe ted signal of 1.71 ± 0.15events and a ba kground of 0.13 ± 0.03 events. From this they derive the followinglimits, for a form fa tor () value of 1.2 TeV: −0.28 < fZ40 < 0.28, −0.31 < fZ50 <0.29, −0.26 < f γ40 < 0.26, −0.30 < f γ50 < 0.28.7Using data olle ted at √s = 183208 GeV, ABDALLAH 07C sele t 171 e+ e− → Z Zevents with Z → qq or lepton pair (ex ept an expli it τ pair), and 74 e+ e− → Z γ∗events with a qqµ+µ− or qq e+ e− signature, to derive 95% CL limits on f Vi . Ea hlimit is derived with other parameters set to zero. They report: −0.40 < fZ4 < 0.42,−0.38 < fZ5 < 0.62, −0.23 < f γ4 < 0.25, −0.52 < f γ5 < 0.48.8ABBIENDI 04C study Z Z produ tion in e+ e− ollisions in the C.M. energy range190209 GeV. They sele t 340 events with an expe ted ba kground of 180 events. In- luding the ABBIENDI 00N data at 183 and 189 GeV (118 events with an expe tedba kground of 65 events) they report the following 95% CL limits: −0.45 <f Z4 < 0.58,−0.94 <f Z5 < 0.25, −0.32 <f γ4 < 0.33, and −0.71 <f γ5 < 0.59.9ACHARD 03D study Z -boson pair produ tion in e+ e− ollisions in the C.M. energyrange 200209 GeV. They sele t 549 events with an expe ted ba kground of 432 events.In luding the ACCIARRI 99G and ACCIARRI 99O data (183 and 189 GeV respe tively, 286

Page 36: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

646646646646Gauge & Higgs Boson Parti le ListingsZ events with an expe ted ba kground of 241 events) and the 192202 GeV ACCIARRI 01Iresults (656 events, expe ted ba kground of 512 events), they report the following 95%CL limits: −0.48 ≤ f Z4 ≤ 0.46, −0.36 ≤ f Z5 ≤ 1.03, −0.28 ≤ f γ4 ≤ 0.28, and −0.40 ≤f γ5 ≤ 0.47. ANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W/Z QUARTIC COUPLINGS (QGCS)

Revised November 2015 by M.W. Grunewald (U. CollegeDublin) and A. Gurtu (Formerly Tata Inst.).

Quartic couplings, WWZZ, WWZγ, WWγγ, and ZZγγ,

were studied at LEP and Tevatron at energies at which the

Standard Model predicts negligible contributions to multiboson

production. Thus, to parametrize limits on these couplings, an

effective theory approach is adopted which supplements the

Standard Model Lagrangian with higher dimensional operators

which include quartic couplings. The LEP collaborations chose

the lowers dimensional representation of operators (dimension

6) which presumes the SU(2)×U(1) gauge symmetry is broken

by means other than the conventional Higgs scalar doublet [1–3].

In this representation possible quartic couplings, a0, ac, an, are

expressed in terms of the following dimension-6 operators [1,2];

L06 = − e2

16Λ2 a0 F µν Fµν~Wα · ~Wα

Lc6 = − e2

16Λ2 ac F µα Fµβ~W β · ~Wα

Ln6 = −i e2

16Λ2 anǫijk W(i)µα W

(j)ν W (k)αF µν

L06 = − e2

16Λ2 a0 F µν Fµν~Wα · ~Wα

Ln6 = −i e2

16Λ2 anǫijk W(i)µα W

(j)ν W (k)αF µν

where F, W are photon and W fields, L06 and Lc

6 conserve C,

P separately (L06 conserves only C) and generate anomalous

W+W−γγ and ZZγγ couplings, Ln6 violates CP (Ln

6 violates

both C and P ) and generates an anomalous W+W−Zγ cou-

pling, and Λ is an energy scale for new physics. For the ZZγγ

coupling the CP -violating term represented by Ln6 does not con-

tribute. These couplings are assumed to be real and to vanish

at tree level in the Standard Model.

Within the same framework as above, a more recent de-

scription of the quartic couplings [3] treats the anomalous parts

of the WWγγ and ZZγγ couplings separately, leading to two

sets parametrized as aV0 /Λ2 and aV

c /Λ2, where V = W or Z.

With the discovery of a Higgs at the LHC in 2012, it is

then useful to go to the next higher dimensional representa-

tion (dimension 8 operators) in which the gauge symmetry is

broken by the conventional Higgs scalar doublet [3,4]. There

are 14 operators which can contribute to the anomalous quartic

coupling signal. Some of the operators have analogues in the

dimension 6 scheme. The CMS collaboration, [5], have used

this parametrization, in which the connections between the two

schemes are also summarized:

LAQGC = − e2

8

aW0

Λ2FµνF µνW+aW−

a

− e2

16

aWc

Λ2FµνF

µa(W+νW−

a + W−νW+a )

− e2g2κW0

Λ2FµνZ

µνW+aW−

a

− e2g2

2

κWc

Λ2FµνZ

µa(W+νW−

a + W−νW+a )

+fT,0

Λ4Tr[WµνW

µν ] × Tr[WαβWαβ ]

The energy scale of possible new physics is Λ, and g =

e/sin(θW ), e being the unit electric charge and θW the Wein-

berg angle. The field tensors are described in [3,4].

The two dimension 6 operators aW0 /Λ2 and aW

c /Λ2 are asso-

ciated with the WWγγ vertex. Among dimension 8 operators,

κW0 /Λ2 and κW

c /Λ2 are associated with the WWZγ vertex,

whereas the parameter fT,0/Λ4 contributes to both vertices.

There is a relationship between these two dimension 6 parame-

ters and the dimension 8 parameters fM,i/Λ4 as follows [3]:

aW0

Λ2= −4M2

W

g2

fM,0

Λ4− 8M2

W

g′2fM,2

Λ4

aWc

Λ2= −4M2

W

g2

fM,1

Λ4− 8M2

W

g′2fM,3

Λ4

where g′ = e/cos(θW ) and MW is the invariant mass of

the W boson. This relation provides a translation between lim-

its on dimension 6 operators aW0,c and fM,j/Λ4. It is further

required [4] that fM,0 = 2fM,2 and fM,1 = 2fM,3 which sup-

presses contributions to the WWZγ vertex. The complete set of

Lagrangian contributions as presented in [4] corresponds to 19

anomalous couplings in total – fS,i, i = 1, 2, fM,i, i = 0, . . . , 8

and fT,i, i = 0, . . . , 9 – each scaled by 1/Λ4.

The ATLAS collaboration [6], on the other hand, follows

a K-matrix driven approach of Ref. 7 in which the anomalous

couplings can be expressed in terms of two parameters α4 and

α5, which account for all BSM effects.

It is the early stages in the determination of quartic cou-

plings by the LHC experiments. It is hoped that the two

collaborations, ATLAS and CMS, will agree to use at least one

common set of parameters to express these limits to enable the

reader to make a comparison and allow for a possible LHC

combination.

References

1. G. Belanger and F. Boudjema, Phys. Lett. B288, 201(1992).

2. J.W. Stirling and A. Werthenbach, Eur. Phys. J. C14, 103(2000);J.W. Stirling and A. Werthenbach, Phys. Lett. B466, 369(1999);A. Denner et al., Eur. Phys. J. C20, 201 (2001);G. Montagna et al., Phys. Lett. B515, 197 (2001).

3. G. Belanger et al., Eur. Phys. J. C13, 283 (2000).

4. O.J.P. Eboli, M.C. Gonzalez-Garcia, and S.M. Lietti, Phys.Rev. D69, 095005 (2004);

O.J.P. Eboli, M.C. Gonzalez-Garcia, and J.K. Mizukoshi,Phys. Rev. D77, 073005 (2006).

5. S. Chatrchyan et al., Phys. Rev. D90, 032008 (2014);S. Chatrchyan et al., Phys. Rev. Lett. 114, 051801 (2015).

6. G. Aad et al., Phys. Rev. Lett. 113, 141803 (2014).

Page 37: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

647647647647See key on page 601 Gauge&HiggsBosonParti le ListingsZ7. A. Albateanu, W. Killian, and J. Reuter, JHEP 0811, 010

(2008).a0/2, a /2a0/2, a /2a0/2, a /2a0/2, a /2Combining published and unpublished preliminary LEP results the following 95% CLintervals for the QGCs asso iated with the Z Z γ γ vertex are derived (CERN-PH-EP/2005-051 or hep-ex/0511027):−0.008 <aZ0 /2 < +0.021−0.029 <aZ /2 < +0.039Anomalous Z quarti ouplings an also be measured by the experiments at the Teva-tron and the LHC. As dis ussed in the review on \Anomalous W /Z quarti ouplings(QGCS)," the measurements are typi ally done using dierent operator expansionswhi h then do not allow the results to be ompared and averaged. At least one ommon framework should be agreed upon for use in future publi ations by the exper-iments.VALUE DOCUMENT ID TECN

• • • We do not use the following data for averages, ts, limits, et . • • •1 ABBIENDI 04L OPAL2 HEISTER 04A ALEP3 ACHARD 02G L31ABBIENDI 04L sele t 20 e+ e− → ν ν γ γ a oplanar events in the energy range 180209GeV and 176 e+ e− → qq γ γ events in the energy range 130209 GeV. These samplesare used to onstrain possible anomalous W+W− γ γ and Z Z γ γ quarti ouplings.Further ombining with the W+W− γ sample of ABBIENDI 04B the following oneparameter 95% CL limits are obtained: −0.007 < aZ0 /2 < 0.023 GeV−2, −0.029 <aZ /2 < 0.029 GeV−2, −0.020 < aW0 /2 < 0.020 GeV−2, −0.052 < aW /2 <0.037 GeV−2.2 In the CM energy range 183 to 209 GeV HEISTER 04A sele t 30 e+ e− → ν ν γ γ eventswith two a oplanar, high energy and high transverse momentum photons. The photonphoton a oplanarity is required to be > 5, Eγ/√s > 0.025 (the more energeti photonhaving energy > 0.2 √s), pTγ

/Ebeam > 0.05 and ∣∣ os θγ∣∣ < 0.94. A likelihood tto the photon energy and re oil missing mass yields the following oneparameter 95%CL limits: −0.012 < aZ0 /2 < 0.019 GeV−2, −0.041 < aZ /2 < 0.044 GeV−2,

−0.060 < aW0 /2 < 0.055 GeV−2, −0.099 < aW /2 < 0.093 GeV−2.3ACHARD 02G study e+ e− → Z γ γ → qq γ γ events using data at enter-of-massenergies from 200 to 209 GeV. The photons are required to be isolated, ea h with energy>5 GeV and ∣∣ osθ∣∣ < 0.97, and the di-jet invariant mass to be ompatible with thatof the Z boson (74111 GeV). Cuts on Z velo ity (β < 0.73) and on the energy of themost energeti photon redu e the ba kgrounds due to non-resonant produ tion of theqq γ γ state and due to ISR respe tively, yielding a total of 40 andidate events of whi h8.6 are expe ted to be due to ba kground. The energy spe tra of the least energeti photon are tted for all ten enter-of-mass energy values from 130 GeV to 209 GeV(as obtained adding to the present analysis 130202 GeV data of ACCIARRI 01E, fora total of 137 events with an expe ted ba kground of 34.1 events) to obtain the ttedvalues a0/2= 0.00+0.02

−0.01 GeV−2 and a /2= 0.03+0.01−0.02 GeV−2, where the otherparameter is kept xed to its Standard Model value (0). A simultaneous t to bothparameters yields the 95% CL limits −0.02 GeV−2 <a0/2 < 0.03 GeV−2 and −0.07GeV−2 <a /2 < 0.05 GeV−2.Z REFERENCESZ REFERENCESZ REFERENCESZ REFERENCESAAD 15BT JHEP 1509 049 G. Aad et al. (ATLAS Collab.)AAD 15I PRL 114 121801 G. Aad et al. (ATLAS Collab.)KHACHATRY... 15AC JHEP 1504 164 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15B PL B740 250 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15BC EPJ C75 511 V. Kha hatryan et al. (CMS Collab.)AAD 14AU PR D90 072010 G. Aad et al. (ATLAS Collab.)AAD 14N PRL 112 231806 G. Aad et al. (ATLAS Collab.)AALTONEN 14E PRL 112 111803 T. Aaltonen et al. (CDF Collab.)CHATRCHYAN 14AB PR D89 092005 S. Chatr hyan et al. (CMS Collab.)AAD 13AN PR D87 112003 G. Aad et al. (ATLAS Collab.)Also PR D91 119901 (errat.) G. Aad et al. (ATLAS Collab.)AAD 13Z JHEP 1303 128 G. Aad et al. (ATLAS Collab.)CHATRCHYAN 13B JHEP 1301 063 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13BI JHEP 1310 164 S. Chatr hyan et al. (CMS Collab.)SCHAEL 13A PRPL 532 119 S. S hael et al. (ALEPH Collab., DELPHI, L3+)AAD 12BX PL B717 49 G. Aad et al. (ATLAS Collab.)ABAZOV 12S PR D85 052001 V.M. Abazov et al. (D0 Collab.)CHATRCHYAN 12BN JHEP 1212 034 S. Chatr hyan et al. (CMS Collab.)AALTONEN 11S PRL 107 051802 T. Aaltonen et al. (CDF Collab.)ABAZOV 11D PR D84 012007 V.M. Abazov et al. (D0 Collab.)CHATRCHYAN 11M PL B701 535 S. Chatr hyan et al. (CMS Collab.)ABAZOV 09L PRL 102 201802 V.M. Abazov et al. (D0 Collab.)BEDDALL 09 PL B670 300 A. Beddall, A. Beddall, A. Bingul (UGAZ)SCHAEL 09 JHEP 0904 124 S. S hael et al. (ALEPH Collab.)ABAZOV 08K PRL 100 131801 V.M. Abazov et al. (D0 Collab.)ABAZOV 07M PL B653 378 V.M. Abazov et al. (D0 Collab.)ABDALLAH 07C EPJ C51 525 J. Abdallah et al. (DELPHI Collab.)ABDALLAH 06E PL B639 179 J. Abdallah et al. (DELPHI Collab.)AKTAS 06 PL B632 35 A. Aktas et al. (H1 Collab.)LEP-SLC 06 PRPL 427 257 ALEPH, DELPHI, L3, OPAL, SLD and working groupsSCHAEL 06A PL B639 192 S. S hael et al. (ALEPH Collab.)ABDALLAH 05 EPJ C40 1 J. Abdallah et al. (DELPHI Collab.)ABDALLAH 05C EPJ C44 299 J. Abdallah et al. (DELPHI Collab.)ABE 05 PRL 94 091801 K. Abe et al. (SLD Collab.)ABE 05F PR D71 112004 K. Abe et al. (SLD Collab.)ACOSTA 05M PR D71 052002 D. A osta et al. (CDF Collab.)ABBIENDI 04B PL B580 17 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 04C EPJ C32 303 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 04E PL B586 167 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 04G EPJ C33 173 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 04L PR D70 032005 G. Abbiendi et al. (OPAL Collab.)ABDALLAH 04F EPJ C34 109 J. Abdallah et al. (DELPHI Collab.)ABE 04C PR D69 072003 K. Abe et al. (SLD Collab.)ACHARD 04C PL B585 42 P. A hard et al. (L3 Collab.)ACHARD 04H PL B597 119 P. A hard et al. (L3 Collab.)

HEISTER 04A PL B602 31 A. Heister et al. (ALEPH Collab.)ABBIENDI 03P PL B577 18 G. Abbiendi et al. (OPAL Collab.)ABDALLAH 03H PL B569 129 J. Abdallah et al. (DELPHI Collab.)ABDALLAH 03K PL B576 29 J. Abdallah et al. (DELPHI Collab.)ABE 03F PRL 90 141804 K. Abe et al. (SLD Collab.)ACHARD 03D PL B572 133 P. A hard et al. (L3 Collab.)ACHARD 03G PL B577 109 P. A hard et al. (L3 Collab.)ABBIENDI 02I PL B546 29 G. Abbiendi et al. (OPAL Collab.)ABE 02G PRL 88 151801 K. Abe et al. (SLD Collab.)ACHARD 02G PL B540 43 P. A hard et al. (L3 Collab.)HEISTER 02B PL B526 34 A. Heister et al. (ALEPH Collab.)HEISTER 02C PL B528 19 A. Heister et al. (ALEPH Collab.)HEISTER 02H EPJ C24 177 A. Heister et al. (ALEPH Collab.)ABBIENDI 01A EPJ C19 587 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 01G EPJ C18 447 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 01K PL B516 1 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 01N EPJ C20 445 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 01O EPJ C21 1 G. Abbiendi et al. (OPAL Collab.)ABE 01B PRL 86 1162 K. Abe et al. (SLD Collab.)ABE 01C PR D63 032005 K. Abe et al. (SLD Collab.)ACCIARRI 01E PL B505 47 M. A iarri et al. (L3 Collab.)ACCIARRI 01I PL B497 23 M. A iarri et al. (L3 Collab.)HEISTER 01 EPJ C20 401 A. Heister et al. (ALEPH Collab.)HEISTER 01D EPJ C22 201 A. Heister et al. (ALEPH Collab.)ABBIENDI 00N PL B476 256 G. Abbiendi et al. (OPAL Collab.)ABBIENDI,G 00C EPJ C17 553 G. Abbiendi et al. (OPAL Collab.)ABE 00B PRL 84 5945 K. Abe et al. (SLD Collab.)ABE 00D PRL 85 5059 K. Abe et al. (SLD Collab.)ABREU 00 EPJ C12 225 P. Abreu et al. (DELPHI Collab.)ABREU 00B EPJ C14 613 P. Abreu et al. (DELPHI Collab.)ABREU 00E EPJ C14 585 P. Abreu et al. (DELPHI Collab.)ABREU 00F EPJ C16 371 P. Abreu et al. (DELPHI Collab.)ABREU 00P PL B475 429 P. Abreu et al. (DELPHI Collab.)ACCIARRI 00 EPJ C13 47 M. A iarri et al. (L3 Collab.)ACCIARRI 00C EPJ C16 1 M. A iarri et al. (L3 Collab.)ACCIARRI 00J PL B479 79 M. A iarri et al. (L3 Collab.)ACCIARRI 00Q PL B489 93 M. A iarri et al. (L3 Collab.)BARATE 00B EPJ C16 597 R. Barate et al. (ALEPH Collab.)BARATE 00C EPJ C14 1 R. Barate et al. (ALEPH Collab.)BARATE 00O EPJ C16 613 R. Barate et al. (ALEPH Collab.)ABBIENDI 99B EPJ C8 217 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 99I PL B447 157 G. Abbiendi et al. (OPAL Collab.)ABE 99E PR D59 052001 K. Abe et al. (SLD Collab.)ABE 99L PRL 83 1902 K. Abe et al. (SLD Collab.)ABREU 99 EPJ C6 19 P. Abreu et al. (DELPHI Collab.)ABREU 99B EPJ C10 415 P. Abreu et al. (DELPHI Collab.)ABREU 99J PL B449 364 P. Abreu et al. (DELPHI Collab.)ABREU 99U PL B462 425 P. Abreu et al. (DELPHI Collab.)ABREU 99Y EPJ C10 219 P. Abreu et al. (DELPHI Collab.)ACCIARRI 99D PL B448 152 M. A iarri et al. (L3 Collab.)ACCIARRI 99F PL B453 94 M. A iarri et al. (L3 Collab.)ACCIARRI 99G PL B450 281 M. A iarri et al. (L3 Collab.)ACCIARRI 99O PL B465 363 M. A iarri et al. (L3 Collab.)ABBOTT 98M PR D57 R3817 B. Abbott et al. (D0 Collab.)ABE 98D PRL 80 660 K. Abe et al. (SLD Collab.)ABE 98I PRL 81 942 K. Abe et al. (SLD Collab.)ABREU 98K PL B423 194 P. Abreu et al. (DELPHI Collab.)ABREU 98L EPJ C5 585 P. Abreu et al. (DELPHI Collab.)ACCIARRI 98G PL B431 199 M. A iarri et al. (L3 Collab.)ACCIARRI 98H PL B429 387 M. A iarri et al. (L3 Collab.)ACCIARRI 98U PL B439 225 M. A iarri et al. (L3 Collab.)ACKERSTAFF 98A EPJ C5 411 K. A kersta et al. (OPAL Collab.)ACKERSTAFF 98E EPJ C1 439 K. A kersta et al. (OPAL Collab.)ACKERSTAFF 98O PL B420 157 K. A kersta et al. (OPAL Collab.)ACKERSTAFF 98Q EPJ C4 19 K. A kersta et al. (OPAL Collab.)BARATE 98O PL B434 415 R. Barate et al. (ALEPH Collab.)BARATE 98T EPJ C4 557 R. Barate et al. (ALEPH Collab.)BARATE 98V EPJ C5 205 R. Barate et al. (ALEPH Collab.)ABE 97 PRL 78 17 K. Abe et al. (SLD Collab.)ABREU 97C ZPHY C73 243 P. Abreu et al. (DELPHI Collab.)ABREU 97E PL B398 207 P. Abreu et al. (DELPHI Collab.)ABREU 97G PL B404 194 P. Abreu et al. (DELPHI Collab.)ACCIARRI 97D PL B393 465 M. A iarri et al. (L3 Collab.)ACCIARRI 97J PL B407 351 M. A iarri et al. (L3 Collab.)ACCIARRI 97L PL B407 389 M. A iarri et al. (L3 Collab.)ACCIARRI 97R PL B413 167 M. A iarri et al. (L3 Collab.)ACKERSTAFF 97M ZPHY C74 413 K. A kersta et al. (OPAL Collab.)ACKERSTAFF 97S PL B412 210 K. A kersta et al. (OPAL Collab.)ACKERSTAFF 97T ZPHY C76 387 K. A kersta et al. (OPAL Collab.)ACKERSTAFF 97W ZPHY C76 425 K. A kersta et al. (OPAL Collab.)ALEXANDER 97C ZPHY C73 379 G. Alexander et al. (OPAL Collab.)ALEXANDER 97D ZPHY C73 569 G. Alexander et al. (OPAL Collab.)ALEXANDER 97E ZPHY C73 587 G. Alexander et al. (OPAL Collab.)BARATE 97D PL B405 191 R. Barate et al. (ALEPH Collab.)BARATE 97E PL B401 150 R. Barate et al. (ALEPH Collab.)BARATE 97F PL B401 163 R. Barate et al. (ALEPH Collab.)BARATE 97H PL B402 213 R. Barate et al. (ALEPH Collab.)BARATE 97J ZPHY C74 451 R. Barate et al. (ALEPH Collab.)ABREU 96R ZPHY C72 31 P. Abreu et al. (DELPHI Collab.)ABREU 96S PL B389 405 P. Abreu et al. (DELPHI Collab.)ABREU 96U ZPHY C73 61 P. Abreu et al. (DELPHI Collab.)ACCIARRI 96 PL B371 126 M. A iarri et al. (L3 Collab.)ADAM 96 ZPHY C69 561 W. Adam et al. (DELPHI Collab.)ADAM 96B ZPHY C70 371 W. Adam et al. (DELPHI Collab.)ALEXANDER 96B ZPHY C70 197 G. Alexander et al. (OPAL Collab.)ALEXANDER 96F PL B370 185 G. Alexander et al. (OPAL Collab.)ALEXANDER 96N PL B384 343 G. Alexander et al. (OPAL Collab.)ALEXANDER 96R ZPHY C72 1 G. Alexander et al. (OPAL Collab.)BUSKULIC 96D ZPHY C69 393 D. Buskuli et al. (ALEPH Collab.)BUSKULIC 96H ZPHY C69 379 D. Buskuli et al. (ALEPH Collab.)BUSKULIC 96T PL B384 449 D. Buskuli et al. (ALEPH Collab.)BUSKULIC 96Y PL B388 648 D. Buskuli et al. (ALEPH Collab.)ABE 95J PRL 74 2880 K. Abe et al. (SLD Collab.)ABREU 95 ZPHY C65 709 (erratum)P. Abreu et al. (DELPHI Collab.)ABREU 95D ZPHY C66 323 P. Abreu et al. (DELPHI Collab.)ABREU 95L ZPHY C65 587 P. Abreu et al. (DELPHI Collab.)ABREU 95M ZPHY C65 603 P. Abreu et al. (DELPHI Collab.)ABREU 95O ZPHY C67 543 P. Abreu et al. (DELPHI Collab.)ABREU 95R ZPHY C68 353 P. Abreu et al. (DELPHI Collab.)ABREU 95V ZPHY C68 541 P. Abreu et al. (DELPHI Collab.)ABREU 95W PL B361 207 P. Abreu et al. (DELPHI Collab.)ABREU 95X ZPHY C69 1 P. Abreu et al. (DELPHI Collab.)ACCIARRI 95B PL B345 589 M. A iarri et al. (L3 Collab.)ACCIARRI 95C PL B345 609 M. A iarri et al. (L3 Collab.)ACCIARRI 95G PL B353 136 M. A iarri et al. (L3 Collab.)AKERS 95C ZPHY C65 47 R. Akers et al. (OPAL Collab.)AKERS 95U ZPHY C67 389 R. Akers et al. (OPAL Collab.)AKERS 95W ZPHY C67 555 R. Akers et al. (OPAL Collab.)AKERS 95X ZPHY C68 1 R. Akers et al. (OPAL Collab.)AKERS 95Z ZPHY C68 203 R. Akers et al. (OPAL Collab.)ALEXANDER 95D PL B358 162 G. Alexander et al. (OPAL Collab.)

Page 38: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

648648648648Gauge & Higgs Boson Parti le ListingsZ , H0BUSKULIC 95R ZPHY C69 15 D. Buskuli et al. (ALEPH Collab.)MIYABAYASHI 95 PL B347 171 K. Miyabayashi et al. (TOPAZ Collab.)ABE 94C PRL 73 25 K. Abe et al. (SLD Collab.)ABREU 94B PL B327 386 P. Abreu et al. (DELPHI Collab.)ABREU 94P PL B341 109 P. Abreu et al. (DELPHI Collab.)AKERS 94P ZPHY C63 181 R. Akers et al. (OPAL Collab.)BUSKULIC 94G ZPHY C62 179 D. Buskuli et al. (ALEPH Collab.)BUSKULIC 94J ZPHY C62 1 D. Buskuli et al. (ALEPH Collab.)VILAIN 94 PL B320 203 P. Vilain et al. (CHARM II Collab.)ABREU 93 PL B298 236 P. Abreu et al. (DELPHI Collab.)ABREU 93I ZPHY C59 533 P. Abreu et al. (DELPHI Collab.)Also ZPHY C65 709 (erratum)P. Abreu et al. (DELPHI Collab.)ABREU 93L PL B318 249 P. Abreu et al. (DELPHI Collab.)ACTON 93 PL B305 407 P.D. A ton et al. (OPAL Collab.)ACTON 93D ZPHY C58 219 P.D. A ton et al. (OPAL Collab.)ACTON 93E PL B311 391 P.D. A ton et al. (OPAL Collab.)ADRIANI 93 PL B301 136 O. Adriani et al. (L3 Collab.)ADRIANI 93I PL B316 427 O. Adriani et al. (L3 Collab.)BUSKULIC 93L PL B313 520 D. Buskuli et al. (ALEPH Collab.)NOVIKOV 93C PL B298 453 V.A. Novikov, L.B. Okun, M.I. Vysotsky (ITEP)ABREU 92I PL B277 371 P. Abreu et al. (DELPHI Collab.)ABREU 92M PL B289 199 P. Abreu et al. (DELPHI Collab.)ACTON 92B ZPHY C53 539 D.P. A ton et al. (OPAL Collab.)ACTON 92L PL B294 436 P.D. A ton et al. (OPAL Collab.)ACTON 92N PL B295 357 P.D. A ton et al. (OPAL Collab.)ADEVA 92 PL B275 209 B. Adeva et al. (L3 Collab.)ADRIANI 92D PL B292 454 O. Adriani et al. (L3 Collab.)ALITTI 92B PL B276 354 J. Alitti et al. (UA2 Collab.)BUSKULIC 92D PL B292 210 D. Buskuli et al. (ALEPH Collab.)BUSKULIC 92E PL B294 145 D. Buskuli et al. (ALEPH Collab.)DECAMP 92 PRPL 216 253 D. De amp et al. (ALEPH Collab.)ABE 91E PRL 67 1502 F. Abe et al. (CDF Collab.)ABREU 91H ZPHY C50 185 P. Abreu et al. (DELPHI Collab.)ACTON 91B PL B273 338 D.P. A ton et al. (OPAL Collab.)ADACHI 91 PL B255 613 I. Ada hi et al. (TOPAZ Collab.)ADEVA 91I PL B259 199 B. Adeva et al. (L3 Collab.)AKRAWY 91F PL B257 531 M.Z. Akrawy et al. (OPAL Collab.)DECAMP 91B PL B259 377 D. De amp et al. (ALEPH Collab.)DECAMP 91J PL B266 218 D. De amp et al. (ALEPH Collab.)JACOBSEN 91 PRL 67 3347 R.G. Ja obsen et al. (Mark II Collab.)SHIMONAKA 91 PL B268 457 A. Shimonaka et al. (TOPAZ Collab.)ABE 90I ZPHY C48 13 K. Abe et al. (VENUS Collab.)ABRAMS 90 PRL 64 1334 G.S. Abrams et al. (Mark II Collab.)AKRAWY 90J PL B246 285 M.Z. Akrawy et al. (OPAL Collab.)BEHREND 90D ZPHY C47 333 H.J. Behrend et al. (CELLO Collab.)BRAUNSCH... 90 ZPHY C48 433 W. Brauns hweig et al. (TASSO Collab.)ELSEN 90 ZPHY C46 349 E. Elsen et al. (JADE Collab.)HEGNER 90 ZPHY C46 547 S. Hegner et al. (JADE Collab.)STUART 90 PRL 64 983 D. Stuart et al. (AMY Collab.)ABE 89 PRL 62 613 F. Abe et al. (CDF Collab.)ABE 89C PRL 63 720 F. Abe et al. (CDF Collab.)ABE 89L PL B232 425 K. Abe et al. (VENUS Collab.)ABRAMS 89B PRL 63 2173 G.S. Abrams et al. (Mark II Collab.)ABRAMS 89D PRL 63 2780 G.S. Abrams et al. (Mark II Collab.)ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.)BACALA 89 PL B218 112 A. Ba ala et al. (AMY Collab.)BAND 89 PL B218 369 H.R. Band et al. (MAC Collab.)GREENSHAW 89 ZPHY C42 1 T. Greenshaw et al. (JADE Collab.)OULD-SAADA 89 ZPHY C44 567 F. Ould-Saada et al. (JADE Collab.)SAGAWA 89 PRL 63 2341 H. Sagawa et al. (AMY Collab.)ADACHI 88C PL B208 319 I. Ada hi et al. (TOPAZ Collab.)ADEVA 88 PR D38 2665 B. Adeva et al. (Mark-J Collab.)BRAUNSCH... 88D ZPHY C40 163 W. Brauns hweig et al. (TASSO Collab.)ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.)BEHREND 87C PL B191 209 H.J. Behrend et al. (CELLO Collab.)BARTEL 86C ZPHY C30 371 W. Bartel et al. (JADE Collab.)Also ZPHY C26 507 W. Bartel et al. (JADE Collab.)Also PL 108B 140 W. Bartel et al. (JADE Collab.)ASH 85 PRL 55 1831 W.W. Ash et al. (MAC Collab.)BARTEL 85F PL 161B 188 W. Bartel et al. (JADE Collab.)DERRICK 85 PR D31 2352 M. Derri k et al. (HRS Collab.)FERNANDEZ 85 PRL 54 1624 E. Fernandez et al. (MAC Collab.)LEVI 83 PRL 51 1941 M.E. Levi et al. (Mark II Collab.)BEHREND 82 PL 114B 282 H.J. Behrend et al. (CELLO Collab.)BRANDELIK 82C PL 110B 173 R. Brandelik et al. (TASSO Collab.)H0 J = 0In the following H0 refers to the signal that has been dis overed inthe Higgs sear hes. Whereas the observed signal is labeled as a spin0 parti le and is alled a Higgs Boson, the detailed properties of H0and its role in the ontext of ele troweak symmetry breaking need tobe further laried. These issues are addressed by the measurementslisted below.Con erning mass limits and ross se tion limits that have been ob-tained in the sear hes for neutral and harged Higgs bosons, seethe se tions \Sear hes for Neutral Higgs Bosons" and \Sear hes forCharged Higgs Bosons (H± and H±±)", respe tively.H0 MASSH0 MASSH0 MASSH0 MASSVALUE (GeV) DOCUMENT ID TECN COMMENT125.09±0.21±0.11125.09±0.21±0.11125.09±0.21±0.11125.09±0.21±0.11 1,2 AAD 15B LHC pp, 7, 8 TeV• • • We do not use the following data for averages, ts, limits, et . • • •125.07±0.25±0.14 2 AAD 15B LHC pp, 7, 8 TeV, γ γ125.15±0.37±0.15 2 AAD 15B LHC pp, 7, 8 TeV, Z Z∗ → 4ℓ126.02±0.43±0.27 AAD 15B ATLS pp, 7, 8 TeV, γ γ124.51±0.52±0.04 AAD 15B ATLS pp, 7, 8 TeV, Z Z∗ → 4ℓ125.59±0.42±0.17 AAD 15B CMS pp, 7, 8 TeV, Z Z∗ → 4ℓ125.02+0.26

−0.27+0.14−0.15 3 KHACHATRY...15AMCMS pp, 7, 8 TeV125.36±0.37±0.18 1,4 AAD 14W ATLS pp, 7, 8 TeV125.98±0.42±0.28 4 AAD 14W ATLS pp, 7, 8 TeV, γ γ124.51±0.52±0.06 4 AAD 14W ATLS pp, 7, 8 TeV, Z Z∗ → 4ℓ125.6 ±0.4 ±0.2 5 CHATRCHYAN14AA CMS pp, 7, 8 TeV, Z Z∗ → 4ℓ

122 ±7 6 CHATRCHYAN14K CMS pp, 7, 8 TeV, τ τ124.70±0.31±0.15 7 KHACHATRY...14P CMS pp, 7, 8 TeV, γ γ125.5 ±0.2 +0.5−0.6 1,8 AAD 13AK ATLS pp, 7, 8 TeV126.8 ±0.2 ±0.7 8 AAD 13AK ATLS pp, 7, 8 TeV, γ γ124.3 +0.6

−0.5 +0.5−0.3 8 AAD 13AK ATLS pp, 7, 8 TeV, Z Z∗ → 4ℓ125.8 ±0.4 ±0.4 1,9 CHATRCHYAN13J CMS pp, 7, 8 TeV126.2 ±0.6 ±0.2 9 CHATRCHYAN13J CMS pp, 7, 8 TeV, Z Z∗ → 4ℓ126.0 ±0.4 ±0.4 1,10 AAD 12AI ATLS pp, 7, 8 TeV125.3 ±0.4 ±0.5 1,11 CHATRCHYAN12N CMS pp, 7, 8 TeV1Combined value from γ γ and Z Z∗ → 4ℓ nal states.2ATLAS and CMS data are tted simultaneously.3KHACHATRYAN 15AM use up to 5.1 fb−1 of pp ollisions at E m = 7 TeV and up to19.7 fb−1 at E m = 8 TeV.4AAD 14W use 4.5 fb−1 of pp ollisions at E m = 7 TeV and 20.3 fb−1 at 8 TeV.5CHATRCHYAN 14AA use 5.1 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1 atE m = 8 TeV.6CHATRCHYAN 14K use 4.9 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1 atE m = 8 TeV.7KHACHATRYAN 14P use 5.1 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1 atE m = 8 TeV.8AAD 13AK use 4.7 fb−1 of pp ollisions at E m=7 TeV and 20.7 fb−1 at E m=8 TeV.Superseded by AAD 14W.9 CHATRCHYAN 13J use 5.1 fb−1 of pp ollisions at E m = 7 TeV and 12.2 fb−1 atE m = 8 TeV.10AAD 12AI obtain results based on 4.64.8 fb−1 of pp ollisions at E m = 7 TeV and5.85.9 fb−1 at E m = 8 TeV. An ex ess of events over ba kground with a lo alsigni an e of 5.9 σ is observed at mH0 = 126 GeV. See also AAD 12DA.11CHATRCHYAN 12N obtain results based on 4.95.1 fb−1 of pp ollisions at E m = 7TeV and 5.15.3 fb−1 at E m = 8 TeV. An ex ess of events over ba kground with a lo alsigni an e of 5.0 σ is observed at about mH0 = 125 GeV. See also CHATRCHYAN 12BYand CHATRCHYAN 13Y.H0 SPIN AND CP PROPERTIESH0 SPIN AND CP PROPERTIESH0 SPIN AND CP PROPERTIESH0 SPIN AND CP PROPERTIESThe observation of the signal in the γ γ nal state rules out the possibility that thedis overed parti le has spin 1, as a onsequen e of the Landau-Yang theorem. Thisargument relies on the assumptions that the de aying parti le is an on-shell resonan eand that the de ay produ ts are indeed two photons rather than two pairs of boostedphotons, whi h ea h ould in prin iple be misidentied as a single photon.Con erning distinguishing the spin 0 hypothesis from a spin 2 hypothesis, some arehas to be taken in modelling the latter in order to ensure that the dis riminating poweris a tually based on the spin properties rather than on unphysi al behavior that mayae t the model of the spin 2 state.Under the assumption that the observed signal onsists of a single state rather thanan overlap of more than one resonan e, it is suÆ ient to dis riminate between distin thypotheses in the spin analyses. On the other hand, the determination of the CPproperties is in general mu h more diÆ ult sin e in prin iple the observed state ould onsist of any admixture of CP-even and CP-odd omponents. As a rst step, the ompatibility of the data with distin t hypotheses of pure CP-even and pure CP-odd states with dierent spin assignments has been investigated. In order to treatthe ase of a possible mixing of dierent CP states, ertain ross se tion ratios are onsidered. Those ross se tion ratios need to be distinguished from the amount ofmixing between a CP-even and a CP-odd state, as the ross se tion ratios dependin addition also on the oupling strengths of the CP-even and CP-odd omponentsto the involved parti les. A small relative oupling implies a small sensitivity of the orresponding ross se tion ratio to ee ts of CP mixing.VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •1 AAD 16 ATLS H0 → γ γ2 AAD 15AX ATLS H0 → WW ∗3 AAD 15CI ATLS H0 → Z Z∗, WW ∗, γ γ4 AALTONEN 15 TEVA pp → W H0, Z H0, H0 → bb5 AALTONEN 15B CDF pp → W H0, Z H0, H0 → bb6 KHACHATRY...15Y CMS H0 → 4ℓ, WW ∗, γ γ7 ABAZOV 14F D0 pp → W H0, Z H0, H0 → bb8 CHATRCHYAN14AA CMS H0 → Z Z∗9 CHATRCHYAN14G CMS H0 → WW ∗10 KHACHATRY...14P CMS H0 → γ γ11 AAD 13AJ ATLS H0 → γ γ, Z Z∗ → 4ℓ, WW ∗ → ℓν ℓν12 CHATRCHYAN13J CMS H0 → Z Z∗ → 4ℓ1AAD 16 study H0 → γ γ with an ee tive Lagrangian in luding CP even and oddterms in 20.3 fb−1 of pp ollisions at E m = 8 TeV. The data is onsistent with theexpe tations for the Higgs boson of the Standard Model. Limits on anomalous ouplingsare also given.2AAD 15AX ompare the JCP= 0+ Standard Model assignment with other JCP hy-potheses in 20.3 fb−1 of pp ollisions at E m = 8 TeV, using the pro ess H0 →WW ∗ → e νµν. 2+ hypotheses are ex luded at 84.599.4%CL, 0− at 96.5%CL, 0+(eld strength oupling) at 70.8%CL. See their Fig. 19 for limits on possible CP mixtureparameters.

Page 39: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

649649649649See key on page 601 Gauge&HiggsBosonParti leListingsH03AAD 15CI ompare the JCP= 0+ Standard Model assignment with other JCP hypothe-ses in 4.5 fb−1 of pp ollisions at E m = 7 TeV and 20.3 fb−1 at E m = 8 TeV,using the pro esses H0 → Z Z∗ → 4ℓ. H0 → γ γ and ombine with AAD 15AX data.0+ (eld strength oupling), 0− and several 2+ hypotheses are ex luded at more than99.9% CL. See their Tables 79 for limits on possible CP mixture parameters.4AALTONEN 15 ombine AALTONEN 15B and ABAZOV 14F data. An upper limit of0.36 of the Standard Model produ tion rate at 95% CL is obtained both for a 0− and a2+ state. Assuming the SM event rate, the JCP = 0− (2+) hypothesis is ex luded atthe 5.0σ (4.9σ) level.5AALTONEN 15B ompare the JCP = 0+ Standard Model assignment with other JCPhypotheses in 9.45 fb−1 of pp ollisions at E m = 1.96 TeV, using the pro esses Z H0 →ℓℓbb, WH0 → ℓν bb, and Z H0 → ν ν bb. Bounds on the produ tion rates of 0−and 2+ (graviton-like) states are set, see their tables II and III.6KHACHATRYAN 15Y ompare the JCP = 0+ Standard Model assignment with otherJCP hypotheses in up to 5.1 fb−1 of pp ollisions at E m = 7 TeV and up to 19.7 fb−1at E m = 8 TeV, using the pro esses H0 → 4ℓ, H0 → WW ∗, and H0 → γ γ. 0−is ex luded at 99.98% CL, and several 2+ hypotheses are ex luded at more than 99%CL. Spin 1 models are ex luded at more than 99.999% CL in Z Z∗ and WW ∗ modes.Limits on anomalous ouplings and several ross se tion fra tions, treating the ase ofCP-mixed states, are also given.7ABAZOV 14F ompare the JCP= 0+ Standard Model assignment with JCP= 0− and2+ (graviton-like oupling) hypotheses in up to 9.7 fb−1 of pp ollisions at E m = 1.96TeV. They use kinemati orrelations between the de ay produ ts of the ve tor bosonand the Higgs boson in the nal states Z H → ℓℓbb, W H → ℓν bb, and Z H →ν ν bb. The 0− (2+) hypothesis is ex luded at 97.6% CL (99.0% CL). In order to treatthe ase of a possible mixture of a 0+ state with another JCP state, the ross se tionfra tions fX = σX /(σ0+ + σX ) are onsidered, where X = 0−, 2+. Values for f0−(f2+) above 0.80 (0.67) are ex luded at 95% CL under the assumption that the total ross se tion is that of the SM Higgs boson.8CHATRCHYAN 14AA ompare the JCP= 0+ Standard Model assignment with variousJCP hypotheses in 5.1 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1 at E m= 8 TeV. JCP= 0− and 1± hypotheses are ex luded at 99% CL, and several J = 2hypotheses are ex luded at 95% CL. In order to treat the ase of a possible mixture of a0+ state with another JCP state, the ross se tion fra tion fa3 = ∣∣a3∣∣2 σ3 / (∣∣a1∣∣2 σ1+ ∣∣a2∣∣2 σ2 + ∣∣a3∣∣2 σ3) is onsidered, where the ase a3 = 1, a1 = a2 = 0 orrespondsto a pure CP-odd state. Assuming a2 = 0, a value for fa3 above 0.51 is ex luded at95% CL.9CHATRCHYAN 14G ompare the JCP= 0+ Standard Model assignment with JCP=0− and 2+ (graviton-like oupling) hypotheses in 4.9 fb−1 of pp ollisions at E m =7 TeV and 19.4 fb−1 at E m = 8 TeV. Varying the fra tion of the produ tion of the2+ state via g g and qq, 2+ hypotheses are disfavored at CL between 83.7 and 99.8%.The 0− hypothesis is disfavored against 0+ at the 65.3% CL.10KHACHATRYAN 14P ompare the JCP= 0+ Standard Model assignment with a 2+(graviton-like oupling) hypothesis in 5.1 fb−1 of pp ollisions at E m = 7 TeV and19.7 fb−1 at E m = 8 TeV. Varying the fra tion of the produ tion of the 2+ state viag g and qq, 2+ hypotheses are disfavored at CL between 71 and 94%.11AAD 13AJ ompare the spin 0, CP-even hypothesis with spe i alternative hypothesesof spin 0, CP-odd, spin 1, CP-even and CP-odd, and spin 2, CP-even models using theHiggs boson de ays H → γ γ, H → Z Z∗ → 4ℓ and H → WW ∗ → ℓν ℓν and ombinations thereof. The data are ompatible with the spin 0, CP-even hypothesis,while all other tested hypotheses are ex luded at onden e levels above 97.8%.12CHATRCHYAN 13J study angular distributions of the lepton pairs in the Z Z∗ hannelwhere both Z bosons de ay to e or µ pairs. Under the assumption that the observedparti le has spin 0, the data are found to be onsistent with the pure CP-even hypothesis,while the pure CP-odd hypothesis is disfavored.H0 DECAY WIDTHH0 DECAY WIDTHH0 DECAY WIDTHH0 DECAY WIDTHThe total de ay width for a light Higgs boson with a mass in the observed range is notexpe ted to be dire tly observable at the LHC. For the ase of the Standard Modelthe predi tion for the total width is about 4 MeV, whi h is three orders of magnitudesmaller than the experimental mass resolution. There is no indi ation from the resultsobserved so far that the natural width is broadened by new physi s ee ts to su h anextent that it ould be dire tly observable. Furthermore, as all LHC Higgs hannels relyon the identi ation of Higgs de ay produ ts, the total Higgs width annot be measuredindire tly without additional assumptions. The dierent dependen e of on-peak ando-peak ontributions on the total width in Higgs de ays to Z Z∗ and interferen eee ts between signal and ba kground in Higgs de ays to γ γ an provide additionalinformation in this ontext. Constraints on the total width from the ombination ofon-peak and o-peak ontributions in Higgs de ays to Z Z∗ rely on the assumptionof equal on- and o-shell ee tive ouplings. Without an experimental determinationof the total width or further theoreti al assumptions, only ratios of ouplings an bedetermined at the LHC rather than absolute values of ouplings.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

<1.7<1.7<1.7<1.7 95 1 KHACHATRY...15AMCMS pp, 7, 8 TeV>3.5 × 10−12 95 2 KHACHATRY...15BA CMS pp, 7, 8 TeV, ight distan e<5.0 95 3 AAD 14W ATLS pp, 7, 8 TeV, γ γ

<2.6 95 3 AAD 14W ATLS pp, 7, 8 TeV, Z Z∗ → 4ℓ• • • We do not use the following data for averages, ts, limits, et . • • •

<0.0227 95 4 AAD 15BE ATLS pp, 8 TeV, Z Z(∗), WW (∗)<0.046 95 5 KHACHATRY...15BA CMS pp, 7, 8 TeV, Z Z(∗) → 4ℓ<3.4 95 6 CHATRCHYAN14AA CMS pp, 7, 8 TeV, Z Z∗ → 4ℓ<0.022 95 7 KHACHATRY...14D CMS pp, 7, 8 TeV, Z Z(∗)<2.4 95 8 KHACHATRY...14P CMS pp, 7, 8 TeV, γ γ

1KHACHATRYAN 15AM ombine γ γ and Z Z∗ → 4ℓ results. The expe ted limit is 2.3GeV.2KHACHATRYAN 15BA derive a lower limit on the total width from an upper limit onthe de ay ight distan e τ < 1.9 × 10−13 s. 5.1 fb−1 of pp ollisions at E m = 7TeV and 19.7 fb−1 at 8 TeV are used.3AAD 14W use 4.5 fb−1 of pp ollisions at E m = 7 TeV and 20.3 fb−1 at 8 TeV. Theexpe ted limit is 6.2 GeV.4AAD 15BE derive onstraints on the total width from omparing Z Z(∗) and WW (∗)produ tion via on-shell and o-shell H0 using 20.3 fb−1 of pp ollisions at E m = 8TeV. The K fa tor for the ba kground pro esses is assumed to be equal to that for thesignal.5KHACHATRYAN 15BA derive onstraints on the total width from omparing Z Z(∗)produ tion via on-shell and o-shell H0 with an un onstrained anomalous oupling. 4ℓnal states in 5.1 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1 at E m = 8TeV are used.6CHATRCHYAN 14AA use 5.1 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1 atE m = 8 TeV. The expe ted limit is 2.8 GeV.7KHACHATRYAN 14D derive onstraints on the total width from omparing Z Z(∗) pro-du tion via on-shell and o-shell H0. 4ℓ and ℓℓν ν nal states in 5.1 fb−1 of pp ollisionsat E m = 7 TeV and 19.7 fb−1 at E m = 8 TeV are used.8KHACHATRYAN 14P use 5.1 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1 atE m = 8 TeV. The expe ted limit is 3.1 GeV.H0 DECAY MODESH0 DECAY MODESH0 DECAY MODESH0 DECAY MODESMode Fra tion (i /) Conden e level1 WW ∗2 Z Z∗3 γ γ4 bb5 e+ e− < 1.9 × 10−3 95%6 µ+µ−7 τ+ τ−8 Z γ9 J/ψγ < 1.5 × 10−3 95%10 (1S)γ < 1.3 × 10−3 95%11 (2S)γ < 1.9 × 10−3 95%12 (3S)γ < 1.3 × 10−3 95%13 µτ < 1.51 % 95%14 invisible <58 % 95%H0 BRANCHING RATIOSH0 BRANCHING RATIOSH0 BRANCHING RATIOSH0 BRANCHING RATIOS(e+ e−)/total 5/(e+ e−)/total 5/(e+ e−)/total 5/(e+ e−)/total 5/VALUE CL% DOCUMENT ID TECN<1.9× 10−3<1.9× 10−3<1.9× 10−3<1.9× 10−3 95 1 KHACHATRY...15H CMS1KHACHATRYAN 15H use 5.0 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1 at8 TeV.(J/ψγ

)/total 9/(J/ψγ)/total 9/(J/ψγ)/total 9/(J/ψγ)/total 9/VALUE CL% DOCUMENT ID TECN COMMENT

<1.5× 10−3 95 1 KHACHATRY...16B CMS 8 TeV<1.5× 10−3<1.5× 10−3<1.5× 10−3<1.5× 10−3 95 2 AAD 15I ATLS 8 TeV1KHACHATRYAN 16B use 19.7 fb−1 of pp ollision data at 8 TeV.2AAD 15I use 19.7 fb−1 of pp ollision data at 8 TeV.((1S)γ)/total 10/((1S)γ)/total 10/((1S)γ)/total 10/((1S)γ)/total 10/VALUE CL% DOCUMENT ID TECN COMMENT<1.3× 10−3<1.3× 10−3<1.3× 10−3<1.3× 10−3 95 1 AAD 15I ATLS 8 TeV1AAD 15I use 19.7 fb−1 of pp ollision data at 8 TeV.((2S)γ)/total 11/((2S)γ)/total 11/((2S)γ)/total 11/((2S)γ)/total 11/VALUE CL% DOCUMENT ID TECN COMMENT<1.9× 10−3<1.9× 10−3<1.9× 10−3<1.9× 10−3 95 1 AAD 15I ATLS 8 TeV1AAD 15I use 19.7 fb−1 of pp ollision data at 8 TeV.((3S)γ)/total 12/((3S)γ)/total 12/((3S)γ)/total 12/((3S)γ)/total 12/VALUE CL% DOCUMENT ID TECN COMMENT<1.3× 10−3<1.3× 10−3<1.3× 10−3<1.3× 10−3 95 1 AAD 15I ATLS 8 TeV1AAD 15I use 19.7 fb−1 of pp ollision data at 8 TeV.(µτ

)/total 13/(µτ)/total 13/(µτ)/total 13/(µτ)/total 13/VALUE CL% DOCUMENT ID TECN

<1.51× 10−2<1.51× 10−2<1.51× 10−2<1.51× 10−2 95 1 KHACHATRY...15Q CMS1KHACHATRYAN 15Q sear h for H0 → µτ with τ de aying ele troni ally or hadron-i ally in 19.7 fb−1 of pp ollisions at E m = 8 TeV. The t gives B(H0 → µτ) =(0.84+0.39−0.37)% with a signi an e of 2.4 σ.

Page 40: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

650650650650Gauge & Higgs Boson Parti le ListingsH0(invisible)/total 14/(invisible)/total 14/(invisible)/total 14/(invisible)/total 14/Invisible nal states.VALUE CL% DOCUMENT ID TECN COMMENT<0.75<0.75<0.75<0.75 95 1 AAD 14O ATLS pp → H0Z X , 7, 8 TeV<0.58<0.58<0.58<0.58 95 2 CHATRCHYAN14B CMS pp → H0Z X , qqH0X• • • We do not use the following data for averages, ts, limits, et . • • •<0.78 95 3 AAD 15BD ATLS pp → H0W /Z X , 8 TeV<0.81 95 4 CHATRCHYAN14B CMS pp → H0Z X , 7, 8 TeV<0.65 95 5 CHATRCHYAN14B CMS pp → qqH0X , 8 TeV1AAD 14O sear h for pp → H0Z X , Z → ℓℓ, with H0 de aying to invisible nal statesin 4.5 fb−1 at E m = 7 TeV and 20.3 fb−1 at E m = 8 TeV. The quoted limit on thebran hing ratio is given for mH0 = 125.5 GeV and assumes the Standard Model rate forH0Z produ tion.2CHATRCHYAN 14B sear h for pp → H0Z X , Z → ℓℓ and Z → bb, and also pp →qqH0X with H0 de aying to invisible nal states using data at E m = 7 and 8 TeV.The quoted limit on the bran hing ratio is obtained from a ombination of the limitsfrom H0Z and qqH0. It is given for mH0 = 125 GeV and assumes the Standard Modelrates for the two produ tion pro esses.3AAD 15BD sear h for pp → H0W X and pp → H0Z X with W or Z de ayinghadroni ally and H0 de aying to invisible nal states using data at E m = 8 TeV. Thequoted limit is given for mH0 = 125 GeV, assumes the Standard Model rates for theprodu tion pro esses and is based on a ombination of the ontributions from H0W ,H0Z and the gluon-fusion pro ess.4CHATRCHYAN 14B sear h for pp → H0Z X with H0 de aying to invisible nal statesand Z → ℓℓ in 4.9 fb−1 at E m = 7 TeV and 19.7 fb−1 at E m = 8 TeV, and alsowith Z → bb in 18.9 fb−1 at E m = 8 TeV. The quoted limit on the bran hing ratio isgiven for mH0 = 125 GeV and assumes the Standard Model rate for H0Z produ tion.5CHATRCHYAN 14B sear h for pp → qqH0X (ve tor boson fusion) with H0 de ayingto invisible nal states in 19.5 fb−1 at E m = 8 TeV. The quoted limit on the bran hingratio is given for mH0 = 125 GeV and assumes the Standard Model rate for qqH0produ tion.H0 SIGNAL STRENGTHS IN DIFFERENT CHANNELSH0 SIGNAL STRENGTHS IN DIFFERENT CHANNELSH0 SIGNAL STRENGTHS IN DIFFERENT CHANNELSH0 SIGNAL STRENGTHS IN DIFFERENT CHANNELSThe H0 signal strength in a parti ular nal state x x is given by the rossse tion times bran hing ratio in this hannel normalized to the StandardModel (SM) value, σ · B(H0 → x x) / (σ · B(H0 → x x))SM, for thespe ied mass value of H0. For the SM predi tions, see DITTMAIER 11,DITTMAIER 12, and HEINEMEYER 13A. Results for du ial and dier-ential ross se tions are also listed below.Combined Final StatesCombined Final StatesCombined Final StatesCombined Final StatesVALUE DOCUMENT ID TECN COMMENT1.10±0.11 OUR AVERAGE1.10±0.11 OUR AVERAGE1.10±0.11 OUR AVERAGE1.10±0.11 OUR AVERAGE1.09±0.07±0.04±0.03+0.07

−0.06 1,2 AAD 16J LHC pp, 7, 8 TeV1.44+0.59−0.56 3 AALTONEN 13M TEVA pp → H0X , 1.96 TeV

• • • We do not use the following data for averages, ts, limits, et . • • •1.20±0.10±0.06±0.04+0.08−0.07 2 AAD 16J ATLS pp, 7, 8 TeV0.97±0.09±0.05+0.04

−0.03+0.07−0.06 2 AAD 16J CMS pp, 7, 8 TeV1.18±0.10±0.07+0.08

−0.07 4 AAD 16K ATLS pp, 7, 8 TeV0.75+0.28−0.26+0.13

−0.11+0.08−0.05 4 AAD 16K ATLS pp, 7 TeV1.28±0.11+0.08

−0.07+0.10−0.08 4 AAD 16K ATLS pp, 8 TeV5 AAD 15P ATLS pp, 8 TeV, ross se -tion1.00±0.09±0.07+0.08−0.07 6 KHACHATRY...15AMCMS pp, 7, 8 TeV1.33+0.14

−0.10±0.15 7 AAD 13AK ATLS pp, 7 and 8 TeV1.54+0.77−0.73 8 AALTONEN 13L CDF pp → H0X , 1.96 TeV1.40+0.92−0.88 9 ABAZOV 13L D0 pp → H0X , 1.96 TeV1.4 ±0.3 10 AAD 12AI ATLS pp → H0X , 7, 8 TeV1.2 ±0.4 10 AAD 12AI ATLS pp → H0X , 7 TeV1.5 ±0.4 10 AAD 12AI ATLS pp → H0X , 8 TeV0.87±0.23 11 CHATRCHYAN12N CMS pp → H0X , 7, 8 TeV1AAD 16J perform ts to the ATLAS and CMS data at E m = 7 and 8 TeV. The signalstrengths for individual produ tion pro esses are 1.03+0.16

−0.14 for gluon fusion, 1.18+0.25−0.23for ve tor boson fusion, 0.89+0.40

−0.38 for W H0 produ tion, 0.79+0.38−0.36 for Z H0 produ -tion, and 2.3+0.7

−0.6 for t t H0 produ tion.2The un ertainties represent statisti s, experimental systemati s, theory systemati s onthe ba kground, and theory systemati s on the signal. The quoted signal strengths aregiven for mH0 = 125.09 GeV. In the t, relative bran hing ratios and relative produ tion ross se tions are xed to those in the Standard Model.3AALTONEN 13M ombine all Tevatron data from the CDF and D0 Collaborations withup to 10.0 fb−1 and 9.7 fb−1, respe tively, of pp ollisions at E m = 1.96 TeV. Thequoted signal strength is given for mH0 = 125 GeV.

4AAD 16K use up to 4.7 fb−1 of pp ollisions at E m = 7 TeV and up to 20.3 fb−1at E m = 8 TeV. The third un ertainty in the measurement is theory systemati s. Thesignal strengths for individual produ tion modes are 1.23 ± 0.14+0.09−0.08+0.16

−0.12 for gluonfusion, 1.23+0.28−0.27+0.13

−0.12+0.11−0.09 for ve tor boson fusion, 0.80+0.31

−0.30 ± 0.17+0.10−0.05 forW /Z H0 produ tion, and 1.81+0.52

−0.50+0.58−0.55+0.31

−0.12 for t t H0 produ tion. The quotedsignal strengths are given for mH0 = 125.36 GeV.5AAD 15P measure total and dierential ross se tions of the pro ess pp → H0X atE m = 8 TeV with 20.3 fb−1. γ γ and 4ℓ nal states are used. σ(pp → H0X ) =33.0 ± 5.3 ± 1.6 pb is given. See their Figs. 2 and 3 for data on dierential rossse tions.6KHACHATRYAN 15AM use up to 5.1 fb−1 of pp ollisions at E m = 7 TeV and upto 19.7 fb−1 at E m = 8 TeV. The third un ertainty in the measurement is theorysystemati s. Fits to ea h produ tion mode give the value of 0.85+0.19−0.16 for gluon fu-sion, 1.16+0.37

−0.34 for ve tor boson fusion, 0.92+0.38−0.36 for W H0, Z H0 produ tion, and2.90+1.08

−0.94 for t t H0 produ tion.7AAD 13AK use 4.7 fb−1 of pp ollisions at E m = 7 TeV and 20.7 fb−1 at E m =8 TeV. The ombined signal strength is based on the γ γ, Z Z∗ → 4ℓ, and WW ∗ →ℓν ℓν hannels. The quoted signal strength is given for mH0 = 125.5 GeV. Reportedstatisti al error value modied following private ommuni ation with the experiment.8AALTONEN 13L ombine all CDF results with 9.4510.0 fb−1 of pp ollisions at E m= 1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.9ABAZOV 13L ombine all D0 results with up to 9.7 fb−1 of pp ollisions at E m =1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.10AAD 12AI obtain results based on 4.64.8 fb−1 of pp ollisions at E m = 7 TeV and5.85.9 fb−1 at E m = 8 TeV. An ex ess of events over ba kground with a lo alsigni an e of 5.9 σ is observed at mH0 = 126 GeV. The quoted signal strengths aregiven for mH0 = 126 GeV. See also AAD 12DA.11CHATRCHYAN 12N obtain results based on 4.95.1 fb−1 of pp ollisions at E m = 7TeV and 5.15.3 fb−1 at E m = 8 TeV. An ex ess of events over ba kground with alo al signi an e of 5.0 σ is observed at about mH0 = 125 GeV. The ombined signalstrength is based on the γ γ, Z Z∗, WW ∗, τ+ τ−, and bb hannels. The quoted signalstrength is given for mH0 = 125.5 GeV. See also CHATRCHYAN 13Y.WW ∗ Final StateWW ∗ Final StateWW ∗ Final StateWW ∗ Final StateVALUE DOCUMENT ID TECN COMMENT1.08+0.18−0.16 OUR AVERAGE1.08+0.18−0.16 OUR AVERAGE1.08+0.18−0.16 OUR AVERAGE1.08+0.18−0.16 OUR AVERAGE1.09+0.18−0.16 1,2 AAD 16J LHC pp, 7, 8 TeV0.94+0.85−0.83 3 AALTONEN 13M TEVA pp → H0X , 1.96 TeV

• • • We do not use the following data for averages, ts, limits, et . • • •1.22+0.23−0.21 2 AAD 16J ATLS pp, 7, 8 TeV0.90+0.23−0.21 2 AAD 16J CMS pp, 7, 8 TeV1.18±0.16+0.17

−0.14 4 AAD 16K ATLS pp, 7, 8 TeV1.09+0.16−0.15+0.17

−0.14 5 AAD 15AA ATLS pp, 7, 8 TeV3.0 +1.3−1.1 +1.0

−0.7 6 AAD 15AQ ATLS pp → H0W /Z X , 7,8 TeV1.16+0.16−0.15+0.18

−0.15 7 AAD 15AQ ATLS pp, 7, 8 TeV0.72±0.12±0.10+0.12−0.10 8 CHATRCHYAN14G CMS pp, 7, 8 TeV0.99+0.31

−0.28 9 AAD 13AK ATLS pp, 7 and 8 TeV0.00+1.78−0.00 10 AALTONEN 13L CDF pp → H0X , 1.96 TeV1.90+1.63−1.52 11 ABAZOV 13L D0 pp → H0X , 1.96 TeV1.3 ±0.5 12 AAD 12AI ATLS pp → H0X , 7, 8 TeV0.5 ±0.6 12 AAD 12AI ATLS pp → H0X , 7 TeV1.9 ±0.7 12 AAD 12AI ATLS pp → H0X , 8 TeV0.60+0.42−0.37 13 CHATRCHYAN12N CMS pp → H0X , 7, 8 TeV1AAD 16J perform ts to the ATLAS and CMS data at E m = 7 and 8 TeV. The signalstrengths for individual produ tion pro esses are 0.84+0.17

−0.17 for gluon fusion, 1.2+0.4−0.4for ve tor boson fusion, 1.6+1.2

−1.0 for WH0 produ tion, 5.9+2.6−2.2 for Z H0 produ tion,and 5.0+1.8

−1.7 for t t H0 produ tion.2 In the t, relative produ tion ross se tions are xed to those in the Standard Model.The quoted signal strength is given for mH0 = 125.09 GeV.3AALTONEN 13M ombine all Tevatron data from the CDF and D0 Collaborations withup to 10.0 fb−1 and 9.7 fb−1, respe tively, of pp ollisions at E m = 1.96 TeV. Thequoted signal strength is given for mH0 = 125 GeV.4AAD 16K use up to 4.7 fb−1 of pp ollisions at E m = 7 TeV and up to 20.3 fb−1 atE m = 8 TeV. The quoted signal strength is given for mH0 = 125.36 GeV.5AAD 15AA use 4.5 fb−1 of pp ollisions at E m = 7 TeV and 20.3 fb−1 at E m= 8 TeV. The signal strength for the gluon fusion and ve tor boson fusion mode is1.02 ± 0.19+0.22−0.18 and 1.27+0.44

−0.40+0.30−0.21, respe tively. The quoted signal strengths aregiven for mH0 = 125.36 GeV.6AAD 15AQ use 4.5 fb−1 of pp ollisions at E m = 7 TeV and 20.3 fb−1 at E m = 8TeV. The quoted signal strength is given for mH0 = 125.36 GeV.

Page 41: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

651651651651See key on page 601 Gauge & Higgs Boson Parti le ListingsH07AAD 15AQ ombine their result on W /Z H0 produ tion with the results of AAD 15AA(gluon fusion and ve tor boson fusion, slightly updated). The quoted signal strength isgiven for mH0 = 125.36 GeV.8CHATRCHYAN 14G use 4.9 fb−1 of pp ollisions at E m = 7 TeV and 19.4 fb−1 atE m = 8 TeV. The last un ertainty in the measurement is theory systemati s. Thequoted signal strength is given for mH0 = 125.6 GeV.9AAD 13AK use 4.7 fb−1 of pp ollisions at E m = 7 TeV and 20.7 fb−1 at E m= 8 TeV. The quoted signal strength is given for mH0 = 125.5 GeV. Superseded byAAD 15AA.10AALTONEN 13L ombine all CDF results with 9.4510.0 fb−1 of pp ollisions at E m= 1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.11ABAZOV 13L ombine all D0 results with up to 9.7 fb−1 of pp ollisions at E m =1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.12AAD 12AI obtain results based on 4.7 fb−1 of pp ollisions at E m = 7 TeV and 5.8fb−1 at E m = 8 TeV. The quoted signal strengths are given for mH0 = 126 GeV. Seealso AAD 12DA.13CHATRCHYAN 12N obtain results based on 4.9 fb−1 of pp ollisions at E m = 7 TeVand 5.1 fb−1 at E m = 8 TeV. The quoted signal strength is given for mH0 = 125.5GeV. See also CHATRCHYAN 13Y.Z Z∗ Final StateZ Z∗ Final StateZ Z∗ Final StateZ Z∗ Final StateVALUE DOCUMENT ID TECN COMMENT1.29+0.26−0.231.29+0.26−0.231.29+0.26−0.231.29+0.26−0.23 1,2 AAD 16J LHC pp, 7, 8 TeV

• • • We do not use the following data for averages, ts, limits, et . • • •1.52+0.40−0.34 2 AAD 16J ATLS pp, 7, 8 TeV1.04+0.32−0.26 2 AAD 16J CMS pp, 7, 8 TeV1.46+0.35−0.31+0.19

−0.13 3 AAD 16K ATLS pp, 7, 8 TeV1.44+0.34−0.31+0.21

−0.11 4 AAD 15F ATLS pp → H0X , 7, 8 TeV5 AAD 14AR ATLS pp, 8 TeV, dierential rossse tion0.93+0.26−0.23+0.13

−0.09 6 CHATRCHYAN14AA CMS pp, 7, 8 TeV1.43+0.40−0.35 7 AAD 13AK ATLS pp, 7 and 8 TeV0.80+0.35−0.28 8 CHATRCHYAN13J CMS pp → H0X , 7, 8 TeV1.2 ±0.6 9 AAD 12AI ATLS pp → H0X , 7, 8 TeV1.4 ±1.1 9 AAD 12AI ATLS pp → H0X , 7 TeV1.1 ±0.8 9 AAD 12AI ATLS pp → H0X , 8 TeV0.73+0.45−0.33 10 CHATRCHYAN12N CMS pp → H0X , 7, 8 TeV1AAD 16J perform ts to the ATLAS and CMS data at E m = 7 and 8 TeV. The signalstrengths for individual produ tion pro esses are 1.13+0.34

−0.31 for gluon fusion and 0.1+1.1−0.6for ve tor boson fusion.2 In the t, relative produ tion ross se tions are xed to those in the Standard Model.The quoted signal strength is given for mH0 = 125.09 GeV.3AAD 16K use up to 4.7 fb−1 of pp ollisions at E m = 7 TeV and up to 20.3 fb−1 atE m = 8 TeV. The quoted signal strength is given for mH0 = 125.36 GeV.4AAD 15F use 4.5 fb−1 of pp ollisions at E m = 7 TeV and 20.3 fb−1 at E m = 8TeV. The quoted signal strength is given for mH0 = 125.36 GeV. The signal strengthfor the gluon fusion produ tion mode is 1.66+0.45

−0.41+0.25−0.15, while the signal strength forthe ve tor boson fusion produ tion mode is 0.26+1.60

−0.91+0.36−0.23.5AAD 14AR measure the ross se tion for pp → H0X , H0 → Z Z∗ using 20.3 fb−1at E m = 8 TeV. They give σ · B = 2.11+0.53

−0.47 ± 0.08 fb in their du ial region,where 1.30 ± 0.13 fb is expe ted in the Standard Model for mH0 = 125.4 GeV. Variousdierential ross se tions are also given, whi h are in agreement with the Standard Modelexpe tations.6CHATRCHYAN 14AA use 5.1 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1 atE m = 8 TeV. The quoted signal strength is given for mH0 = 125.6 GeV. The signalstrength for the gluon fusion and t t H produ tion mode is 0.80+0.46−0.36, while the signalstrength for the ve tor boson fusion and W H0, Z H0 produ tion mode is 1.7+2.2

−2.1.7AAD 13AK use 4.7 fb−1 of pp ollisions at E m = 7 TeV and 20.7 fb−1 at E m = 8TeV. The quoted signal strength is given for mH0 = 125.5 GeV.8CHATRCHYAN 13J obtain results based on Z Z → 4ℓ nal states in 5.1 fb−1 of pp ollisions at E m = 7 TeV and 12.2 fb−1 at E m = 8 TeV. The quoted signal strengthis given for mH0 = 125.8 GeV. Superseded by CHATRCHYAN 14AA.9AAD 12AI obtain results based on 4.74.8 fb−1 of pp ollisions at E m = 7 TeV and5.8 fb−1 at E m = 8 TeV. The quoted signal strengths are given for mH0 = 126 GeV.See also AAD 12DA.10CHATRCHYAN 12N obtain results based on 4.95.1 fb−1 of pp ollisions at E m = 7TeV and 5.15.3 fb−1 at E m = 8 TeV. An ex ess of events over ba kground with a lo alsigni an e of 5.0 σ is observed at about mH0 = 125 GeV. The quoted signal strengthsare given for mH0 = 125.5 GeV. See also CHATRCHYAN 12BY and CHATRCHYAN 13Y.γ γ Final Stateγ γ Final Stateγ γ Final Stateγ γ Final StateVALUE DOCUMENT ID TECN COMMENT1.16±0.18 OUR AVERAGE1.16±0.18 OUR AVERAGE1.16±0.18 OUR AVERAGE1.16±0.18 OUR AVERAGE1.14+0.19

−0.18 1,2 AAD 16J LHC pp, 7, 8 TeV5.97+3.39−3.12 3 AALTONEN 13M TEVA pp → H0X , 1.96 TeV

• • • We do not use the following data for averages, ts, limits, et . • • •1.14+0.27−0.25 2 AAD 16J ATLS pp, 7, 8 TeV1.11+0.25−0.23 2 AAD 16J CMS pp, 7, 8 TeV4 KHACHATRY...16B CMS H0 → γ∗γ → ℓ+ ℓ− γ5 KHACHATRY...16G CMS dierential ross se tion1.17±0.23+0.10

−0.08+0.12−0.08 6 AAD 14BC ATLS pp → H0X , 7, 8 TeV7 AAD 14BJ ATLS pp, 8 TeV, dierential rossse tion1.14±0.21+0.09

−0.05+0.13−0.09 8 KHACHATRY...14P CMS pp, 7, 8 TeV1.55+0.33

−0.28 9 AAD 13AK ATLS pp, 7 and 8 TeV7.81+4.61−4.42 10 AALTONEN 13L CDF pp → H0X , 1.96 TeV4.20+4.60−4.20 11 ABAZOV 13L D0 pp → H0X , 1.96 TeV1.8 ±0.5 12 AAD 12AI ATLS pp → H0X , 7, 8 TeV2.2 ±0.7 12 AAD 12AI ATLS pp → H0X , 7 TeV1.5 ±0.6 12 AAD 12AI ATLS pp → H0X , 8 TeV1.54+0.46−0.42 13 CHATRCHYAN12N CMS pp → H0X , 7, 8 TeV1AAD 16J perform ts to the ATLAS and CMS data at E m = 7 and 8 TeV. The signalstrengths for individual produ tion pro esses are 1.10+0.23

−0.22 for gluon fusion, 1.3+0.5−0.5for ve tor boson fusion, 0.5+1.3

−1.2 for WH0 produ tion, 0.5+3.0−2.5 for Z H0 produ tion,and 2.2+1.6

−1.3 for t t H0 produ tion.2 In the t, relative produ tion ross se tions are xed to those in the Standard Model.The quoted signal strength is given for mH0 = 125.09 GeV.3AALTONEN 13M ombine all Tevatron data from the CDF and D0 Collaborations withup to 10.0 fb−1 and 9.7 fb−1, respe tively, of pp ollisions at E m = 1.96 TeV. Thequoted signal strength is given for mH0 = 125 GeV.4KHACHATRYAN 16B sear h for H0 → γ∗ γ → e+ e− γ and µ+µ− γ (with m(ℓ+ ℓ−)< 20 GeV) in 19.7 fb−1 of pp ollisions at E m = 8 TeV. An upper limit of 6.7 timesthe Standard Model expe tation is obtained at 95% CL. See their Fig. 6 for limits onindividual hannels.5KHACHATRYAN 16Gmeasure du ial and dierential ross se tions of the pro ess pp →H0X , H0 → γ γ at E m = 8 TeV with 19.7 fb−1. See their Figs. 46 and Table 1 fordata.6AAD 14BC use 4.5 fb−1 of pp ollisions at E m = 7 TeV and 20.3 fb−1 at E m= 8 TeV. The last un ertainty in the measurement is theory systemati s. The quotedsignal strength is given for mH0 = 125.4 GeV. The signal strengths for the individualprodu tion modes are: 1.32 ± 0.38 for gluon fusion, 0.8 ± 0.7 for ve tor boson fusion,1.0 ± 1.6 for W H0 produ tion, 0.1+3.7

−0.1 for Z H0 produ tion, and 1.6+2.7−1.8 for t t H0produ tion.7AAD 14BJ measure du ial and dierential ross se tions of the pro ess pp → H0X ,H0 → γ γ at E m = 8 TeV with 20.3 fb−1. See their Table 3 and Figs. 312 for data.8KHACHATRYAN 14P use 5.1 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1at E m = 8 TeV. The last un ertainty in the measurement is theory systemati s. Thequoted signal strength is given for mH0 = 124.7 GeV. The signal strength for the gluonfusion and t t H produ tion mode is 1.13+0.37

−0.31, while the signal strength for the ve torboson fusion and WH0, Z H0 produ tion mode is 1.16+0.63−0.58.9AAD 13AK use 4.7 fb−1 of pp ollisions at E m = 7 TeV and 20.7 fb−1 at E m = 8TeV. The quoted signal strength is given for mH0 = 125.5 GeV.10AALTONEN 13L ombine all CDF results with 9.4510.0 fb−1 of pp ollisions at E m= 1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.11ABAZOV 13L ombine all D0 results with up to 9.7 fb−1 of pp ollisions at E m =1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.12AAD 12AI obtain results based on 4.8 fb−1 of pp ollisions at E m = 7 TeV and 5.9fb−1 at E m = 8 TeV. The quoted signal strengths are given for mH0 = 126 GeV. Seealso AAD 12DA.13CHATRCHYAN 12N obtain results based on 5.1 fb−1 of pp ollisions at E m=7 TeVand 5.3 fb−1 at E m=8 TeV. The quoted signal strength is given for mH0=125.5 GeV.See also CHATRCHYAN 13Y.bb Final Statebb Final Statebb Final Statebb Final StateVALUE DOCUMENT ID TECN COMMENT0.82±0.30 OUR AVERAGE0.82±0.30 OUR AVERAGE0.82±0.30 OUR AVERAGE0.82±0.30 OUR AVERAGE Error in ludes s ale fa tor of 1.1.0.70+0.29

−0.27 1,2 AAD 16J LHC pp, 7, 8 TeV1.59+0.69−0.72 3 AALTONEN 13M TEVA pp → H0X , 1.96 TeV

• • • We do not use the following data for averages, ts, limits, et . • • •0.62±0.37 2 AAD 16J ATLS pp, 7, 8 TeV0.81+0.45−0.43 2 AAD 16J CMS pp, 7, 8 TeV0.63+0.31−0.30+0.24

−0.23 4 AAD 16K ATLS pp, 7, 8 TeV0.52±0.32±0.24 5 AAD 15G ATLS pp → H0W /Z X , 7, 8 TeV2.8 +1.6−1.4 6 KHACHATRY...15Z CMS pp → H0X , VBF, 8 TeV1.03+0.44−0.42 7 KHACHATRY...15Z CMS pp, 8 TeV, ombined1.0 ±0.5 8 CHATRCHYAN14AI CMS pp → H0W /Z X , 7, 8 TeV1.72+0.92−0.87 9 AALTONEN 13L CDF pp → H0X , 1.96 TeV1.23+1.24−1.17 10 ABAZOV 13L D0 pp → H0X , 1.96 TeV0.5 ±2.2 11 AAD 12AI ATLS pp → H0W /Z X , 7 TeV12 AALTONEN 12T TEVA pp → H0W /Z X , 1.96 TeV0.48+0.81−0.70 13 CHATRCHYAN12N CMS pp → H0W /Z X , 7, 8 TeV

Page 42: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

652652652652Gauge&HiggsBosonParti le ListingsH01AAD 16J perform ts to the ATLAS and CMS data at E m = 7 and 8 TeV. The signalstrengths for individual produ tion pro esses are 1.0+0.5−0.5 forW H0 produ tion, 0.4+0.4

−0.4for Z H0 produ tion, and 1.1+1.0−1.0 for t t H0 produ tion.2 In the t, relative produ tion ross se tions are xed to those in the Standard Model.The quoted signal strength is given for mH0 = 125.09 GeV.3AALTONEN 13M ombine all Tevatron data from the CDF and D0 Collaborations withup to 10.0 fb−1 and 9.7 fb−1, respe tively, of pp ollisions at E m = 1.96 TeV. Thequoted signal strength is given for mH0 = 125 GeV.4AAD 16K use up to 4.7 fb−1 of pp ollisions at E m = 7 TeV and up to 20.3 fb−1 atE m = 8 TeV. The quoted signal strength is given for mH0 = 125.36 GeV.5AAD 15G use 4.7 fb−1 of pp ollisions at E m = 7 TeV and 20.3 fb−1 at E m = 8TeV. The quoted signal strength is given for mH0 = 125.36 GeV.6KHACHATRYAN 15Z sear h for ve tor-boson fusion produ tion of H0 de aying to bb inup to 19.8 fb−1 of pp ollisions at E m = 8 TeV. The quoted signal strength is givenfor mH0 = 125 GeV.7KHACHATRYAN 15Z ombined ve tor boson fusion,W H0, Z H0 produ tion, and t t H0produ tion results. The quoted signal strength is given for mH0 = 125 GeV.8CHATRCHYAN 14AI use up to 5.1 fb−1 of pp ollisions at E m = 7 TeV and up to18.9 fb−1 at E m = 8 TeV. The quoted signal strength is given for mH0 = 125 GeV.See also CHATRCHYAN 14AJ.9AALTONEN 13L ombine all CDF results with 9.4510.0 fb−1 of pp ollisions at E m= 1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.10ABAZOV 13L ombine all D0 results with up to 9.7 fb−1 of pp ollisions at E m =1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.11AAD 12AI obtain results based on 4.64.8 fb−1 of pp ollisions at E m = 7 TeV. Thequoted signal strengths are given in their Fig. 10 for mH0 = 126 GeV. See also Fig. 13of AAD 12DA.12AALTONEN 12T ombine AALTONEN 12Q, AALTONEN 12R, AALTONEN 12S,ABAZOV 12O, ABAZOV 12P, and ABAZOV 12K. An ex ess of events over ba kgroundis observed whi h is most signi ant in the region mH0 = 120135 GeV, with a lo alsigni an e of up to 3.3 σ. The lo al signi an e at mH0 = 125 GeV is 2.8 σ, whi h orresponds to (σ(H0W ) + σ(H0 Z)) · B(H0 → bb) = (0.23+0.09

−0.08) pb, ompared tothe Standard Model expe tation at mH0 = 125 GeV of 0.12 ± 0.01 pb. Superseded byAALTONEN 13M.13CHATRCHYAN 12N obtain results based on 5.0 fb−1 of pp ollisions at E m=7 TeVand 5.1 fb−1 at E m=8 TeV. The quoted signal strength is given for mH0=125.5 GeV.See also CHATRCHYAN 13Y.µ+µ− Final Stateµ+µ− Final Stateµ+µ− Final Stateµ+µ− Final StateVALUE CL% DOCUMENT ID TECN COMMENT<7.4 95 1 KHACHATRY...15H CMS pp → H0X , 7, 8 TeV<7.0<7.0<7.0<7.0 95 2 AAD 14AS ATLS pp → H0X , 7, 8 TeV1KHACHATRYAN 15H use 5.0 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1 at8 TeV. The quoted signal strength is given for mH0 = 125 GeV.2AAD 14AS sear h for H0 → µ+µ− in 4.5 fb−1 of pp ollisions at E m = 7 TeV and20.3 fb−1 at E m = 8 TeV. The quoted signal strength is given for mH0 = 125.5 GeV.τ+ τ− Final Stateτ+ τ− Final Stateτ+ τ− Final Stateτ+ τ− Final StateVALUE DOCUMENT ID TECN COMMENT1.12±0.23 OUR AVERAGE1.12±0.23 OUR AVERAGE1.12±0.23 OUR AVERAGE1.12±0.23 OUR AVERAGE1.11+0.24

−0.22 1,2 AAD 16J LHC pp, 7, 8 TeV1.68+2.28−1.68 3 AALTONEN 13M TEVA pp → H0X , 1.96 TeV

• • • We do not use the following data for averages, ts, limits, et . • • •1.41+0.40−0.36 2 AAD 16J ATLS pp, 7, 8 TeV0.88+0.30−0.28 2 AAD 16J CMS pp, 7, 8 TeV1.44+0.30−0.29+0.29

−0.23 4 AAD 16K ATLS pp, 7, 8 TeV1.43+0.27−0.26+0.32

−0.25±0.09 5 AAD 15AH ATLS pp → H0X , 7, 8 TeV0.78±0.27 6 CHATRCHYAN14K CMS pp → H0X , 7, 8 TeV0.00+8.44−0.00 7 AALTONEN 13L CDF pp → H0X , 1.96 TeV3.96+4.11−3.38 8 ABAZOV 13L D0 pp → H0X , 1.96 TeV0.4 +1.6−2.0 9 AAD 12AI ATLS pp → H0X , 7 TeV0.09+0.76−0.74 10 CHATRCHYAN12N CMS pp → H0X , 7, 8 TeV1AAD 16J perform ts to the ATLAS and CMS data at E m = 7 and 8 TeV. The signalstrengths for individual produ tion pro esses are 1.0+0.6

−0.6 for gluon fusion, 1.3+0.4−0.4 forve tor boson fusion, −1.4+1.4

−1.4 forW H0 produ tion, 2.2+2.2−1.8 for Z H0 produ tion, and

−1.9+3.7−3.3 for t t H0 produ tion.2 In the t, relative produ tion ross se tions are xed to those in the Standard Model.The quoted signal strength is given for mH0 = 125.09 GeV.3AALTONEN 13M ombine all Tevatron data from the CDF and D0 Collaborations withup to 10.0 fb−1 and 9.7 fb−1, respe tively, of pp ollisions at E m = 1.96 TeV. Thequoted signal strength is given for mH0 = 125 GeV.4AAD 16K use up to 4.7 fb−1 of pp ollisions at E m = 7 TeV and up to 20.3 fb−1 atE m = 8 TeV. The quoted signal strength is given for mH0 = 125.36 GeV.

5AAD 15AH use 4.5 fb−1 of pp ollisions at E m = 7 TeV and 20.3 fb−1 at E m= 8 TeV. The third un ertainty in the measurement is theory systemati s. The signalstrength for the gluon fusion mode is 2.0 ± 0.8+1.2−0.8 ± 0.3 and that for ve tor bosonfusion and W /Z H0 produ tion modes is 1.24+0.49

−0.45+0.31−0.29 ± 0.08. The quoted signalstrength is given for mH0 = 125.36 GeV.6CHATRCHYAN 14K use 4.9 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1at E m = 8 TeV. The quoted signal strength is given for mH0 = 125 GeV. See alsoCHATRCHYAN 14AJ.7AALTONEN 13L ombine all CDF results with 9.4510.0 fb−1 of pp ollisions at E m= 1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.8ABAZOV 13L ombine all D0 results with up to 9.7 fb−1 of pp ollisions at E m =1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.9AAD 12AI obtain results based on 4.7 fb−1 of pp ollisions at E m = 7 TeV. Thequoted signal strengths are given in their Fig. 10 for mH0 = 126 GeV. See also Fig. 13of AAD 12DA.10CHATRCHYAN 12N obtain results based on 4.9 fb−1 of pp ollisions at E m=7 TeVand 5.1 fb−1 at E m=8 TeV. The quoted signal strength is given for mH0=125.5 GeV.See also CHATRCHYAN 13Y .Z γ Final StateZ γ Final StateZ γ Final StateZ γ Final StateVALUE CL% DOCUMENT ID TECN COMMENT

<11 95 1 AAD 14J ATLS pp → H0X , 7, 8 TeV< 9.5< 9.5< 9.5< 9.5 95 2 CHATRCHYAN13BK CMS pp → H0X , 7, 8 TeV1AAD 14J sear h for H0 → Z γ → ℓℓγ in 4.5 fb−1 of pp ollisions at E m = 7 TeVand 20.3 fb−1 at E m = 8 TeV. The quoted signal strength is given for mH0 = 125.5GeV.2CHATRCHYAN 13BK sear h for H0 → Z γ → ℓℓγ in 5.0 fb−1 of pp ollisions at E m= 7 TeV and 19.6 fb−1 at E m = 8 TeV. A limit on ross se tion times bran hing ratiowhi h orresponds to (425) times the expe ted Standard Model ross se tion is givenin the range mH0 = 120160 GeV at 95% CL. The quoted limit is given for mH0 = 125GeV, where 10 is expe ted for no signal.t t H0 Produ tiont t H0 Produ tiont t H0 Produ tiont t H0 Produ tionSignal strengh relative to the Standard Model ross se tion.VALUE CL% DOCUMENT ID TECN COMMENT2.3 +0.7

−0.62.3 +0.7−0.62.3 +0.7−0.62.3 +0.7−0.6 1,2 AAD 16J LHC pp, 7, 8 TeV

• • • We do not use the following data for averages, ts, limits, et . • • •1.9 +0.8−0.7 2 AAD 16J ATLS pp, 7, 8 TeV2.9 +1.0−0.9 2 AAD 16J CMS pp, 7, 8 TeV1.81+0.52−0.50+0.58

−0.55+0.31−0.12 3 AAD 16K ATLS pp, 7, 8 TeV1.4 +2.1

−1.4 +0.6−0.3 4 AAD 15 ATLS pp, 7, 8 TeV1.5 ±1.1 5 AAD 15BC ATLS pp, 8 TeV2.1 +1.4

−1.2 6 AAD 15T ATLS pp, 8 TeV1.2 +1.6−1.5 7 KHACHATRY...15AN CMS pp, 8 TeV2.8 +1.0−0.9 8 KHACHATRY...14H CMS pp, 7, 8 TeV9.49+6.60−6.28 9 AALTONEN 13L CDF pp, 1.96 TeV

<5.8 95 10 CHATRCHYAN13X CMS pp → H0 t t X1AAD 16J perform ts to the ATLAS and CMS data at E m = 7 and 8 TeV.2 In the t, relative bran hing ratios are xed to those in the Standard Model. The quotedsignal strength is given for mH0 = 125.09 GeV.3AAD 16K use up to 4.7 fb−1 of pp ollisions at E m = 7 TeV and up to 20.3 fb−1at E m = 8 TeV. The third un ertainty in the measurement is theory systemati s. Thequoted signal strength is given for mH0 = 125.36 GeV.4AAD 15 sear h for t t H0 produ tion with H0 de aying to γ γ in 4.5 fb−1 of pp ollisionsat E m = 7 TeV and 20.3 fb−1 at E m = 8 TeV. The quoted result on the signal strengthis equivalent to an upper limit of 6.7 at 95% CL and is given for mH0 = 125.4 GeV.5AAD 15BC sear h for t t H0 produ tion with H0 de aying to bb in 20.3 fb−1 of pp ollisions at E m = 8 TeV. The orresponding upper limit is 3.4 at 95% CL. The quotedsignal strength is given for mH0 = 125 GeV.6AAD 15T sear h for t t H0 produ tion with H0 resulting in multilepton nal states (mainlyfrom WW ∗, τ τ , Z Z∗) in 20.3 fb−1 of pp ollisions at E m = 8 TeV. The quotedresult on the signal strength is given for mH0 = 125 GeV and orresponds to an upperlimit of 4.7 at 95% CL. The data sample is independent from AAD 15 and AAD 15BC.7KHACHATRYAN 15AN sear h for t t H0 produ tion with H0 de aying to bb in 19.5 fb−1of pp ollisions at E m = 8 TeV. The quoted result on the signal strength is equivalentto an upper limit of 4.2 at 95% CL and is given for mH0 = 125 GeV.8KHACHATRYAN 14H sear h for t t H0 produ tion with H0 de aying to bb, τ τ , γ γ,WW ∗, and Z Z∗, in 5.1 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1 at E m= 8 TeV. The quoted signal strength is given for mH0 = 125.6 GeV.9AALTONEN 13L ombine all CDF results with 9.4510.0 fb−1 of pp ollisions at E m= 1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.10CHATRCHYAN 13X sear h for t t H0 produ tion followed by H0 → bb, one top de ayingto ℓν and the other to either ℓν or qq in 5.0 fb−1 and 5.1 fb−1 of pp ollisions atE m = 7 and 8 TeV. A limit on ross se tion times bran hing ratio whi h orresponds to(4.08.6) times the expe ted Standard Model ross se tion is given for mH0 = 110140GeV at 95% CL. The quoted limit is given for mH0 = 125 GeV, where 5.2 is expe tedfor no signal.

Page 43: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

653653653653See key on page 601 Gauge & Higgs Boson Parti le ListingsH0, Neutral Higgs Bosons, Sear hes forH0 REFERENCESH0 REFERENCESH0 REFERENCESH0 REFERENCESAAD 16 PL B753 69 G. Aad et al. (ATLAS Collab.)AAD 16J arXiv:1606.02266 G. Aad et al. (ATLAS and CMS Collabs.)JHEP to be publishedAAD 16K EPJ C76 6 G. Aad et al. (ATLAS Collab.)KHACHATRY... 16B PL B753 341 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 16G EPJ C76 13 V. Kha hatryan et al. (CMS Collab.)AAD 15 PL B740 222 G. Aad et al. (ATLAS Collab.)AAD 15AA PR D92 012006 G. Aad et al. (ATLAS Collab.)AAD 15AH JHEP 1504 117 G. Aad et al. (ATLAS Collab.)AAD 15AQ JHEP 1508 137 G. Aad et al. (ATLAS Collab.)AAD 15AX EPJ C75 231 G. Aad et al. (ATLAS Collab.)AAD 15B PRL 114 191803 G. Aad et al. (ATLAS and CMS Collabs.)AAD 15BC EPJ C75 349 G. Aad et al. (ATLAS Collab.)AAD 15BD EPJ C75 337 G. Aad et al. (ATLAS Collab.)AAD 15BE EPJ C75 335 G. Aad et al. (ATLAS Collab.)AAD 15CI EPJ C75 476 G. Aad et al. (ATLAS Collab.)AAD 15F PR D91 012006 G. Aad et al. (ATLAS Collab.)AAD 15G JHEP 1501 069 G. Aad et al. (ATLAS Collab.)AAD 15I PRL 114 121801 G. Aad et al. (ATLAS Collab.)AAD 15P PRL 115 091801 G. Aad et al. (ATLAS Collab.)AAD 15T PL B749 519 G. Aad et al. (ATLAS Collab.)AALTONEN 15 PRL 114 151802 T. Aaltonen et al. (CDF and D0 Collabs.)AALTONEN 15B PRL 114 141802 T. Aaltonen et al. (CDF Collab.)KHACHATRY... 15AM EPJ C75 212 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15AN EPJ C75 251 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15BA PR D92 072010 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15H PL B744 184 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15Q PL B749 337 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15Y PR D92 012004 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15Z PR D92 032008 V. Kha hatryan et al. (CMS Collab.)AAD 14AR PL B738 234 G. Aad et al. (ATLAS Collab.)AAD 14AS PL B738 68 G. Aad et al. (ATLAS Collab.)AAD 14BC PR D90 112015 G. Aad et al. (ATLAS Collab.)AAD 14BJ JHEP 1409 112 G. Aad et al. (ATLAS Collab.)AAD 14J PL B732 8 G. Aad et al. (ATLAS Collab.)AAD 14O PRL 112 201802 G. Aad et al. (ATLAS Collab.)AAD 14W PR D90 052004 G. Aad et al. (ATLAS Collab.)ABAZOV 14F PRL 113 161802 V.M. Abazov et al. (D0 Collab.)CHATRCHYAN 14AA PR D89 092007 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 14AI PR D89 012003 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 14AJ NATP 10 557 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 14B EPJ C74 2980 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 14G JHEP 1401 096 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 14K JHEP 1405 104 S. Chatr hyan et al. (CMS Collab.)KHACHATRY... 14D PL B736 64 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 14H JHEP 1409 087 V. Kha hartryan et al. (CMS Collab.)KHACHATRY... 14P EPJ C74 3076 V. Kha hatryan et al. (CMS Collab.)AAD 13AJ PL B726 120 G. Aad et al. (ATLAS Collab.)AAD 13AK PL B726 88 G. Aad et al. (ATLAS Collab.)Also PL B734 406 (errat.) G. Aad et al. (ATLAS Collab.)AALTONEN 13L PR D88 052013 T. Aaltonen et al. (CDF Collab.)AALTONEN 13M PR D88 052014 T. Aaltonen et al. (CDF and D0 Collabs.)ABAZOV 13L PR D88 052011 V.M. Abazov et al. (D0 Collab.)CHATRCHYAN 13BK PL B726 587 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13J PRL 110 081803 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13X JHEP 1305 145 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13Y JHEP 1306 081 S. Chatr hyan et al. (CMS Collab.)HEINEMEYER 13A arXiv:1307.1347 S. Heinemeyer et al. (LHC Higgs CS Working Group)AAD 12AI PL B716 1 G. Aad et al. (ATLAS Collab.)AAD 12DA SCI 338 1576 G. Aad et al. (ATLAS Collab.)AALTONEN 12Q PRL 109 111803 T. Aaltonen et al. (CDF Collab.)AALTONEN 12R PRL 109 111804 T. Aaltonen et al. (CDF Collab.)AALTONEN 12S PRL 109 111805 T. Aaltonen et al. (CDF Collab.)AALTONEN 12T PRL 109 071804 T. Aaltonen et al. (CDF and D0 Collabs.)ABAZOV 12K PL B716 285 V.M. Abazov et al. (D0 Collab.)ABAZOV 12O PRL 109 121803 V.M. Abazov et al. (D0 Collab.)ABAZOV 12P PRL 109 121804 V.M. Abazov et al. (D0 Collab.)CHATRCHYAN 12BY SCI 338 1569 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12N PL B716 30 S. Chatr hyan et al. (CMS Collab.)DITTMAIER 12 arXiv:1201.3084 S. Dittmaier et al. (LHC Higgs CS Working Group)DITTMAIER 11 arXiv:1101.0593 S. Dittmaier et al. (LHC Higgs CS Working Group)Neutral Higgs Bosons, Sear hes forCONTENTS:CONTENTS:CONTENTS:CONTENTS:Mass Limits for Neutral Higgs Bosons in Supersymmetri Models− Mass Limits for H01 (Higgs Boson) in Supersymmetri Models− Mass Limits for A0 (Pseudos alar Higgs Boson) in Supersymmetri ModelsMass Limits for Neutral Higgs Bosons in Extended Higgs Models− Mass Limits in General two-Higgs-doublet Models− Mass Limits for H0 with Vanishing Yukawa Couplings− Mass Limits for H0 De aying to Invisible Final States− Mass Limits for Light A0− Other Mass LimitsSear hes for a Higgs Boson with Standard Model Couplings− Dire t Mass Limits for H0− Indire t Mass Limits for H0 from Ele troweak AnalysisMASS LIMITS FOR NEUTRAL HIGGS BOSONSMASS LIMITS FOR NEUTRAL HIGGS BOSONSMASS LIMITS FOR NEUTRAL HIGGS BOSONSMASS LIMITS FOR NEUTRAL HIGGS BOSONSIN SUPERSYMMETRIC MODELSIN SUPERSYMMETRIC MODELSIN SUPERSYMMETRIC MODELSIN SUPERSYMMETRIC MODELSThe minimal supersymmetri model has two omplex doublets of Higgsbosons. The resulting physi al states are two s alars [H01 and H02, wherewe dene mH01 < mH02 , a pseudos alar (A0), and a harged Higgs pair(H±). H01 and H02 are also alled h and H in the literature. There aretwo free parameters in the Higgs se tor whi h an be hosen to be mA0and tanβ = v2/v1, the ratio of va uum expe tation values of the twoHiggs doublets. Tree-level Higgs masses are onstrained by the model tobe mH01 ≤ mZ , mH02 ≥ mZ , mA0 ≥ mH01 , and mH± ≥ mW .

However, as des ribed in the review on \Status of Higgs Boson Physi s"in this Volume these relations are violated by radiative orre tions.Unless otherwise noted, the experiments in e+ e− ollisions sear h forthe pro esses e+ e− → H01Z0 in the hannels used for the StandardModel Higgs sear hes and e+ e− → H01A0 in the nal states bbbb andbb τ+ τ−. In pp and pp ollisions the experiments sear h for a varietyof pro esses, as expli itly spe ied for ea h entry. Limits on the A0 massarise from these dire t sear hes, as well as from the relations valid in theminimal supersymmetri model between mA0 and mH01. As dis ussedin the review on \Status of Higgs Boson Physi s" in this Volume, theserelations depend, via potentially large radiative orre tions, on the mass ofthe t quark and on the supersymmetri parameters, in parti ular those ofthe stop se tor. These indire t limits are weaker for larger t and t masses.To in lude the radiative orre tions to the Higgs masses, unless otherwisestated, the listed papers use theoreti al predi tions in orporating two-loop orre tions, and the results are given for the mmaxh

ben hmark s enario,whi h gives rise to the most onservative upper bound on the mass of H01for given values of mA0 and tanβ, see CARENA 99B, CARENA 03, andCARENA 13.Limits in the low-mass region of H01, as well as other by now obsolete limitsfrom dierent te hniques, have been removed from this ompilation, and an be found in earlier editions of this Review. Unless otherwise stated,the following results assume no invisible H01 or A0 de ays.The observed signal at about 125 GeV, see se tion \H0", an be inter-preted as one of the neutral Higgs bosons of supersymmetri models.Mass Limits for H01 (Higgs Boson) in Supersymmetri ModelsMass Limits for H01 (Higgs Boson) in Supersymmetri ModelsMass Limits for H01 (Higgs Boson) in Supersymmetri ModelsMass Limits for H01 (Higgs Boson) in Supersymmetri ModelsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT>89.7 1 ABDALLAH 08B DLPH E m ≤ 209 GeV>92.8>92.8>92.8>92.8 95 2 SCHAEL 06B LEP E m ≤ 209 GeV>84.5 95 3,4 ABBIENDI 04M OPAL E m ≤ 209 GeV>86.0 95 3,5 ACHARD 02H L3 E m ≤ 209 GeV, tanβ > 0.4• • • We do not use the following data for averages, ts, limits, et . • • •6 KHACHATRY...16A CMS H01,2 /A0 → µ+µ−7 AAD 15CE ATLS H02 → H0H08 KHACHATRY...15AY CMS pp → H01,2 /A0 + b + X ,

H01,2 /A0 → bb9 AAD 14AWATLS pp → H01,2 /A0 + X ,H01,2 /A0 → τ τ10 KHACHATRY...14M CMS pp → H01,2 /A0 + X ,H01,2 /A0 → τ τ11 AAD 13O ATLS pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−, µ+µ−12 AAIJ 13T LHCB pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−13 CHATRCHYAN13AG CMS pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb14 AALTONEN 12AQ TEVA pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb15 AALTONEN 12X CDF pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb16 ABAZOV 12G D0 pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−17 CHATRCHYAN12K CMS pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−18 ABAZOV 11K D0 pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb19 ABAZOV 11W D0 pp → H01,2 /A0 + b + X ,H01,2 /A0 → τ+ τ−20 AALTONEN 09AR CDF pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−21 ABBIENDI 03G OPAL H01 → A0A0

>89.8 95 3,22 HEISTER 02 ALEP E m ≤ 209 GeV, tanβ > 0.51ABDALLAH 08B give limits in eight CP- onserving ben hmark s enarios and some CP-violating s enarios. See paper for ex luded regions for ea h s enario. Supersedes AB-DALLAH 04.2 SCHAEL 06B make a ombined analysis of the LEP data. The quoted limit is for themmaxh

s enario with mt = 174.3 GeV. In the CP-violating CPX s enario no lower boundon mH01 an be set at 95% CL. See paper for ex luded regions in various s enarios. SeeFigs. 26 and Tabs. 1421 for limits on σ(Z H0)· B(H0 → bb, τ+ τ−) and σ(H01H02)·B(H01,H02→ bb,τ+ τ−).

Page 44: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

654654654654Gauge & Higgs Boson Parti le ListingsNeutral Higgs Bosons, Sear hes for3Sear h for e+ e− → H01A0 in the nal states bbbb and bb τ+ τ−, and e+ e− →H01Z . Universal s alar mass of 1 TeV, SU(2) gaugino mass of 200 GeV, and µ= −200GeV are assumed, and two-loop radiative orre tions in orporated. The limits hold formt=175 GeV, and for the mmaxh s enario.4ABBIENDI 04M ex lude 0.7 < tanβ < 1.9, assuming mt = 174.3 GeV. Limits for otherMSSM ben hmark s enarios, as well as for CP violating ases, are also given.5ACHARD 02H also sear h for the nal state H01Z → 2A0 qq, A0 → qq. In addition,the MSSM parameter set in the \large-µ" and \no-mixing" s enarios are examined.6KHACHATRYAN 16A sear h for produ tion of a Higgs boson in gluon fusion and inasso iation with a bb pair followed by the de ay H01,2 /A0 → µ+µ− in 5.1 fb−1 ofpp ollisions at E m = 7 TeV and 19.3 fb−1 at E m = 8 TeV. See their Fig. 7 for theex luded region in the MSSM parameter spa e in the mmod+h

ben hmark s enario andFig. 9 for limits on ross se tion times bran hing ratio.7AAD 15CE sear h for produ tion of H02 de aying to H0H0 in the nal states bb τ+ τ−and γ γWW∗ in 20.3 fb−1 of pp ollisions at E m = 8 TeV and ombine with datafrom AAD 15H (γ γ bb) and AAD 15BK (bb bb). See their Fig. 7 for ex luded regionsin the parameter spa e in several s enarios.8KHACHATRYAN 15AY sear h for produ tion of a Higgs boson in asso iation with a bquark in the de ay H01,2 /A0 → bb in 19.7 fb−1 of pp ollisions at E m = 8 TeV and ombine with CHATRCHYAN 13AG 7 TeV data. See their Fig. 6 for the limits on rossse tion times bran hing ratio for mA0 = 100900 GeV and Figs. 79 for the ex ludedregion in the MSSM parameter spa e in various ben hmark s enarios.9AAD 14AW sear h for produ tion of a Higgs boson followed by the de ay H01,2 /A0 →

τ+ τ− in 19.520.3 fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 11 for thelimits on ross se tion times bran hing ratio and their Figs. 9 and 10 for the ex ludedregion in the MSSM parameter spa e. For mA0 = 140 GeV, the region tanβ > 5.4 isex luded at 95% CL in the mmaxh s enario.10KHACHATRYAN 14M sear h for produ tion of a Higgs boson in gluon fusion and inasso iation with a b quark followed by the de ay H01,2 /A0 → τ+ τ− in 4.9 fb−1 ofpp ollisions at E m = 7 TeV and 19.7 fb−1 at E m = 8 TeV. See their Figs. 7 and8 for one- and two-dimensional limits on ross se tion times bran hing ratio and theirFigs. 5 and 6 for the ex luded region in the MSSM parameter spa e. For mA0 = 140GeV, the region tanβ > 3.8 is ex luded at 95% CL in the mmax

hs enario.11AAD 13O sear h for produ tion of a Higgs boson in the de ay H01,2 /A0 → τ+ τ− and

µ+µ− with 4.74.8 fb−1 of pp ollisions at E m = 7 TeV. See their Fig. 6 for theex luded region in the MSSM parameter spa e and their Fig. 7 for the limits on rossse tion times bran hing ratio. For mA0 = 110170 GeV, tanβ & 10 is ex luded, andfor tanβ = 50, mA0 below 470 GeV is ex luded at 95% CL in the mmaxh

s enario.12AAIJ 13T sear h for produ tion of a Higgs boson in the forward region in the de ayH01,2/A0 → τ+ τ− in 1.0 fb−1 of pp ollisions at E m = 7 TeV. See their Fig. 2 forthe limits on ross se tion times bran hing ratio and the ex luded region in the MSSMparameter spa e.13CHATRCHYAN 13AG sear h for produ tion of a Higgs boson in asso iation with a bquark in the de ay H01,2/A0 → bb in 2.74.8 fb−1 of pp ollisions at E m = 7 TeV.See their Fig. 6 for the ex luded region in the MSSM parameter spa e and Fig. 5 for thelimits on ross se tion times bran hing ratio. For mA0 = 90350 GeV, upper bounds ontanβ of 1842 at 95% CL are obtained in the mmaxh

s enario with µ = +200 GeV.14AALTONEN 12AQ ombine AALTONEN 12X and ABAZOV 11K. See their Table I andFig. 1 for the limit on ross se tion times bran hing ratio and Fig. 2 for the ex ludedregion in the MSSM parameter spa e.15AALTONEN 12X sear h for asso iated produ tion of a Higgs boson and a b quark in thede ay H01,2 /A0 → bb, with 2.6 fb−1 of pp ollisions at E m = 1.96 TeV. See theirTable III and Fig. 15 for the limit on ross se tion times bran hing ratio and Figs. 17,18 for the ex luded region in the MSSM parameter spa e.16ABAZOV 12G sear h for produ tion of a Higgs boson in the de ay H01,2 /A0 → τ+ τ−with 7.3 fb−1 of pp ollisions at E m = 1.96 TeV and ombine with ABAZOV 11Wand ABAZOV 11K. See their Figs. 4, 5, and 6 for the ex luded region in the MSSMparameter spa e. For mA0 = 90180 GeV, tanβ & 30 is ex luded at 95% CL. in themmaxh

s enario.17CHATRCHYAN 12K sear h for produ tion of a Higgs boson in the de ay H01,2 /A0 →

τ+ τ− with 4.6 fb−1 of pp ollisions at E m = 7 TeV. See their Fig. 3 and Ta-ble 4 for the ex luded region in the MSSM parameter spa e. For mA0 = 160 GeV,the region tanβ > 7.1 is ex luded at 95% CL in the mmaxh

s enario. Superseded byKHACHATRYAN 14M.18ABAZOV 11K sear h for asso iated produ tion of a Higgs boson and a b quark, followedby the de ay H01,2/A0 → bb, in 5.2 fb−1 of pp ollisions at E m = 1.96 TeV. Seetheir Fig. 5/Table 2 for the limit on ross se tion times bran hing ratio and Fig. 6 for theex luded region in the MSSM parameter spa e for µ = −200 GeV.19ABAZOV 11W sear h for asso iated produ tion of a Higgs boson and a b quark, followedby the de ay H01,2/A0 → τ τ , in 7.3 fb−1 of pp ollisions at E m = 1.96 TeV. See theirFig. 2 for the limit on ross se tion times bran hing ratio and for the ex luded region inthe MSSM parameter spa e.20AALTONEN 09AR sear h for Higgs bosons de aying to τ+ τ− in two doublet modelsin 1.8 fb−1 of pp ollisions at E m = 1.96 TeV. See their Fig. 2 for the limit onσ · B(H01,2/A0 → τ+ τ−) for dierent Higgs masses, and see their Fig. 3 for theex luded region in the MSSM parameter spa e.21ABBIENDI 03G sear h for e+ e− → H01Z followed by H01 → A0A0, A0 → , g g ,or τ+ τ−. In the no-mixing s enario, the region mH01 = 45-85 GeV and mA0 = 2-9.5GeV is ex luded at 95% CL.22HEISTER 02 ex ludes the range 0.7 <tanβ < 2.3. A wider range is ex luded withdierent stop mixing assumptions. Updates BARATE 01C.

Mass Limits for A0 (Pseudos alar Higgs Boson) in Supersymmetri ModelsMass Limits for A0 (Pseudos alar Higgs Boson) in Supersymmetri ModelsMass Limits for A0 (Pseudos alar Higgs Boson) in Supersymmetri ModelsMass Limits for A0 (Pseudos alar Higgs Boson) in Supersymmetri ModelsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT>90.4 1 ABDALLAH 08B DLPH E m ≤ 209 GeV>93.4>93.4>93.4>93.4 95 2 SCHAEL 06B LEP E m ≤ 209 GeV>85.0 95 3,4 ABBIENDI 04M OPAL E m ≤ 209 GeV>86.5 95 3,5 ACHARD 02H L3 E m ≤ 209 GeV, tanβ > 0.4>90.1 95 3,6 HEISTER 02 ALEP E m ≤ 209 GeV, tanβ > 0.5• • • We do not use the following data for averages, ts, limits, et . • • •7 KHACHATRY...16A CMS H01,2 /A0 → µ+µ−8 KHACHATRY...15AY CMS pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb9 AAD 14AWATLS pp → H01,2 /A0 + X ,H01,2 /A0 → τ τ10 KHACHATRY...14M CMS pp → H01,2 /A0 + X ,H01,2 /A0 → τ τ11 AAD 13O ATLS pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−, µ+µ−12 AAIJ 13T LHCB pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−13 CHATRCHYAN13AG CMS pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb14 AALTONEN 12AQ TEVA pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb15 AALTONEN 12X CDF pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb16 ABAZOV 12G D0 pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−17 CHATRCHYAN12K CMS pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−18 ABAZOV 11K D0 pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb19 ABAZOV 11W D0 pp → H01,2 /A0 + b + X ,H01,2 /A0 → τ+ τ−20 AALTONEN 09AR CDF pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−21 ACOSTA 05Q CDF pp → H01,2 /A0 + X22 ABBIENDI 03G OPAL H01 → A0A023 AKEROYD 02 RVUE1ABDALLAH 08B give limits in eight CP- onserving ben hmark s enarios and some CP-violating s enarios. See paper for ex luded regions for ea h s enario. Supersedes AB-DALLAH 04.2 SCHAEL 06B make a ombined analysis of the LEP data. The quoted limit is for themmaxh s enario with mt = 174.3 GeV. In the CP-violating CPX s enario no lower boundon mH01 an be set at 95% CL. See paper for ex luded regions in various s enarios. SeeFigs. 26 and Tabs. 1421 for limits on σ(Z H0)· B(H0 → bb, τ+ τ−) and σ(H01H02)·B(H01,H02→ bb,τ+ τ−).3 Sear h for e+ e− → H01A0 in the nal states bbbb and bb τ+ τ−, and e+ e− →H01Z . Universal s alar mass of 1 TeV, SU(2) gaugino mass of 200 GeV, and µ= −200GeV are assumed, and two-loop radiative orre tions in orporated. The limits hold formt=175 GeV, and for the mmax

hs enario.4ABBIENDI 04M ex lude 0.7 < tanβ < 1.9, assuming mt = 174.3 GeV. Limits for otherMSSM ben hmark s enarios, as well as for CP violating ases, are also given.5ACHARD 02H also sear h for the nal state H01Z → 2A0 qq, A0 → qq. In addition,the MSSM parameter set in the \large-µ" and \no-mixing" s enarios are examined.6HEISTER 02 ex ludes the range 0.7 <tanβ < 2.3. A wider range is ex luded withdierent stop mixing assumptions. Updates BARATE 01C.7KHACHATRYAN 16A sear h for produ tion of a Higgs boson in gluon fusion and inasso iation with a bb pair followed by the de ay H01,2 /A0 → µ+µ− in 5.1 fb−1 ofpp ollisions at E m = 7 TeV and 19.3 fb−1 at E m = 8 TeV. See their Fig. 7 for theex luded region in the MSSM parameter spa e in the mmod+

hben hmark s enario andFig. 9 for limits on ross se tion times bran hing ratio.8KHACHATRYAN 15AY sear h for produ tion of a Higgs boson in asso iation with a bquark in the de ay H01,2 /A0 → bb in 19.7 fb−1 of pp ollisions at E m = 8 TeV and ombine with CHATRCHYAN 13AG 7 TeV data. See their Fig. 6 for the limits on rossse tion times bran hing ratio for mA0 = 100900 GeV and Figs. 79 for the ex ludedregion in the MSSM parameter spa e in various ben hmark s enarios.9AAD 14AW sear h for produ tion of a Higgs boson followed by the de ay H01,2 /A0 →

τ+ τ− in 19.520.3 fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 11 for thelimits on ross se tion times bran hing ratio and their Figs. 9 and 10 for the ex ludedregion in the MSSM parameter spa e. For mA0 = 140 GeV, the region tanβ > 5.4 isex luded at 95% CL in the mmaxh

s enario.

Page 45: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

655655655655See key on page 601 Gauge&HiggsBosonParti leListingsNeutral Higgs Bosons, Sear hes for10KHACHATRYAN 14M sear h for produ tion of a Higgs boson in gluon fusion and inasso iation with a b quark followed by the de ay H01,2 /A0 → τ+ τ− in 4.9 fb−1 ofpp ollisions at E m = 7 TeV and 19.7 fb−1 at E m = 8 TeV. See their Figs. 7 and8 for one- and two-dimensional limits on ross se tion times bran hing ratio and theirFigs. 5 and 6 for the ex luded region in the MSSM parameter spa e. For mA0 = 140GeV, the region tanβ > 3.8 is ex luded at 95% CL in the mmaxh

s enario.11AAD 13O sear h for produ tion of a Higgs boson in the de ay H01,2 /A0 → τ+ τ− andµ+µ− with 4.74.8 fb−1 of pp ollisions at E m = 7 TeV. See their Fig. 6 for theex luded region in the MSSM parameter spa e and their Fig. 7 for the limits on rossse tion times bran hing ratio. For mA0 = 110170 GeV, tanβ & 10 is ex luded, andfor tanβ = 50, mA0 below 470 GeV is ex luded at 95% CL in the mmax

hs enario.12AAIJ 13T sear h for produ tion of a Higgs boson in the forward region in the de ayH01,2/A0 → τ+ τ− in 1.0 fb−1 of pp ollisions at E m = 7 TeV. See their Fig. 2 forthe limits on ross se tion times bran hing ratio and the ex luded region in the MSSMparameter spa e.13CHATRCHYAN 13AG sear h for produ tion of a Higgs boson in asso iation with a bquark in the de ay H01,2/A0 → bb in 2.74.8 fb−1 of pp ollisions at E m = 7 TeV.See their Fig. 6 for the ex luded region in the MSSM parameter spa e and Fig. 5 for thelimits on ross se tion times bran hing ratio. For mA0 = 90350 GeV, upper bounds ontanβ of 1842 at 95% CL are obtained in the mmax

hs enario with µ = +200 GeV.14AALTONEN 12AQ ombine AALTONEN 12X and ABAZOV 11K. See their Table I andFig. 1 for the limit on ross se tion times bran hing ratio and Fig. 2 for the ex ludedregion in the MSSM parameter spa e.15AALTONEN 12X sear h for asso iated produ tion of a Higgs boson and a b quark in thede ay H01,2 /A0 → bb, with 2.6 fb−1 of pp ollisions at E m = 1.96 TeV. See theirTable III and Fig. 15 for the limit on ross se tion times bran hing ratio and Figs. 17,18 for the ex luded region in the MSSM parameter spa e.16ABAZOV 12G sear h for produ tion of a Higgs boson in the de ay H01,2 /A0 → τ+ τ−with 7.3 fb−1 of pp ollisions at E m = 1.96 TeV and ombine with ABAZOV 11Wand ABAZOV 11K. See their Figs. 4, 5, and 6 for the ex luded region in the MSSMparameter spa e. For mA0 = 90180 GeV, tanβ & 30 is ex luded at 95% CL. in themmaxh s enario.17CHATRCHYAN 12K sear h for produ tion of a Higgs boson in the de ay H01,2 /A0 →

τ+ τ− with 4.6 fb−1 of pp ollisions at E m = 7 TeV. See their Fig. 3 and Ta-ble 4 for the ex luded region in the MSSM parameter spa e. For mA0 = 160 GeV,the region tanβ > 7.1 is ex luded at 95% CL in the mmaxh

s enario. Superseded byKHACHATRYAN 14M.18ABAZOV 11K sear h for asso iated produ tion of a Higgs boson and a b quark, followedby the de ay H01,2/A0 → bb, in 5.2 fb−1 of pp ollisions at E m = 1.96 TeV. Seetheir Fig. 5/Table 2 for the limit on ross se tion times bran hing ratio and Fig. 6 for theex luded region in the MSSM parameter spa e for µ = −200 GeV.19ABAZOV 11W sear h for asso iated produ tion of a Higgs boson and a b quark, followedby the de ay H01,2/A0 → τ τ , in 7.3 fb−1 of pp ollisions at E m = 1.96 TeV. See theirFig. 2 for the limit on ross se tion times bran hing ratio and for the ex luded region inthe MSSM parameter spa e.20AALTONEN 09AR sear h for Higgs bosons de aying to τ+ τ− in two doublet modelsin 1.8 fb−1 of pp ollisions at E m = 1.96 TeV. See their Fig. 2 for the limit onσ · B(H01,2/A0 → τ+ τ−) for dierent Higgs masses, and see their Fig. 3 for theex luded region in the MSSM parameter spa e.21ACOSTA 05Q sear h for H01,2/A0 produ tion in pp ollisions at E m = 1.8 TeV withH01,2/A0 → τ+ τ−. At mA0 = 100 GeV, the obtained ross se tion upper limit isabove theoreti al expe tation.22ABBIENDI 03G sear h for e+ e− → H01Z followed by H01 → A0A0, A0 → , g g ,or τ+ τ−. In the no-mixing s enario, the region mH01 = 45-85 GeV and mA0 = 2-9.5GeV is ex luded at 95% CL.23AKEROYD 02 examine the possibility of a light A0 with tanβ <1. Ele troweak mea-surements are found to be in onsistent with su h a s enario.MASS LIMITS FOR NEUTRAL HIGGS BOSONSMASS LIMITS FOR NEUTRAL HIGGS BOSONSMASS LIMITS FOR NEUTRAL HIGGS BOSONSMASS LIMITS FOR NEUTRAL HIGGS BOSONSIN EXTENDED HIGGS MODELSIN EXTENDED HIGGS MODELSIN EXTENDED HIGGS MODELSIN EXTENDED HIGGS MODELSThis Se tion overs models whi h do not t into either the Standard Modelor its simplest minimal Supersymmetri extension (MSSM), leading toanomalous produ tion rates, or nonstandard nal states and bran hing ra-tios. In parti ular, this Se tion overs limits whi h may apply to generi two-Higgs-doublet models (2HDM), or to spe ial regions of the MSSMparameter spa e where de ays to invisible parti les or to photon pairs aredominant (see the review on \Status of Higgs Boson Physi s"). Con ern-ing the mass limits for H0 and A0 listed below, see the footnotes or the omment lines for details on the nature of the models to whi h the limitsapply.The observed signal at about 125 GeV, see se tion \H0", an be inter-preted as one of the neutral Higgs bosons of an extended Higgs se tor.Mass Limits in General two-Higgs-doublet ModelsMass Limits in General two-Higgs-doublet ModelsMass Limits in General two-Higgs-doublet ModelsMass Limits in General two-Higgs-doublet ModelsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •1 AAD 15BK ATLS H02 → H0H02 AAD 15S ATLS A0 → Z H03 KHACHATRY...15BB CMS H02, A0 → γ γ

4 KHACHATRY...15N CMS A0 → Z H05 AAD 14M ATLS H02 → H±W∓ →H0W±W∓, H0 → bb6 KHACHATRY...14Q CMS H02 → H0H0, A0 → Z H07 AALTONEN 09AR CDF pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−none 155 95 8 ABBIENDI 05A OPAL H01, Type II model

>110.6 95 9 ABDALLAH 05D DLPH H0 → 2 jets10 ABDALLAH 04O DLPH Z → f f H11 ABDALLAH 04O DLPH e+ e− → H0Z , H0A012 ABBIENDI 02D OPAL e+ e− → bbHnone 144 95 13 ABBIENDI 01E OPAL H01, Type-II model> 68.0 95 14 ABBIENDI 99E OPAL tanβ > 115 ABREU 95H DLPH Z → H0Z∗, H0A016 PICH 92 RVUE Very light Higgs1AAD 15BK sear h for produ tion of a heavy H02 de aying to H0H0 in the nal statebbbb in 19.5 fb−1 of pp ollisions at E m = 8 TeV. See their Figs. 1518 for ex ludedregions in the parameter spa e.2AAD 15S sear h for produ tion of A0 de aying to Z H0 → ℓ+ ℓ− bb, ν ν bb and

ℓ+ ℓ− τ+ τ− in 20.3 fb−1 of pp ollisions at E m = 8 TeV. See their Figs. 4 and5 for ex luded regions in the parameter spa e.3KHACHATRYAN 15BB sear h for H02 , A0 → γ γ in 19.7 fb−1 of pp ollisions atE m = 8 TeV. See their Fig. 10 for ex luded regions in the two-Higgs-doublet modelparameter spa e.4KHACHATRYAN 15N sear h for produ tion of A0 de aying to Z H0 → ℓ+ ℓ− bb in19.7 fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 5 for ex luded regions in thetanβ − os(β − α) plane for mA0 = 300 GeV.5AAD 14M sear h for the de ay as ade H02 → H±W∓ → H0W±W∓, H0 de ayingto bb in 20.3 fb−1 of pp ollisions at E m = 8 TeV. See their Table IV for limits in atwo-Higgs-doublet model for mH02= 3251025 GeV and mH+= 225825 GeV.6KHACHATRYAN 14Q sear h for H02 → H0H0 and A0 → Z H0 in 19.5 fb−1 of pp ollisions at E m = 8 TeV. See their Figs. 4 and 5 for limits on ross se tion timesbran hing ratio for mH2,A0= 260360 GeV and their Figs. 79 for limits in two-Higgs-doublet models.7AALTONEN 09AR sear h for Higgs bosons de aying to τ+ τ− in two doublet modelsin 1.8 fb−1 of pp ollisions at E m = 1.96 TeV. See their Fig. 2 for the limit onσ · B(H01,2/A0 → τ+ τ−) for dierent Higgs masses, and see their Fig. 3 for theex luded region in the MSSM parameter spa e.8ABBIENDI 05A sear h for e+ e− → H01A0 in general Type-II two-doublet models, withde ays H01, A0 → qq, g g , τ+ τ−, and H01 → A0A0.9ABDALLAH 05D sear h for e+ e− → H0Z and H0A0 with H0, A0 de aying to twojets of any avor in luding g g . The limit is for SM H0Z produ tion ross se tion withB(H0 → j j) = 1.10ABDALLAH 04O sear h for Z → bbH0, bbA0, τ+ τ−H0 and τ+ τ−A0 in the nalstates 4b, bb τ+ τ−, and 4τ . See paper for limits on Yukawa ouplings.11ABDALLAH 04O sear h for e+ e− → H0Z and H0A0, with H0, A0 de aying to bb,τ+ τ−, or H0 → A0A0 at E m = 189208 GeV. See paper for limits on ouplings.12ABBIENDI 02D sear h for Z → bbH01 and bbA0 with H01 /A0 → τ+ τ−, in the range4<mH <12 GeV. See their Fig. 8 for limits on the Yukawa oupling.13ABBIENDI 01E sear h for neutral Higgs bosons in general Type-II two-doublet models,at E m ≤ 189 GeV. In addition to usual nal states, the de ays H01, A0 → qq, g g aresear hed for. See their Figs. 15,16 for ex luded regions.14ABBIENDI 99E sear h for e+ e− → H0A0 and H0Z at E m = 183 GeV. The limit iswith mH=mA in general two Higgs-doublet models. See their Fig. 18 for the ex lusionlimit in the mHmA plane. Updates the results of ACKERSTAFF 98S.15 See Fig. 4 of ABREU 95H for the ex luded region in the mH0 − mA0 plane for generaltwo-doublet models. For tanβ >1, the region mH0+mA0 . 87 GeV, mH0 <47 GeV isex luded at 95% CL.16PICH 92 analyse H0 with mH0 < 2mµ in general two-doublet models. Ex luded regionsin the spa e of mass-mixing angles from LEP, beam dump, and π±, η rare de ays areshown in Figs. 3,4. The onsidered mass region is not totally ex luded.Mass Limits for H0 with Vanishing Yukawa CouplingsMass Limits for H0 with Vanishing Yukawa CouplingsMass Limits for H0 with Vanishing Yukawa CouplingsMass Limits for H0 with Vanishing Yukawa CouplingsThese limits assume that H0 ouples to gauge bosons with the same strength as theStandard Model Higgs boson, but has no oupling to quarks and leptons (this is oftenreferred to as \fermiophobi ").VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •95 1 AALTONEN 13K CDF H0 → WW (∗)none 100113 95 2 AALTONEN 13L CDF H0 → γ γ, WW∗, Z Z∗none 100116 95 3 AALTONEN 13M TEVA H0 → γ γ, WW∗, Z Z∗4 ABAZOV 13G D0 H0 → WW (∗)none 100113 95 5 ABAZOV 13H D0 H0 → γ γ6 ABAZOV 13I D0 H0 → WW (∗)7 ABAZOV 13J D0 H0 → WW (∗), Z Z(∗)none 100114 95 8 ABAZOV 13L D0 H0 → γ γ, WW∗, Z Z∗none 110147 95 9 CHATRCHYAN13AL CMS H0 → γ γnone 110118,119.5121 95 10 AAD 12N ATLS H0 → γ γnone 100114 95 11 AALTONEN 12AN CDF H0 → γ γ

Page 46: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

656656656656Gauge&HiggsBosonParti leListingsNeutral Higgs Bosons, Sear hes fornone 110194 95 12 CHATRCHYAN12AO CMS H0 → γ γ, WW (∗), Z Z(∗)none 70106 95 13 AALTONEN 09AB CDF H0 → γ γnone 70100 95 14 ABAZOV 08U D0 H0 → γ γ

>105.8 95 15 SCHAEL 07 ALEP e+ e− → H0Z , H0 →WW ∗>104.1 95 16,17 ABDALLAH 04L DLPH e+ e− → H0Z , H0 → γ γ

>107 95 18 ACHARD 03C L3 H0 → WW ∗,Z Z∗, γ γ

>105.5 95 16,19 ABBIENDI 02F OPAL H0 → γ γ

>105.4 95 20 ACHARD 02C L3 H0 → γ γnone 6082 95 21 AFFOLDER 01H CDF pp → H0W /Z , H0 → γ γ

> 94.9 95 22 ACCIARRI 00S L3 e+ e− → H0Z , H0 → γ γ

>100.7 95 23 BARATE 00L ALEP e+ e− → H0Z , H0 → γ γ

> 96.2 95 24 ABBIENDI 99O OPAL e+ e− → H0Z , H0 → γ γ

> 78.5 95 25 ABBOTT 99B D0 pp → H0W /Z , H0 → γ γ26 ABREU 99P DLPH e+ e− → H0 γ and/or H0 →γ γ1AALTONEN 13K sear h for H0 → WW (∗) in 9.7 fb−1 of pp ollisions at E m =1.96 TeV. A limit on ross se tion times bran hing ratio whi h orresponds to (1.36.6)times the expe ted ross se tion is given in the range mH0 = 110200 GeV at 95% CL.2AALTONEN 13L ombine all CDF sear hes with 9.4510.0 fb−1 of pp ollisions at E m= 1.96 TeV.3AALTONEN 13M ombine all Tevatron data from the CDF and D0 Collaborations of pp ollisions at E m = 1.96 TeV.4ABAZOV 13G sear h for H0 → WW (∗) in 9.7 fb−1 of pp ollisions at E m = 1.96TeV. A limit on ross se tion times bran hing ratio whi h orresponds to (29) times theexpe ted ross se tion is given for mH0 = 100200 GeV at 95% CL.5ABAZOV 13H sear h for H0 → γ γ in 9.6 fb−1 of pp ollisions at E m = 1.96 TeV.6ABAZOV 13I sear h for H0 produ tion in the nal state with one lepton and two ormore jets plus missing ET in 9.7 fb−1 of pp ollisions at E m = 1.96 TeV. Thesear h is sensitive to WH0, Z H0 and ve tor-boson fusion Higgs produ tion with H0 →WW (∗). A limit on ross se tion times bran hing ratio whi h orresponds to (830)times the expe ted ross se tion is given in the range mH0 = 100200 GeV at 95% CL.7ABAZOV 13J sear h for H0 produ tion in the nal states e e µ, e µµ, µτ τ , and e±µ±in 8.69.7 fb−1 of pp ollisions at E m = 1.96 TeV. The sear h is sensitive to W H0,Z H0 produ tion with H0 → WW (∗), Z Z(∗), de aying to leptoni nal states. Alimit on ross se tion times bran hing ratio whi h orresponds to (2.413.0) times theexpe ted ross se tion is given in the range mH0 = 100200 GeV at 95% CL.8ABAZOV 13L ombine all D0 results with up to 9.7 fb−1 of pp ollisions at E m =1.96 TeV.9CHATRCHYAN 13AL sear h for H0 → γ γ in 5.1 fb−1 and 5.3 fb−1 of pp ollisionsat E m = 7 and 8 TeV.10AAD 12N sear h for H0 → γ γ with 4.9 fb−1 of pp ollisions at E m = 7 TeV in themass range mH0 = 110150 GeV.11AALTONEN 12AN sear h for H0 → γ γ with 10 fb−1 of pp ollisions at E m = 1.96TeV in the mass range mH0 = 100150 GeV.12CHATRCHYAN 12AO use data from CHATRCHYAN 12G, CHATRCHYAN 12E, CHA-TRCHYAN 12H, CHATRCHYAN 12I, CHATRCHYAN 12D, and CHATRCHYAN 12C.13AALTONEN 09AB sear h for H0 → γ γ in 3.0 fb−1 of pp ollisions at E m = 1.96TeV in the mass range mH0 = 70150 GeV. Asso iated H0W , H0Z produ tion andWW , Z Z fusion are onsidered.14ABAZOV 08U sear h for H0 → γ γ in pp ollisions at E m = 1.96 TeV in the massrange mH0 = 70150 GeV. Asso iated H0W , H0Z produ tion and WW , Z Z fusionare onsidered. See their Tab. 1 for the limit on σ · B(H0 → γ γ), and see their Fig. 3for the ex luded region in the mH0 | B(H0 → γ γ) plane.15 SCHAEL 07 sear h for Higgs bosons in asso iation with a fermion pair and de aying toWW ∗. The limit is from this sear h and HEISTER 02L for a H0 with SM produ tion ross se tion.16 Sear h for asso iated produ tion of a γ γ resonan e with a Z boson, followed by Z →qq, ℓ+ ℓ−, or ν ν, at E m ≤ 209 GeV. The limit is for a H0 with SM produ tion rossse tion.17Updates ABREU 01F.18ACHARD 03C sear h for e+ e− → Z H0 followed by H0 → WW ∗ or Z Z∗ at E m=200-209 GeV and ombine with the ACHARD 02C result. The limit is for a H0 with SMprodu tion ross se tion. For B(H0 → WW ∗) + B(H0 → Z Z∗) = 1, mH0 > 108.1GeV is obtained. See g. 6 for the limits under dierent BR assumptions.19 For B(H0 → γ γ)=1, mH0 >117 GeV is obtained.20ACHARD 02C sear h for asso iated produ tion of a γ γ resonan e with a Z boson,followed by Z → qq, ℓ+ ℓ−, or ν ν, at E m ≤ 209 GeV. The limit is for a H0 with SMprodu tion ross se tion. For B(H0 → γ γ)=1, mH0 >114 GeV is obtained.21AFFOLDER 01H sear h for asso iated produ tion of a γ γ resonan e and a W or Z(tagged by two jets, an isolated lepton, or missing ET ). The limit assumes StandardModel values for the produ tion ross se tion and for the ouplings of the H0 to W andZ bosons. See their Fig. 11 for limits with B(H0 → γ γ)< 1.22ACCIARRI 00S sear h for asso iated produ tion of a γ γ resonan e with a qq, ν ν,or ℓ+ ℓ− pair in e+ e− ollisions at E m= 189 GeV. The limit is for a H0 with SMprodu tion ross se tion. For B(H0 → γ γ)=1, mH0 > 98 GeV is obtained. See theirFig. 5 for limits on B(H → γ γ)·σ(e+ e− → H f f )/σ(e+ e− → H f f ) (SM).23BARATE 00L sear h for asso iated produ tion of a γ γ resonan e with a qq, ν ν, or

ℓ+ ℓ− pair in e+ e− ollisions at E m= 88202 GeV. The limit is for a H0 with SMprodu tion ross se tion. For B(H0 → γ γ)=1, mH0 > 109 GeV is obtained. See theirFig. 3 for limits on B(H → γ γ)·σ(e+ e− → H f f )/σ(e+ e− → H f f ) (SM).24ABBIENDI 99O sear h for asso iated produ tion of a γ γ resonan e with a qq, ν ν, orℓ+ ℓ− pair in e+ e− ollisions at 189 GeV. The limit is for a H0 with SM produ tion ross

se tion. See their Fig. 4 for limits on σ(e+ e− → H0Z0)×B(H0 → γ γ)×B(X0 →f f ) for various masses. Updates the results of ACKERSTAFF 98Y.25ABBOTT 99B sear h for asso iated produ tion of a γ γ resonan e and a dijet pair.The limit assumes Standard Model values for the produ tion ross se tion and for the ouplings of the H0 to W and Z bosons. Limits in the range of σ(H0 +Z/W )·B(H0 →γ γ)= 0.800.34 pb are obtained in the mass range mH0= 65150 GeV.26ABREU 99P sear h for e+ e− → H0 γ with H0 → bb or γ γ, and e+ e− → H0 qqwith H0 → γ γ. See their Fig. 4 for limits on σ×B. Expli it limits within an ee tiveintera tion framework are also given.Mass Limits for H0 De aying to Invisible Final StatesMass Limits for H0 De aying to Invisible Final StatesMass Limits for H0 De aying to Invisible Final StatesMass Limits for H0 De aying to Invisible Final StatesThese limits are for a neutral s alar H0 whi h predominantly de ays to invisible nalstates. Standard Model values are assumed for the ouplings of H0 to ordinary parti lesunless otherwise stated.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •1 AAD 15BD ATLS pp → H0WX , H0Z X2 AAD 15BH ATLS jet + missing ET3 AAD 14BA ATLS se ondary vertex4 AAD 14O ATLS pp → H0Z X5 CHATRCHYAN14B CMS pp → H0Z X , qqH0X6 AAD 13AG ATLS se ondary vertex7 AAD 13AT ATLS ele tron jets8 CHATRCHYAN13BJ CMS9 AAD 12AQ ATLS se ondary vertex10 AALTONEN 12AB CDF se ondary vertex11 AALTONEN 12U CDF se ondary vertex>108.2 95 12 ABBIENDI 10 OPAL13 ABBIENDI 07 OPAL large width>112.3 95 14 ACHARD 05 L3>112.1 95 14 ABDALLAH 04B DLPH>114.1 95 14 HEISTER 02 ALEP E m ≤ 209 GeV>106.4 95 14 BARATE 01C ALEP E m ≤ 202 GeV> 89.2 95 15 ACCIARRI 00M L31AAD 15BD sear h for pp → H0W X and pp → H0Z X with W or Z de ayinghadroni ally and H0 de aying to invisible nal states in 20.3 fb−1 at E m = 8TeV. Seetheir Fig. 6 for a limit on the ross se tion times bran hing ratio for mH0 = 115300GeV.2AAD 15BH sear h for events with a jet and missing ET in 20.3 fb−1 of pp ollisions atE m = 8 TeV. Limits on σ(H′0) B(H′0 → invisible) < (4410) pb (95%CL) is givenfor mH ′0 = 115300 GeV.3AAD 14BA sear h for H0 produ tion in the de ay mode H0 → X0X0, where X0 is along-lived parti le whi h de ays to ollimated pairs of e+ e−, µ+µ−, or π+π− plusinvisible parti les, in 20.3 fb−1 of pp ollisions at E m = 8 TeV. See their Figs. 15 and16 for limits on ross se tion times bran hing ratio.4AAD 14O sear h for pp → H0Z X , Z → ℓℓ, with H0 de aying to invisible nal statesin 4.5 fb−1 at E m = 7 TeV and 20.3 fb−1 at E m = 8 TeV. See their Fig. 3 for alimit on the ross se tion times bran hing ratio for mH0 = 110400 GeV.5CHATRCHYAN 14B sear h for pp → H0Z X , Z → ℓℓ and Z → bb, and also pp →qqH0X with H0 de aying to invisible nal states using data at E m = 7 and 8 TeV.See their Figs. 10, 11 for limits on the ross se tion times bran hing ratio for mH0 =100400 GeV.6AAD 13AG sear h for H0 produ tion in the de ay mode H0 → X0X0, where X0 is along-lived parti le whi h de ays to µ+µ−X ′0, in 1.9 fb−1 of pp ollisions at E m = 7TeV. See their Fig. 7 for limits on ross se tion times bran hing ratio.7AAD 13AT sear h for H0 produ tion in the de ay H0 → X0X0, where X0 eventuallyde ays to lusters of ollimated e+ e− pairs, in 2.04 fb−1 of pp ollisions at E m = 7TeV. See their Fig. 3 for limits on ross se tion times bran hing ratio.8CHATRCHYAN 13BJ sear h for H0 produ tion in the de ay hain H0 → X0X0, X0 →

µ+µ−X ′0 in 5.3 fb−1 of pp ollisions at E m = 7 TeV. See their Fig. 2 for limits on ross se tion times bran hing ratio.9AAD 12AQ sear h for H0 produ tion in the de ay mode H0 → X0X0, where X0 is along-lived parti le whi h de ays mainly to bb in the muon dete tor, in 1.94 fb−1 of pp ollisions at E m = 7 TeV. See their Fig. 3 for limits on ross se tion times bran hingratio for mH0 = 120, 140 GeV, mX 0 = 20, 40 GeV in the τ range of 0.535 m.10AALTONEN 12AB sear h for H0 produ tion in the de ay H0 → X0X0, where X0eventually de ays to lusters of ollimated ℓ+ ℓ− pairs, in 5.1 fb−1 of pp ollisionsat E m = 1.96 TeV. Cross se tion limits are provided for a ben hmark MSSM modelin orporating the parameters given in Table VI.11AALTONEN 12U sear h for H0 produ tion in the de ay mode H0 → X0X0, where X0is a long-lived parti le with τ ≈ 1 m whi h de ays mainly to bb, in 3.2 fb−1 of pp ollisions at E m = 1.96 TeV. See their Figs. 9 and 10 for limits on ross se tion timesbran hing ratio for mH0 = (130170) GeV, mX 0 = 20, 40 GeV.12ABBIENDI 10 sear h for e+ e− → H0Z with H0 de aying invisibly. The limit assumesSM produ tion ross se tion and B(H0 → invisible) = 1.13ABBIENDI 07 sear h for e+ e− → H0Z with Z → qq and H0 de aying to invisible nalstates. The H0 width is varied between 1 GeV and 3 TeV. A limit σ ·B(H0 → invisible)< (0.070.57) pb (95%CL) is obtained at E m = 206 GeV for mH0 = 60114 GeV.14 Sear h for e+ e− → H0Z with H0 de aying invisibly. The limit assumes SM produ tion ross se tion and B(H0 → invisible) = 1.15ACCIARRI 00M sear h for e+ e− → Z H0 with H0 de aying invisibly atE m=183189 GeV. The limit assumes SM produ tion ross se tion and B(H0 → in-visible)=1. See their Fig. 6 for limits for smaller bran hing ratios.

Page 47: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

657657657657See key on page 601 Gauge & Higgs Boson Parti le ListingsNeutral Higgs Bosons, Sear hes forMass Limits for Light A0Mass Limits for Light A0Mass Limits for Light A0Mass Limits for Light A0These limits are for a pseudos alar A0 in the mass range below O(10) GeV.VALUE (GeV) DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •1 KHACHATRY...16F CMS H0 → A0A02 LEES 15H BABR (1S) → A0 γ3 LEES 13C BABR (1S) → A0 γ4 LEES 13L BABR (1S) → A0 γ5 LEES 13R BABR (1S) → A0 γ6 CHATRCHYAN12V CMS A0 → µ+µ−7 AALTONEN 11P CDF t → bH+, H+ → W+A08,9 ABOUZAID 11A KTEV KL → π0π0A0, A0 → µ+µ−10 DEL-AMO-SA...11J BABR (1S) → A0 γ11 LEES 11H BABR (2S, 3S) → A0 γ12 ANDREAS 10 RVUE9,13 HYUN 10 BELL B0 → K∗0A0, A0 → µ+µ−9,14 HYUN 10 BELL B0 → ρ0A0, A0 → µ+µ−15 AUBERT 09P BABR (3S) → A0 γ16 AUBERT 09Z BABR (2S) → A0 γ17 AUBERT 09Z BABR (3S) → A0 γ9,18 TUNG 09 K391 KL → π0π0A0, A0 → γ γ19 LOVE 08 CLEO (1S) → A0 γ20 BESSON 07 CLEO (1S) → ηb γ21 PARK 05 HYCP + → pA0, A0 → µ+µ−22 BALEST 95 CLE2 (1S) → A0 γ23 ANTREASYAN 90C CBAL (1S) → A0 γ1KHACHATRYAN 16F sear h for the de ay H0 → A0A0 → τ+ τ− τ+ τ− in 19.7 fb−1of pp ollisions at E m = 8 TeV. See their Fig. 8 for ross se tion limits for mA0 =48 GeV.2 LEES 15H sear h for the pro ess (2S) → (1S)π+π− → A0 γπ+π− with A0de aying to and give limits on B((1S) → A0 γ)·B(A0 → ) in the range7.4× 10−52.4× 10−3 (90% CL) for 4.00 ≤ mA0 ≤ 8.95 and 9.10 ≤ mA0 ≤ 9.25GeV. See their Fig. 6.3 LEES 13C sear h for the pro ess (2S, 3S)→ (1S)π+π− → A0 γπ+π− with A0de aying to µ+µ− and give limits on B((1S) → A0 γ)·B(A0 → µ+µ−) in the range(0.39.7) × 10−6 (90% CL) for 0.212 ≤ mA0 ≤ 9.20 GeV. See their Fig. 5(e) forlimits on the b−A0 Yukawa oupling derived by ombining this result with AUBERT 09Z.4 LEES 13L sear h for the pro ess (2S) → (1S)π+π− → A0 γπ+π− with A0de aying to g g or s s and give limits on B((1S) → A0 γ)·B(A0 → g g) between1 × 10−6 and 2 × 10−2 (90% CL) for 0.5 ≤ mA0 ≤ 9.0 GeV, and B((1S) →A0 γ)·B(A0 → s s) between 4× 10−6 and 1× 10−3 (90%CL) for 1.5 ≤ mA0 ≤ 9.0GeV. See their Fig. 4.5 LEES 13R sear h for the pro ess (2S) → (1S)π+π− → A0 γπ+π− with A0de aying to τ+ τ− and give limits on B((1S) → A0 γ)·B(A0 → τ+ τ−) in the range0.913× 10−5 (90% CL) for 3.6 ≤ mA0 ≤ 9.2 GeV. See their Fig. 4 for limits on theb − A0 Yukawa oupling derived by ombining this result with AUBERT 09P.6 CHATRCHYAN 12V sear h for A0 produ tion in the de ay A0 → µ+µ− with 1.3 fb−1of pp ollisions at E m = 7 TeV. A limit on σ(A0)·B(A0 → µ+µ−) in the range(1.57.5) pb is given for mA0 = (5.58.7) and (11.514) GeV at 95% CL.7AALTONEN 11P sear h in 2.7 fb−1 of pp ollisions at E m = 1.96 TeV for the de ay hain t → bH+, H+ → W+A0, A0 → τ+ τ− with mA0 between 4 and 9 GeV. Seetheir Fig. 4 for limits on B(t → bH+) for 90 < mH+ < 160 GeV.8ABOUZAID 11A sear h for the de ay hain KL → π0π0A0, A0 → µ+µ− and give alimit B(KL → π0π0A0) · B(A0 → µ+µ−) < 1.0 × 10−10 at 90% CL for mA0 =214.3 MeV.9The sear h was motivated by PARK 05.10DEL-AMO-SANCHEZ 11J sear h for the pro ess (2S) → (1S)π+π− →A0 γπ+π− with A0 de aying to invisible nal states. They give limits on B((1S) →A0 γ)·B(A0 → invisible) in the range (1.94.5) × 10−6 (90% CL) for 0 ≤ mA0 ≤8.0 GeV, and (2.737) × 10−6 for 8.0 ≤ mA0 ≤ 9.2 GeV.11 LEES 11H sear h for the pro ess (2S, 3S) → A0 γ with A0 de aying hadroni ally andgive limits on B((2S, 3S) → A0 γ)·B(A0 → hadrons) in the range 1×10−68×10−5(90% CL) for 0.3 < mA0 < 7 GeV. The de ay rates for (2S) and (3S) are assumedto be equal up to the phase spa e fa tor. See their Fig. 5.12ANDREAS 10 analyze onstraints from rare de ays and other pro esses on a light A0with mA0 < 2mµ and give limits on its oupling to fermions at the level of 10−4 timesthe Standard Model value.13HYUN 10 sear h for the de ay hain B0 → K∗0A0, A0 → µ+µ− and give a limit onB(B0 → K∗0A0) · B(A0 → µ+µ−) in the range (2.265.53)× 10−8 at 90%CL formA0 = 212300 MeV. The limit for mA0 = 214.3 MeV is 2.26× 10−8.14HYUN 10 sear h for the de ay hain B0 → ρ0A0, A0 → µ+µ− and give a limit onB(B0 → ρ0A0) · B(A0 → µ+µ−) in the range (1.734.51) × 10−8 at 90%CL formA0 = 212300 MeV. The limit for mA0 = 214.3 MeV is 1.73× 10−8.15AUBERT 09P sear h for the pro ess (3S) → A0 γ with A0 → τ+ τ− for 4.03

< mA0 < 9.52 and 9.61 < mA0 < 10.10 GeV, and give limits on B((3S) →A0 γ)·B(A0 → τ+ τ−) in the range (1.516)× 10−5 (90% CL).16AUBERT 09Z sear h for the pro ess (2S) → A0 γ with A0 → µ+µ− for 0.212 <mA0 < 9.3 GeV and give limits on B((2S) → A0 γ)·B(A0 → µ+µ−) in the range(0.38) × 10−6 (90% CL).17AUBERT 09Z sear h for the pro ess (3S) → A0 γ with A0 → µ+µ− for 0.212 <mA0 < 9.3 GeV and give limits on B((3S) → A0 γ)·B(A0 → µ+µ−) in the range(0.35) × 10−6 (90% CL).

18TUNG 09 sear h for the de ay hain KL → π0π0A0, A0 → γ γ and give a limit onB(KL → π0π0A0) · B(A0 → γ γ) in the range (2.410.7)× 10−7 at 90%CL for mA0= 194.3219.3 MeV. The limit for mA0 = 214.3 MeV is 2.4× 10−7.19 LOVE 08 sear h for the pro ess (1S) → A0 γ with A0 → µ+µ− (for mA0 < 2mτ )and A0 → τ+ τ−. Limits on B((1S) → A0 γ) · B(A0 → ℓ+ ℓ−) in the range10−610−4 (90% CL) are given.20BESSON 07 give a limit B((1S) → ηb γ) · B(ηb → τ+ τ−) < 0.27% (95% CL),whi h onstrains a possible A0 ex hange ontribution to the ηb de ay.21PARK 05 found three andidate events for + → pµ+µ− in the HyperCP experiment.Due to a narrow spread in dimuon mass, they hypothesize the events as a possible signalof a new boson. It an be interpreted as a neutral parti le with mA0 = 214.3 ± 0.5MeVand the bran hing fra tion B(+ → pA0)·B(A0 → µ+µ−) = (3.1+2.4−1.9±1.5)×10−8.22BALEST 95 give limits B((1S) → A0 γ) < 1.5× 10−5 at 90% CL for mA0 < 5 GeV.The limit be omes < 10−4 for mA0 < 7.7 GeV.23ANTREASYAN 90C give limits B((1S) → A0 γ) < 5.6× 10−5 at 90% CL for mA0 <7.2 GeV. A0 is assumed not to de ay in the dete tor.Other Mass LimitsOther Mass LimitsOther Mass LimitsOther Mass LimitsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •1 AAD 16C ATLS H0 → W+W−2 KHACHATRY...16F CMS H02 → H01H013 AAD 15BK ATLS H02 → H0H04 AAD 15BZ ATLS H0 → A0A05 AAD 15BZ ATLS H02 → A0A06 AAD 15CE ATLS H02 → H0H07 AAD 15H ATLS H02 → H0H08 AAD 15S ATLS A0 → Z H09 KHACHATRY...15AWCMS H02 → W+W−, Z Z10 KHACHATRY...15BB CMS H0 → γ γ11 KHACHATRY...15N CMS A0 → Z H012 KHACHATRY...15O CMS A0 → Z H013 AAD 14AP ATLS H0 → γ γ14 AAD 14M ATLS H02 → H±W∓ →H0W±W∓, H0 → bb15 CHATRCHYAN14G CMS H0 → WW (∗)16 KHACHATRY...14P CMS H0 → γ γ17 AALTONEN 13P CDF H′0 → H±W∓ →H0W+W−18 CHATRCHYAN13BJ CMS H0 → A0A019 AALTONEN 11P CDF t → bH+, H+ → W+A020 ABBIENDI 10 OPAL H0 → χ01 χ0221 SCHAEL 10 ALEP H0 → A0A022 ABAZOV 09V D0 H0 → A0A0none 363 95 23 ABBIENDI 05A OPAL A0, Type II model>104 95 24 ABBIENDI 04K OPAL H0 → 2 jets25 ABDALLAH 04 DLPH H0V V ouplings>110.3 95 26 ACHARD 04B L3 H0 → 2 jets27 ACHARD 04F L3 Anomalous oupling28 ABBIENDI 03F OPAL e+ e− → H0Z , H0 → any29 ABBIENDI 03G OPAL H01 → A0A0>105.4 95 30,31 HEISTER 02L ALEP H01 → γ γ

>109.1 95 32 HEISTER 02M ALEP H0 → 2 jets or τ+ τ−none 1256 95 33 ABBIENDI 01E OPAL A0, Type-II model34 ACCIARRI 00R L3 e+ e− → H0 γ and/orH0 → γ γ35 ACCIARRI 00R L3 e+ e− → e+ e−H036 GONZALEZ-G...98B RVUE Anomalous oupling37 KRAWCZYK 97 RVUE (g−2)µ38 ALEXANDER 96H OPAL Z → H0 γ1AAD 16C sear h for produ tion of a heavy H0 state de aying to W+W− in the nalstates ℓν ℓν and ℓν qq in 20.3 fb−1 of pp ollisions at E m = 8 TeV. See their Figs.12, 13, and 16 for upper limits on σ(H0) B(H0 → W+W−) for mH0 ranging from300 GeV to 1000 or 1500 GeV with various assumptions on the total width of H0.2KHACHATRYAN 16F sear h for the de ay H02 → H01H01 → τ+ τ− τ+ τ− with mH02= 125 GeV in 19.7 fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 8 for rossse tion limits for mH01 = 48 GeV.3AAD 15BK sear h for produ tion of a heavy H02 de aying to H0H0 in the nal statebbbb in 19.5 fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 14( ) for σ(H02)B(H02 → H0H0) for mH02 = 5001500 GeV with H02 = 1 GeV.4AAD 15BZ sear h for the de ay H0 → A0A0 → µ+µ− τ+ τ− (mH0 = 125 GeV) in20.3 fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 6 for limits on ross se tiontimes bran hing ratio for mA0 = 3.750 GeV.5AAD 15BZ sear h for a state H02 via the de ay H02 → A0A0 → µ+µ− τ+ τ− in 20.3fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 6 for limits on ross se tion timesbran hing ratio for mH02 = 100500 GeV and mA0 = 5 GeV.

Page 48: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

658658658658Gauge&HiggsBosonParti leListingsNeutral Higgs Bosons, Sear hes for6AAD 15CE sear h for produ tion of a heavy H02 de aying to H0H0 in the nal statesbb τ+ τ− and γ γWW∗ in 20.3 fb−1 of pp ollisions at E m = 8 TeV and ombinewith data from AAD 15H and AAD 15BK. A limit σ(H02) B(H02 → H0H0) < 2.10.011pb (95% CL) is given for mH02 = 2601000 GeV. See their Fig. 6.7AAD 15H sear h for produ tion of a heavy H02 de aying to H0H0 in the nalstate γ γ bbin 20.3 fb−1 of pp ollisions at E m = 8 TeV.A limit of σ(H02) B(H02 → H0H0)< 3.50.7 pb is given for mH02 = 260500 GeV at 95% CL. See their Fig. 3.8AAD 15S sear h for produ tion of A0 de aying to Z H0 → ℓ+ ℓ− bb, ν ν bb andℓ+ ℓ− τ+ τ− in 20.3 fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 3 for ross se tion limits for mA0 = 2001000 GeV.9KHACHATRYAN 15AW sear h for produ tion of a heavy state H02 of an ele troweaksinglet extension of the Standard Model via the de ays of H02 to W+W− and Z Z inup to 5.1 fb−1 of pp ollisions at E m = 7 TeV and up to 19.7 fb−1 at E m = 8 TeVin the range mH02 = 1451000 GeV. See their Figs. 8 and 9 for limits in the parameterspa e of the model.10KHACHATRYAN 15BB sear h for produ tion of a resonan e H0 de aying to γ γ in 19.7fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 7 for limits on ross se tion timesbran hing ratio for mH0 = 150850 GeV.11KHACHATRYAN 15N sear h for produ tion of A0 de aying to Z H0 → ℓ+ ℓ− bb in19.7 fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 3 for limits on ross se tiontimes bran hing ratios for mA0 = 225600 GeV.12KHACHATRYAN 15O sear h for produ tion of a high-mass narrow resonan e A0 de ayingto Z H0 → qq τ+ τ− in 19.7 fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 6for limits on ross se tion times bran hing ratios for mA0 = 8002500 GeV.13AAD 14AP sear h for a se ond H0 state de aying to γ γ in addition to the state at about125 GeV in 20.3 fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 4 for limits on ross se tion times bran hing ratio for mH0 = 65600 GeV.14AAD 14M sear h for the de ay as ade H02 → H±W∓ → H0W±W∓, H0 de ayingto bb in 20.3 fb−1 of pp ollisions at E m = 8 TeV. See their Table III for limits on ross se tion times bran hing ratio for mH02= 3251025 GeV and mH+= 225925 GeV.15CHATRCHYAN 14G sear h for a se ond H0 state de aying to WW (∗) in addition tothe observed signal at about 125 GeV using 4.9 fb−1 of pp ollisions at E m = 7 TeVand 19.4 fb−1 at E m = 8 TeV. See their Fig. 21 (right) for ross se tion limits in themass range 110600 GeV.16KHACHATRYAN 14P sear h for a se ond H0 state de aying to γ γ in addition to theobserved signal at about 125 GeV using 5.1 fb−1 of pp ollisions at E m = 7 TeV and19.7 fb−1 at E m = 8 TeV. See their Figs. 27 and 28 for ross se tion limits in themass range 110150 GeV.17AALTONEN 13P sear h for produ tion of a heavy Higgs boson H′0 that de ays intoa harged Higgs boson H± and a lighter Higgs boson H0 via the de ay hain H′0 →H±W∓, H± → W±H0, H0 → bb in the nal state ℓν plus 4 jets in 8.7 fb−1of pp ollisions at E m = 1.96 TeV. See their Fig. 4 for limits on ross se tion timesbran hing ratio in the mH±−mH ′0 plane for mH0 = 126 GeV.18CHATRCHYAN 13BJ sear h for H0 produ tion in the de ay hain H0 → A0A0, A0 →µ+µ− in 5.3 fb−1 of pp ollisions at E m = 7 TeV. See their Fig. 2 for limits on rossse tion times bran hing ratio.19AALTONEN 11P sear h in 2.7 fb−1 of pp ollisions at E m = 1.96 TeV for the de ay hain t → bH+, H+ → W+A0, A0 → τ+ τ− with mA0 between 4 and 9 GeV. Seetheir Fig. 4 for limits on B(t → bH+) for 90 < mH+ < 160 GeV.20ABBIENDI 10 sear h for e+ e− → Z H0 with the de ay hain H0 → χ01 χ02, χ02 →χ01 + (γ or Z∗), when χ01 and χ02 are nearly degenerate. For a mass dieren e of 2 (4)GeV, a lower limit on mH0 of 108.4 (107.0) GeV (95% CL) is obtained for SM Z H0 ross se tion and B(H0 → χ01 χ02) = 1.21 SCHAEL 10 sear h for the pro ess e+ e− → H0Z followed by the de ay hain H0 →A0A0 → τ+ τ− τ+ τ− with Z → ℓ+ ℓ−, ν ν at E m = 183209 GeV. For a H0Z Z oupling equal to the SM value, B(H0 → A0A0) = B(A0 → τ+ τ−) = 1, and mA0= 410 GeV, mH0 up to 107 GeV is ex luded at 95% CL.22ABAZOV 09V sear h for H0 produ tion followed by the de ay hain H0 → A0A0 →µ+µ−µ+µ− or µ+µ− τ+ τ− in 4.2 fb−1 of pp ollisions at E m = 1.96 TeV. Seetheir Fig. 3 for limits on σ(H0)·B(H0 → A0A0) for mA0 = 3.619 GeV.23ABBIENDI 05A sear h for e+ e− → H01A0 in general Type-II two-doublet models, withde ays H01, A0 → qq, g g , τ+ τ−, and H01 → A0A0.24ABBIENDI 04K sear h for e+ e− → H0Z with H0 de aying to two jets of any avorin luding g g . The limit is for SM produ tion ross se tion with B(H0 → j j) = 1.25ABDALLAH 04 onsider the full ombined LEP and LEP2 datasets to set limits on theHiggs oupling to W or Z bosons, assuming SM de ays of the Higgs. Results in Fig. 26.26ACHARD 04B sear h for e+ e− → H0Z with H0 de aying to bb, , or g g . Thelimit is for SM produ tion ross se tion with B(H0 → j j) = 1.27ACHARD 04F sear h for H0 with anomalous oupling to gauge boson pairs in the pro- esses e+ e− → H0 γ, e+ e−H0, H0Z with de ays H0 → f f , γ γ, Z γ, and W∗Wat E m = 189209 GeV. See paper for limits.28ABBIENDI 03F sear h for H0 → anything in e+ e− → H0Z , using the re oil massspe trum of Z → e+ e− or µ+µ−. In addition, it sear hed for Z → ν ν and H0 →e+ e− or photons. S enarios with large width or ontinuum H0 mass distribution are onsidered. See their Figs. 1114 for the results.29ABBIENDI 03G sear h for e+ e− → H01Z followed by H01 → A0A0, A0 → , g g ,or τ+ τ− in the region mH01 = 45-86 GeV and mA0 = 2-11 GeV. See their Fig. 7 forthe limits.

30 Sear h for asso iated produ tion of a γ γ resonan e with a Z boson, followed by Z →qq, ℓ+ ℓ−, or ν ν, at E m ≤ 209 GeV. The limit is for a H0 with SM produ tion rossse tion and B(H0 → f f )=0 for all fermions f .31 For B(H0 → γ γ)=1, mH0 > 113.1 GeV is obtained.32HEISTER 02M sear h for e+ e− → H0Z , assuming that H0 de ays to qq, g g , orτ+ τ− only. The limit assumes SM produ tion ross se tion.33ABBIENDI 01E sear h for neutral Higgs bosons in general Type-II two-doublet models,at E m ≤ 189 GeV. In addition to usual nal states, the de ays H01, A0 → qq, g g aresear hed for. See their Figs. 15,16 for ex luded regions.34ACCIARRI 00R sear h for e+ e− → H0 γ with H0 → bb, Z γ, or γ γ. See their Fig. 3for limits on σ ·B. Expli it limits within an ee tive intera tion framework are also given,for whi h the Standard Model Higgs sear h results are used in addition.35ACCIARRI 00R sear h for the two-photon type pro esses e+ e− → e+ e−H0 withH0 → bb or γ γ. See their Fig. 4 for limits on (H0 → γ γ)·B(H0 → γ γ or bb) formH0=70170 GeV.36GONZALEZ-GARCIA 98B use D limit for γ γ events with missing ET in pp ollisions(ABBOTT 98) to onstrain possible Z H or WH produ tion followed by un onventionalH → γ γ de ay whi h is indu ed by higher-dimensional operators. See their Figs. 1 and 2for limits on the anomalous ouplings.37KRAWCZYK 97 analyse the muon anomalous magneti moment in a two-doublet Higgsmodel (with type II Yukawa ouplings) assuming no H01Z Z oupling and obtain mH01 &5 GeV or mA0 & 5 GeV for tanβ > 50. Other Higgs bosons are assumed to be mu hheavier.38ALEXANDER 96H give B(Z → H0 γ)×B(H0 → qq) < 14 × 10−5 (95%CL) andB(Z → H0 γ)×B(H0 → bb) < 0.72× 10−5 (95%CL) in the range 20 <mH0 <80GeV. SEARCHES FOR A HIGGS BOSONSEARCHES FOR A HIGGS BOSONSEARCHES FOR A HIGGS BOSONSEARCHES FOR A HIGGS BOSONWITH STANDARD MODEL COUPLINGSWITH STANDARD MODEL COUPLINGSWITH STANDARD MODEL COUPLINGSWITH STANDARD MODEL COUPLINGSThese listings are based on experimental sear hes for a s alar boson whose ouplings to W , Z and fermions are pre isely those of the Higgs bosonpredi ted by the three-generation Standard Model with the minimal Higgsse tor.For a review and a bibliography, see the review on \Status of Higgs BosonPhysi s."Dire t Mass Limits for H0Dire t Mass Limits for H0Dire t Mass Limits for H0Dire t Mass Limits for H0The mass limits shown below apply to a Higgs boson H0 with Standard Model ou-plings whose mass is a priori unknown. These mass limits are ompatible with andindependent of the observed signal at about 125 GeV. In parti ular, the symbol H0employed below does not in general refer to the observed signal at about 125 GeV.The ross se tion times bran hing ratio limits quoted in the footnotes below are typ-i ally given relative to those of a Standard Model Higgs boson of the relevant mass.These limits an be reinterpreted in terms of more general models (e.g. extended Higgsse tors) in whi h the Higgs ouplings to W , Z and fermions are re-s aled from theirStandard Model values.All data that have been superseded by newer results are marked as \not used" or havebeen removed from this ompilation, and are do umented in previous editions of thisReview of Parti le Physi s.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

> 122 and none 1281000 (CL = 95%)> 122 and none 1281000 (CL = 95%)> 122 and none 1281000 (CL = 95%)> 122 and none 1281000 (CL = 95%)none 1451000none 1451000none 1451000none 1451000 95 1 KHACHATRY...15AWCMS pp → H0X ombinednone 90102,149172 95 2 AALTONEN 13L CDF pp → H0X , ombinednone 90109,149182 95 3 AALTONEN 13M TEVA Tevatron ombinednone 90101,157178 95 4 ABAZOV 13L D0 pp → H0X , ombinednone 110121.5none 110121.5none 110121.5none 110121.5,128145128145128145128145 95 5 CHATRCHYAN12N CMS pp → H0X ombined>114.1 95 6 ABDALLAH 04 DLPH e+ e− → H0Z>112.7 95 6 ABBIENDI 03B OPAL e+ e− → H0Z>114.4>114.4>114.4>114.4 95 6,7 HEISTER 03D LEP e+ e− → H0Z>111.5 95 6,8 HEISTER 02 ALEP e+ e− → H0Z>112.0 95 6 ACHARD 01C L3 e+ e− → H0Z• • • We do not use the following data for averages, ts, limits, et . • • •none 132200 95 9 AAD 15AA ATLS pp → H0X , H0 → WW (∗)10 AAD 15G ATLS pp → H0W /Z X , H0 → bb11 AAD 14AS ATLS pp → H0X , H0 → µµ12 AAD 14J ATLS pp → H0X , H0 → Z γnone 114.5119,129.5832 95 13 CHATRCHYAN14AA CMS pp → H0X , H0 → 4ℓ14 CHATRCHYAN14AI CMS pp → H0W /Z X , H0 → bbnone 127600 95 15 CHATRCHYAN14G CMS pp → H0X , H0 → WW (∗)16 AALTONEN 13B CDF pp → H0W /Z X , H0 → bb17 AALTONEN 13C CDF pp → H0X , H0 → bbnone 149172 95 18 AALTONEN 13K CDF pp → H0X , H0 → WW (∗)19 ABAZOV 13E D0 pp → H0X , 4ℓ20 ABAZOV 13F D0 pp → H0X , ℓτ j jnone 159176 95 21 ABAZOV 13G D0 pp → H0X , H0 → WW (∗)22 ABAZOV 13H D0 pp → H0X , H0 → γ γ23 ABAZOV 13I D0 pp → H0X , ℓν j j

Page 49: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

659659659659See key on page 601 Gauge & Higgs Boson Parti le ListingsNeutral Higgs Bosons, Sear hes for24 ABAZOV 13J D0 pp → H0X , leptoni 25 ABAZOV 13K D0 pp → H0Z X26 CHATRCHYAN13AL CMS pp → H0X , H0 → τ τ ,WW (∗), Z Z(∗)27 CHATRCHYAN13BK CMS pp → H0X , H0 → Z γnone 145710 95 28 CHATRCHYAN13Q CMS pp → H0X ombined29 CHATRCHYAN13X CMS pp → H0 t t Xnone 113122,128133,138149 95 30 CHATRCHYAN13Y CMS pp → H0X , H0 → γ γnone 130164,170180 95 31 CHATRCHYAN13Y CMS pp → H0X , H0 → Z Z∗none 129160 95 32 CHATRCHYAN13Y CMS pp → H0X , H0 → WW ∗none 111122,131559 95 33 AAD 12AI ATLS pp → H0X ombinednone 133261 95 34 AAD 12AJ ATLS pp → H0X , H0 → WW (∗)35 AAD 12BU ATLS pp → H0X , H0 → τ+ τ−none 319558 95 36 AAD 12BZ ATLS pp → H0X , H0 → Z Znone 300322,353410 95 37 AAD 12CA ATLS pp → H0X , H0 → Z Z38 AAD 12CN ATLS pp → H0W /Z X , H0 → bb39 AAD 12CO ATLS pp → H0X , H0 → WWnone 134156,182233,256265,268415 95 40 AAD 12D ATLS pp → H0X , H0 → Z Z(∗)none 113115,134.5136 95 41 AAD 12G ATLS pp → H0X , H0 → γ γ42 AALTONEN 12AK CDF pp → H0 t t X43 AALTONEN 12AMCDF pp → H0X , in lusive 4ℓ44 AALTONEN 12AN CDF pp → H0X , H0 → γ γ45 AALTONEN 12J CDF pp → H0X , H0 → τ τ46 AALTONEN 12Q CDF pp → H0Z X , H0 → bbnone 100106 95 47 AALTONEN 12T TEVA pp → H0W /Z X , H0 → bb48 ABAZOV 12K D0 pp → H0W /Z X , H0 → bb49,50 CHATRCHYAN12AY CMS pp → H0W X , H0Z X51 CHATRCHYAN12C CMS pp → H0X , H0 → Z Z52 CHATRCHYAN12D CMS pp → H0X , H0 → Z Z(∗)none 129270 95 53 CHATRCHYAN12E CMS pp → H0X , H0 → WW (∗)54 CHATRCHYAN12F CMS pp → H0W X , H0Z Xnone 128132 95 55 CHATRCHYAN12G CMS pp → H0X , H0 → γ γnone 134158,180305,340465 95 56 CHATRCHYAN12H CMS pp → H0X , H0 → Z Z(∗)none 270440 95 57 CHATRCHYAN12I CMS pp → H0X , H0 → Z Z58 CHATRCHYAN12K CMS pp → H0X , H0 → τ+ τ−59 ABAZOV 11G D0 pp → H0X , H0 → WW (∗)60 CHATRCHYAN11J CMS pp → H0X , H0 → WWnone 162166 95 61 AALTONEN 10F TEVA pp → H0X , H0 → WW (∗)62 AALTONEN 10M TEVA pp → g g X → H0X , H0 →WW (∗)63 AALTONEN 09A CDF pp → H0X , H0 → WW (∗)64 ABAZOV 09U D0 H0 → τ+ τ−65 ABAZOV 06 D0 pp → H0X , H0 → WW ∗66 ABAZOV 06O D0 pp → H0W X , H0 → WW ∗1KHACHATRYAN 15AW sear h for H0 produ tion in the de ays H0 → W+W− →ℓν ℓν, ℓν qq, and H0 → Z Z → 4ℓ, ℓℓτ τ , ℓℓν ν, and ℓℓqq in up to 5.1 fb−1 of pp ollisions at E m = 7 TeV and up to 19.7 fb−1 at E m=8 TeV in the range mH0 =1451000 GeV. See their Fig. 7 for limits on ross se tion times bran hing ratio.2AALTONEN 13L ombine all CDF sear hes with 9.4510.0 fb−1 of pp ollisions atE m = 1.96 TeV. A limit on ross se tion times bran hing ratio whi h orresponds to(0.454.8) times the expe ted Standard Model ross se tion is given for mH0 = 90200GeV at 95 %CL. An ex ess of events over ba kground is observed with a lo al signi an eof 2.0 σ at mH0 = 125 GeV. In the Standard Model with an additional generation ofheavy quarks and leptons whi h re eive their masses via the Higgs me hanism, mH0values between 124 and 203 GeV are ex luded at 95% CL.3AALTONEN 13M ombine all Tevatron data from the CDF and D0 Collaborations. Alimit on ross se tion times bran hing ratio whi h orresponds to (0.373.1) times theexpe ted Standard Model ross se tion is given for mH0 = 90200 GeV at 95% CL. Anex ess of events over ba kground is observed with a lo al signi an e of 3.0σ at mH0= 125 GeV. In the Standard Model with an additional generation of heavy quarks andleptons whi h re eive their masses via the Higgs me hanism, mH0 values between 121and 225 GeV are ex luded at 95% CL.4ABAZOV 13L ombine all D0 results with up to 9.7 fb−1 of pp ollisions at E m =1.96 TeV. A limit on ross se tion times bran hing ratio whi h orresponds to (0.663.1)times the expe ted Standard Model ross se tion is given in the range mH0 = 90200GeV at 95% CL. An ex ess of events over ba kground is observed with a lo al signi an eof 1.7σ at mH0 = 125 GeV. In the Standard Model with an additional generation ofheavy quarks and leptons whi h re eive their masses via the Higgs me hanism, mH0values between 125 and 218 GeV are ex luded at 95% CL.5CHATRCHYAN 12N sear h for H0 produ tion in the de ays H → γ γ, Z Z∗ → 4ℓ,WW ∗ → ℓν ℓν, τ τ , and bb in 4.95.1 fb−1 of pp ollisions at E m = 7 TeV and5.15.3 fb−1 at E m = 8 TeV. The expe ted ex lusion region for no signal is 110145GeV at 99.9% CL. See also CHATRCHYAN 13Y.6 Sear h for e+ e− → H0Z at E m ≤ 209 GeV in the nal states H0 → bb with Z →ℓℓ, ν ν, qq, τ+ τ− and H0 → τ+ τ− with Z → qq.7 Combination of the results of all LEP experiments.8A 3σ ex ess of andidate events ompatible with mH0 near 114 GeV is observed in the ombined hannels qq qq, qq ℓℓ, qq τ+ τ−.

9AAD 15AA sear h for H0 → WW (∗) in 4.5 fb−1 of pp ollisions at E m = 7 TeVand 20.3 fb−1 at E m = 8 TeV. A limit on ross se tion times bran hing ratio whi h orresponds to (0.26) times the expe ted Standard Model ross se tion is given formH0 = 110200 GeV at 95% CL.10AAD 15G sear h for WH0 and Z H0 produ tion followed by H0 → bb in 4.7 fb−1of pp ollisions at E m = 7 TeV and 20.3 fb−1 at E m = 8 TeV. A limit on the ross se tion times bran hing ratio whi h orresponds to (0.82.6) times the expe tedStandard Model ross se tion is given for mH0 = 110140 GeV at 95% CL.11AAD 14AS sear h for H0 → µ+µ− in 4.5 fb−1 of pp ollisions at E m = 7 TeV and20.3 fb−1 at E m = 8 TeV. A limit on the ross se tion times bran hing ratio whi h orresponds to (6.516.8) times the expe ted Standard Model ross se tion is given formH0 = 120150 GeV at 95% CL.12AAD 14J sear h for H0 → Z γ → ℓℓγ in 4.5 fb−1 of pp ollisions at E m = 7 TeVand 20.3 fb−1 at E m = 8 TeV. A limit on ross se tion times bran hing ratio whi h orresponds to (418) times the expe ted Standard Model ross se tion is given for mH0= 120150 GeV at 95% CL.13CHATRCHYAN 14AA sear h for H0 produ tion in the de ay mode H0 → Z Z(∗) →4ℓ in 5.1 fb−1 of pp ollisions at E m = 7 TeV and 19.7 fb−1 at E m = 8 TeV. Theexpe ted ex lusion region for no signal is 115740 GeV at the 95% CL. See their Fig. 18for ross se tion limits for mH0 = 1101000 GeV.14CHATRCHYAN 14AI sear h for WH0 and Z H0 produ tion followed by H0 → bb inup to 5.1 fb−1 of pp ollisions at E m = 7 TeV and up to 18.9 fb−1 at E m = 8 TeV.A limit on the ross se tion times bran hing ratio whi h orresponds to (13) times theexpe ted Standard Model ross se tion is given for mH0 = 110135 GeV at 95% CL.15CHATRCHYAN 14G sear h for H0 produ tion in the de ay mode H0 → WW (∗) →ℓν ℓν in 4.9 fb−1 of pp ollisions at E m = 7 TeV and 19.4 fb−1 at E m = 8 TeV.The expe ted ex lusion region for no signal is 115600 GeV at the 95% CL. See theirFig. 21 (left) for ross se tion limits for mH0 = 110600 GeV.16AALTONEN 13B sear h for asso iated H0Z produ tion in the nal state H0 → bb,Z → ν ν, and H0W produ tion in H0 → bb, W → ℓν (ℓ not identied) with animproved b identi ation algorithm in 9.45 fb−1 of pp ollisions at E m = 1.96 TeV. Alimit on ross se tion times bran hing ratio whi h orresponds to (0.7211.8) times theexpe ted Standard Model ross se tion is given for mH0 = 90150 GeV at 95%CL. Thelimit for mH0 = 125 GeV is 3.06, where 3.33 is expe ted for no signal.17AALTONEN 13C sear h for asso iated H0W and H0Z as well as ve tor-boson fusionH0 qq′ produ tion in the nal state H0 → bb, W /Z → qq with 9.45 fb−1 of pp ollisions at E m = 1.96 TeV. A limit on ross se tion times bran hing ratio whi h is(7.064.6) times larger than the expe ted Standard Model ross se tion is given in therange mH0 = 100150 GeV at 95% CL. The limit for mH0 = 125 GeV is 9.0, where11.0 is expe ted for no signal.18AALTONEN 13K sear h for H0 produ tion (with a possible additional W or Z) in thenal state H0 → WW (∗) → ℓν ℓν in 9.7 fb−1 of pp ollisions at E m = 1.96 TeV.A limit on ross se tion times bran hing ratio whi h orresponds to (0.4914.1) timesthe expe ted Standard Model ross se tion is given in the range mH0 = 110200 GeVat 95% CL. The limit at mH0 = 125 GeV is 3.26, where 3.25 is expe ted for no signal.In the Standard Model with an additional generation of heavy quarks and leptons whi hre eive their masses via the Higgs me hanism, mH0 values between 124 and 200 GeVare ex luded at 95% CL.19ABAZOV 13E sear h for H0 produ tion in four-lepton nal states from H0 → Z Z(∗)and H0Z in 9.69.8 fb−1 of pp ollisions at E m = 1.96 TeV. A limit on ross se tiontimes bran hing ratio whi h orresponds to (8.678.9) times the expe ted StandardModel ross se tion is given in the range mH0 = 115200 GeV at 95% CL. The limitfor mH0 = 125 GeV is 42.3, where 42.8 is expe ted for no signal.20ABAZOV 13F sear h for H0 produ tion in nal states e τ j j and µτ jj in 9.7 fb−1 of pp ollisions at E m = 1.96 TeV. The sear h is sensitive to H → τ τ and H → WW (∗).A limit on ross se tion times bran hing ratio whi h orresponds to (9.417.9) times theexpe ted Standard Model ross se tion is given in the range mH0 = 105150 GeV at95% CL. The limit for mH0 = 125 GeV is 11.3, where 9.0 is expe ted for no signal.21ABAZOV 13G sear h for H0 produ tion in nal states H0 → WW (∗) → ℓ+ ν ℓ− νin 9.7 fb−1 of pp ollisions at E m = 1.96 TeV and give a limit on ross se tion timesbran hing ratio formH0 = 100150 GeV at 95% CL. The limit formH0 = 125 GeV is 4.1,where 3.4 is expe ted for no signal. In the Standard Model with an additional generationof heavy quarks and leptons whi h re eive their masses via the Higgs me hanism, mH0values between 125 and 218 GeV are ex luded at 95% CL.22ABAZOV 13H sear h for H0 produ tion with the de ay H0 → γ γ in 9.6 fb−1 of pp ollisions at E m = 1.96 TeV. A limit on ross se tion times bran hing ratio whi h orresponds to (8.325.4) times the expe ted Standard Model ross se tion is given inthe range mH0 = 100150 GeV at 95% CL. The limit for mH0 = 125 GeV is 12.8,where 8.7 is expe ted for no signal.23ABAZOV 13I sear h for H0 produ tion in the nal state with one lepton and two or morejets plus missing ET with b identi ation in 9.7 fb−1 of pp ollisions at E m = 1.96TeV. The sear h is mainly sensitive to H0W → bb ℓν, H0 → WW (∗) → ℓν qq, andH0V → V WW (∗) → ℓν qq qq (V =W , Z). A limit on ross se tion times bran hingratio whi h orresponds to (1.311.4) times the expe ted Standard Model ross se tion isgiven in the range mH0 = 90200 GeV at 95% CL. The limit for mH0 = 125 GeV is 5.8,where 4.7 is expe ted for no signal. In the Standard Model with an additional generationof heavy quarks and leptons whi h re eive their masses via the Higgs me hanism, mH0values between 150 and 188 GeV are ex luded at 95% CL.24ABAZOV 13J sear h for H0 produ tion in the nal states e e µ, e µµ, µτ τ , and e±µ± in8.69.7 fb−1 of pp ollisions at E m = 1.96 TeV. The sear h is sensitive toWH0, Z H0and gluon fusion produ tion with H0 → WW (∗), Z Z(∗), de aying to leptoni nalstates, and toWH0, Z H0 produ tion with H0 → τ+ τ−. A limit on ross se tion timesbran hing ratio whi h orresponds to (4.412.7) times the expe ted Standard Model rossse tion is given in the range mH0 = 100200 GeV at 95% CL. The limit for mH0 =125 GeV is 8.4, where 6.3 is expe ted for no signal.25ABAZOV 13K sear h for asso iated H0Z produ tion in the nal states ℓℓbb with bidenti ation in 9.7 fb−1 of pp ollisions at E m = 1.96 TeV. A limit on ross se tiontimes bran hing ratio whi h orresponds to (1.853) times the expe ted Standard Model

Page 50: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

660660660660Gauge & Higgs Boson Parti le ListingsNeutral Higgs Bosons, Sear hes for ross se tion is given for mH0 = 90150 GeV at 95% CL. The limit for mH0 = 125GeV is 7.1, where 5.1 is expe ted for no signal.26CHATRCHYAN 13AL sear h for H0 → τ+ τ−, WW (∗), and Z Z(∗) in 5.1 fb−1 and5.3 fb−1 of pp ollisions at E m = 7 and 8 TeV. In the Standard Model with anadditional generation of heavy quarks and leptons whi h re eive their masses via theHiggs me hanism, mH0 values between 110 and 600 GeV are ex luded at 99% CL.27CHATRCHYAN 13BK sear h for H0 → Z γ → ℓℓγ in 5.0 fb−1 of pp ollisions at E m= 7 TeV and 19.6 fb−1 at E m = 8 TeV. A limit on ross se tion times bran hing ratiowhi h orresponds to (425) times the expe ted Standard Model ross se tion is givenin the range mH0 = 120160 GeV at 95% CL. The limit for mH0 = 125 GeV is 9.5,where 10 is expe ted for no signal.28CHATRCHYAN 13Q sear h for H0 produ tion in the de ays H0 → W+W− → ℓν ℓν,ℓν qq and H0 → ZZ → 4ℓ, ℓℓτ τ , ℓℓν ν, and ℓℓqq in up to 5.1 fb−1 of pp ollisionsat E m = 7 TeV and up to 5.3 fb−1 at E m = 8 TeV in the range mH0 = 1451000GeV. Superseded by KHACHATRYAN 15AW.29CHATRCHYAN 13X sear h for H0 t t produ tion followed by H0 → bb, one top de ayingto ℓν and the other to either ℓν or qq in 5.0 fb−1 and 5.1 fb−1 of pp ollisions atE m = 7 and 8 TeV. A limit on ross se tion times bran hing ratio whi h orresponds to(4.08.6) times the expe ted Standard Model ross se tion is given for mH0 = 110140GeV at 95% CL. The limit for mH0 = 125 GeV is 5.8, where 5.2 is expe ted for nosignal.30CHATRCHYAN 13Y sear h for H0 produ tion in the de ay H → γ γ in 5.1 fb−1 ofpp ollisions at E m = 7 TeV and 5.3 fb−1 at E m = 8 TeV. The expe ted ex lusionregion for no signal is 110144 GeV at 95% CL.31CHATRCHYAN 13Y sear h for H0 produ tion in the de ay H → Z Z∗ → 4ℓ in 5.0fb−1 of pp ollisions at E m = 7 TeV and 5.3 fb−1 at E m = 8 TeV. The expe tedex lusion region for no signal is 120180 GeV at 95% CL.32CHATRCHYAN 13Y sear h for H0 produ tion in the de ay H → WW ∗ → ℓν ℓν in 4.9fb−1 of pp ollisions at E m = 7 TeV and 5.3 fb−1 at E m = 8 TeV. The expe tedex lusion region for no signal is 122160 GeV at 95% CL.33AAD 12AI sear h for H0 produ tion in pp ollisions for the nal states H0 → Z Z(∗),γ γ, WW (∗), bb, τ τ with 4.64.8 fb−1 at E m = 7 TeV, and H0 → Z Z(∗) → 4ℓ,γ γ, WW (∗) → e νµν with 5.85.9 fb−1 at E m = 8 TeV. The 99% CL ex ludedrange is 113114, 117121, and 132527 GeV. An ex ess of events over ba kground witha lo al signi an e of 5.9 σ is observed at mH0 = 126 GeV.34AAD 12AJ sear h for H0 produ tion in the de ay H0 → WW (∗) → ℓν ℓν with 4.7fb−1 of pp ollisions at E m = 7 TeV. A limit on ross se tion times bran hing ratiowhi h orresponds to (0.210) times the expe ted Standard Model ross se tion is givenfor mH0 = 110600 GeV at 95% CL.35AAD 12BU sear h for H0 produ tion in the de ay H → τ+ τ− with 4.7 fb−1 of pp ollisions at E m = 7 TeV. A limit on ross se tion times bran hing ratio whi h is(2.911.7) times larger than the expe ted Standard Model ross se tion is given formH0 = 100150 GeV at 95% CL.36AAD 12BZ sear h for H0 produ tion in the de ay H → Z Z → ℓ+ ℓ− ν ν with 4.7fb−1 of pp ollisions at E m = 7 TeV. A limit on ross se tion times bran hing ratiowhi h orresponds to (0.24) times the expe ted Standard Model ross se tion is givenfor mH0 = 200600 GeV at 95% CL.37AAD 12CA sear h for H0 produ tion in the de ay H → Z Z → ℓ+ ℓ− qq with 4.7fb−1 of pp ollisions at E m = 7 TeV. A limit on ross se tion times bran hing ratiowhi h orresponds to (0.79) times the expe ted Standard Model ross se tion is givenfor mH0 = 200600 GeV at 95% CL.38AAD 12CN sear h for asso iated H0W and H0Z produ tion in the hannels W → ℓν,Z → ℓ+ ℓ−, ν ν, and H0 → bb, with 4.7 fb−1 of pp ollisions at E m = 7 TeV.A limit on ross se tion times bran hing ratio whi h is (2.55.5) times larger than theexpe ted Standard Model ross se tion is given for mH0 = 110130 GeV at 95% CL.39AAD 12CO sear h for H0 produ tion in the de ay H → WW → ℓν qq with 4.7 fb−1of pp ollisions at E m = 7 TeV. A limit on ross se tion times bran hing ratio whi h is(1.910) times larger than the expe ted Standard Model ross se tion is given for mH0= 300600 GeV at 95% CL.40AAD 12D sear h for H0 produ tion with H → Z Z(∗) → 4ℓ in 4.8 fb−1 of pp ollisionsat E m = 7 TeV in the mass range mH0 = 110600 GeV. An ex ess of events overba kground with a lo al signi an e of 2.1 σ is observed at 125 GeV.41AAD 12G sear h for H0 produ tion with H → γ γ in 4.9 fb−1 of pp ollisions at E m= 7 TeV in the mass range mH0 = 110150 GeV. An ex ess of events over ba kgroundwith a lo al signi an e of 2.8 σ is observed at 126.5 GeV.42AALTONEN 12AK sear h for asso iated H0 t t produ tion in the de ay hain t t →WW bb → ℓν qqbb with 9.45 fb−1 of pp ollisions at E m = 1.96 TeV. A limiton ross se tion times bran hing ratio whi h is (1040) times larger than the expe tedStandard Model ross se tion is given for mH0 = 100150 GeV at 95% CL. The limitfor mH0 = 125 GeV is 20.5, where 12.6 is expe ted.43AALTONEN 12AM sear h for H0 produ tion in in lusive four-lepton nal states omingfrom H0 → Z Z , H0Z → WW (∗) ℓℓ, or H0Z → τ τ ℓℓ, with 9.7 fb−1 of pp ollisionsat E m = 1.96 TeV. A limit on ross se tion times bran hing ratio whi h is (7.242.4)times larger than the expe ted Standard Model ross se tion is given for mH0 = 120300GeV at 95% CL. The best limit is for mH0 = 200 GeV.44AALTONEN 12AN sear h for H0 produ tion in the de ay H0 → γ γ with 10 fb−1 ofpp ollisions at E m = 1.96 TeV. A limit on ross se tion times bran hing ratio whi his (7.721.3) times larger than the expe ted Standard Model ross se tion is given formH0 = 100150 GeV at 95% CL. The limit for mH0 = 125 GeV is 17.0, where 9.9 isexpe ted.45AALTONEN 12J sear h for H0 produ tion in the de ay H0 → τ+ τ− (one leptoni ,the other hadroni ) with 6.0 fb−1 of pp ollisions at E m = 1.96 TeV. A limit on ross se tion times bran hing ratio whi h is (14.670.2) times larger than the expe tedStandard Model ross se tion is given for mH0 = 100150 GeV at 95% CL. The bestlimit is for mH0 = 120 GeV.46AALTONEN 12Q sear h for asso iated H0Z produ tion in the nal state H0 → bb, Z →ℓ+ ℓ− with 9.45 fb−1 of pp ollisions at E m = 1.96 TeV. A limit on ross se tion timesbran hing ratio whi h orresponds to (1.037.5) times the expe ted Standard Model ross

se tion is given for mH0 = 90150 GeV at 95% CL. The limit for mH0 = 125 GeV is7.1, where 3.9 is expe ted. A broad ex ess of events for mH0 > 110 GeV is observed,with a lo al signi an e of 2.4 σ at mH0 = 135 GeV.47AALTONEN 12T ombine AALTONEN 12Q, AALTONEN 12R, AALTONEN 12S,ABAZOV 12O, ABAZOV 12P, and ABAZOV 12K. An ex ess of events over ba kgroundis observed whi h is most signi ant in the region mH0 = 120135 GeV, with a lo alsigni an e of up to 3.3 σ. The lo al signi an e at mH0 = 125 GeV is 2.8 σ, whi h orresponds to (σ(H0W ) + σ(H0 Z)) B(H0 → bb)) = (0.23+0.09−0.08) pb, ompared tothe Standard Model expe tation at mH0 = 125 GeV of 0.12 ± 0.01 pb.48ABAZOV 12K sear h for asso iated H0Z produ tion in the nal state H0 → bb, Z →

ν ν, and H0W produ tion withW → ℓν (ℓ not identied) with 9.5 fb−1 of pp ollisionsat E m = 1.96 TeV. A limit on ross se tion times bran hing ratio whi h is (1.916.8)times larger than the expe ted Standard Model ross se tion is given for mH0 = 100150GeV at 95% CL. The limit for mH0 = 125 GeV is 4.3, where 3.9 is expe ted.49CHATRCHYAN 12AY sear h for asso iated H0W and H0Z produ tion in the hannelsW → ℓν, Z → ℓ+ ℓ−, and H0 → τ τ , WW (∗), with 5 fb−1 of pp ollisions at E m= 7 TeV. A limit on ross se tion times bran hing ratio whi h is (3.19.1) times largerthan the expe ted Standard Model ross se tion is given for mH0 = 110200 GeV at95% CL.50CHATRCHYAN 12AY ombine CHATRCHYAN 12F and CHATRCHYAN 12AO in additionand give a limit on ross se tion times bran hing ratio whi h is (2.13.7) times largerthan the expe ted Standard Model ross se tion for mH0 = 110170 GeV at 95% CL.The limit for mH0 = 125 GeV is 3.3.51CHATRCHYAN 12C sear h for H0 produ tion with H → Z Z → ℓ+ ℓ− τ+ τ− in4.7 fb−1 of pp ollisions at E m = 7 TeV. A limit on ross se tion times bran hing ratiowhi h is (412) times larger than the expe ted Standard Model ross se tion is given formH0 = 190600 GeV at 95% CL. The best limit is at mH0 = 200 GeV.52CHATRCHYAN 12D sear h for H0 produ tion with H → Z Z(∗) → ℓ+ ℓ− qq in4.6 fb−1 of pp ollisions at E m = 7 TeV. A limit on ross se tion times bran hing ratiowhi h orresponds to (122) times the expe ted Standard Model ross se tion is givenfor mH0 = 130164 GeV, 200600 GeV at 95% CL. The best limit is at mH0 = 230GeV. In the Standard Model with an additional generation of heavy quarks and leptonswhi h re eive their masses via the Higgs me hanism, mH0 values in the ranges mH0 =154161 GeV and 200470 GeV are ex luded at 95% CL.53CHATRCHYAN 12E sear h for H0 produ tion with H → WW (∗) → ℓ+ ν ℓ− ν in 4.6fb−1 of pp ollisions at E m = 7 TeV in the mass range mH0 = 110600 GeV.54CHATRCHYAN 12F sear h for asso iated H0W and H0Z produ tion followed by W →ℓν, Z → ℓ+ ℓ−, ν ν, and H0 → bb, in 4.7 fb−1 of pp ollisions at E m = 7 TeV.A limit on ross se tion times bran hing ratio whi h is (3.19.0) times larger than theexpe ted Standard Model ross se tion is given for mH0 = 110135 GeV at 95% CL.The best limit is at mH0 = 110 GeV.55CHATRCHYAN 12G sear h for H0 produ tion with H → γ γ in 4.8 fb−1 of pp ollisionsat E m = 7 TeV in the mass range mH0 = 110150 GeV. An ex ess of events overba kground with a lo al signi an e of 3.1 σ is observed at 124 GeV.56CHATRCHYAN 12H sear h for H0 produ tion with H → Z Z(∗) → 4ℓ in 4.7 fb−1of pp ollisions at E m = 7 TeV in the mass range mH0 = 110600 GeV. Ex esses ofevents over ba kground are observed around 119, 126 and 320 GeV. The region mH0 =114.4134 GeV remains onsistent with the expe tation for the produ tion of a SM-likeHiggs boson.57CHATRCHYAN 12I sear h for H0 produ tion with H → Z Z → ℓ+ ℓ− ν ν in 4.6 fb−1of pp ollisions at E m = 7 TeV in the mass range mH0 = 250600 GeV.58CHATRCHYAN 12K sear h for H0 produ tion in the de ay H → τ+ τ− with 4.6 fb−1of pp ollisions at E m = 7 TeV. A limit on ross se tion times bran hing ratio whi h is(3.27.0) times larger than the expe ted Standard Model ross se tion is given for mH0= 110145 GeV at 95% CL.59ABAZOV 11G sear h for H0 produ tion in 5.4 fb−1 of pp ollisions at E m = 1.96 TeVin the de ay mode H0 → WW (∗) → ℓν qq′ (and pro esses with similar nal states).A limit on ross se tion times bran hing ratio whi h is (3.937) times larger than theexpe ted Standard Model ross se tion is given for mH0 = 115200 GeV at 95% CL.The best limit is at mH0 = 160 GeV.60CHATRCHYAN 11J sear h for H0 produ tion with H → W+W− → ℓℓν ν in 36pb−1 of pp ollisions at E m = 7 TeV. See their Fig. 6 for a limit on ross se tiontimes bran hing ratio for mH0 = 120600 GeV at 95% CL. In the Standard Model withan additional generation of heavy quarks and leptons whi h re eive their masses via theHiggs me hanism, mH0 values between 144 and 207 GeV are ex luded at 95% CL.61AALTONEN 10F ombine sear hes for H0 de aying to W+W− in pp ollisions at E m= 1.96 TeV with 4.8 fb−1 (CDF) and 5.4 fb−1 (D ).62AALTONEN 10M ombine sear hes for H0 de aying to W+W− in pp ollisions at E m= 1.96 TeV with 4.8 fb−1 (CDF) and 5.4 fb−1 (D ) and derive limits σ(pp → H0)·B(H0 → W+W−) < (1.750.38) pb for mH = 120165 GeV, where H0 is produ edin g g fusion. In the Standard Model with an additional generation of heavy quarks,mH0 between 131 and 204 GeV is ex luded at 95% CL.63AALTONEN 09A sear h for H0 produ tion in pp ollisions at E m =1.96 TeV in thede ay mode H0 → WW (∗) → ℓ+ ℓ− ν ν. A limit on σ(H0) · B(H0 → WW (∗))between 0.7 and 2.5 pb (95% CL) is given for mH0 = 110200 GeV, whi h is 1.745times larger than the expe ted Standard Model ross se tion. The best limit is obtainedfor mH0 = 160 GeV.64ABAZOV 09U sear h for H0 → τ+ τ− with τ → hadrons in 1 fb−1 of pp ollisions atE m = 1.96 TeV. The produ tion me hanisms in lude asso iated W/Z+H0 produ tion,weak boson fusion, and gluon fusion. A limit (95% CL) is given for mH0 = 105145GeV, whi h is 2082 times larger than the expe ted Standard Model ross se tion. Thelimit for mH0 = 115 GeV is 29 times larger than the expe ted Standard Model rossse tion.65ABAZOV 06 sear h for Higgs boson produ tion in pp ollisions at E m = 1.96 TeVwith the de ay hain H0 → WW ∗ → ℓ± ν ℓ′∓ ν. A limit σ(H0)·B(H0 → WW ∗) <

Page 51: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

661661661661See key on page 601 Gauge&HiggsBosonParti le ListingsNeutral Higgs Bosons, Sear hes for(5.63.2) pb (95 %CL) is given for mH0 = 120200 GeV, whi h far ex eeds the expe tedStandard Model ross se tion.66ABAZOV 06O sear h for asso iated H0W produ tion in pp ollisions at E m = 1.96TeV with the de ay H0 → WW ∗, in the nal states ℓ± ℓ′∓ ν ν′X where ℓ = e, µ.A limit σ(H0W )· B(H0 → WW ∗) < (3.22.8) pb (95 %CL) is given for mH0 =115175 GeV, whi h far ex eeds the expe ted Standard Model ross se tion.Indire t Mass Limits for H0 from Ele troweak AnalysisIndire t Mass Limits for H0 from Ele troweak AnalysisIndire t Mass Limits for H0 from Ele troweak AnalysisIndire t Mass Limits for H0 from Ele troweak AnalysisThe mass limits shown below apply to a Higgs boson H0 with Standard Model ou-plings whose mass is a priori unknown.For limits obtained before the dire t measurement of the top quark mass, see the1996 (Physi al Review D54D54D54D54 1 (1996)) Edition of this Review. Other studies based ondata available prior to 1996 an be found in the 1998 Edition (The European Physi alJournal C3C3C3C3 1 (1998)) of this Review.VALUE (GeV) DOCUMENT ID TECN94+25−2294+25−2294+25−2294+25−22 1 BAAK 12A RVUE

• • • We do not use the following data for averages, ts, limits, et . • • •91+30−23 2 BAAK 12 RVUE91+31−24 3 ERLER 10A RVUE129+74−49 4 LEP-SLC 06 RVUE1BAAK 12A make Standard Model ts to Z and neutral urrent parameters, mt , mW ,and W measurements available in 2012 (using also preliminary data). The quotedresult is obtained from a t that does not in lude the measured mass value of the signalobserved at the LHC and also no limits from dire t Higgs sear hes.2BAAK 12 make Standard Model ts to Z and neutral urrent parameters, mt , mW , andW measurements available in 2010 (using also preliminary data). The quoted result isobtained from a t that does not in lude the limit from the dire t Higgs sear hes. Theresult in luding dire t sear h data from LEP2, the Tevatron and the LHC is 120+12

− 5GeV.3ERLER 10A makes Standard Model ts to Z and neutral urrent parameters, mt , mWmeasurements available in 2009 (using also preliminary data). The quoted result isobtained from a t that does not in lude the limits from the dire t Higgs sear hes. Withdire t sear h data from LEP2 and Tevatron added to the t, the 90% CL (99% CL)interval is 115148 (114197) GeV.4 LEP-SLC 06 make Standard Model ts to Z parameters from LEP/SLC and mt , mW ,and W measurements available in 2005 with α(5)had(mZ ) = 0.02758 ± 0.00035. The95% CL limit is 285 GeV.SEARCHES FOR NEUTRAL HIGGS BOSONS REFERENCESSEARCHES FOR NEUTRAL HIGGS BOSONS REFERENCESSEARCHES FOR NEUTRAL HIGGS BOSONS REFERENCESSEARCHES FOR NEUTRAL HIGGS BOSONS REFERENCESAAD 16C JHEP 1601 032 G. Aad et al. (ATLAS Collab.)KHACHATRY... 16A PL B752 221 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 16F JHEP 1601 079 V. Kha hatryan et al. (CMS Collab.)AAD 15AA PR D92 012006 G. Aad et al. (ATLAS Collab.)AAD 15BD EPJ C75 337 G. Aad et al. (ATLAS Collab.)AAD 15BH EPJ C75 299 G. Aad et al. (ATLAS Collab.)AAD 15BK EPJ C75 412 G. Aad et al. (ATLAS Collab.)AAD 15BZ PR D92 052002 G. Aad et al. (ATLAS Collab.)AAD 15CE PR D92 092004 G. Aad et al. (ATLAS Collab.)AAD 15G JHEP 1501 069 G. Aad et al. (ATLAS Collab.)AAD 15H PRL 114 081802 G. Aad et al. (ATLAS Collab.)AAD 15S PL B744 163 G. Aad et al. (ATLAS Collab.)KHACHATRY... 15AW JHEP 1510 144 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15AY JHEP 1511 071 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15BB PL B750 494 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15N PL B748 221 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15O PL B748 255 V. Kha hatryan et al. (CMS Collab.)LEES 15H PR D91 071102 J.P. Lees et al. (BABAR Collab.)AAD 14AP PRL 113 171801 G. Aad et al. (ATLAS Collab.)AAD 14AS PL B738 68 G. Aad et al. (ATLAS Collab.)AAD 14AW JHEP 1411 056 G. Aad et al. (ATLAS Collab.)AAD 14BA JHEP 1411 088 G. Aad et al. (ATLAS Collab.)AAD 14J PL B732 8 G. Aad et al. (ATLAS Collab.)AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.)AAD 14O PRL 112 201802 G. Aad et al. (ATLAS Collab.)CHATRCHYAN 14AA PR D89 092007 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 14AI PR D89 012003 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 14B EPJ C74 2980 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 14G JHEP 1401 096 S. Chatr hyan et al. (CMS Collab.)KHACHATRY... 14M JHEP 1410 160 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 14P EPJ C74 3076 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 14Q PR D90 112013 V. Kha hatryan et al. (CMS Collab.)AAD 13AG PL B721 32 G. Aad et al. (ATLAS Collab.)AAD 13AT NJP 15 043009 G. Aad et al. (ATLAS Collab.)AAD 13O JHEP 1302 095 G. Aad et al. (ATLAS Collab.)AAIJ 13T JHEP 1305 132 R. Aaij et al. (LHCb Collab.)AALTONEN 13B PR D87 052008 T. Aaltonen et al. (CDF Collab.)AALTONEN 13C JHEP 1302 004 T. Aaltonen et al. (CDF Collab.)AALTONEN 13K PR D88 052012 T. Aaltonen et al. (CDF Collab.)AALTONEN 13L PR D88 052013 T. Aaltonen et al. (CDF Collab.)AALTONEN 13M PR D88 052014 T. Aaltonen et al. (CDF and D0 Collabs.)AALTONEN 13P PRL 110 121801 T. Aaltonen et al. (CDF Collab.)ABAZOV 13E PR D88 032008 V.M. Abazov et al. (D0 Collab.)ABAZOV 13F PR D88 052005 V.M. Abazov et al. (D0 Collab.)ABAZOV 13G PR D88 052006 V.M. Abazov et al. (D0 Collab.)ABAZOV 13H PR D88 052007 V.M. Abazov et al. (D0 Collab.)ABAZOV 13I PR D88 052008 V.M. Abazov et al. (D0 Collab.)ABAZOV 13J PR D88 052009 V.M. Abazov et al. (D0 Collab.)ABAZOV 13K PR D88 052010 V.M. Abazov et al. (D0 Collab.)ABAZOV 13L PR D88 052011 V.M. Abazov et al. (D0 Collab.)CARENA 13 EPJ C73 2552 M. Carena et al.CHATRCHYAN 13AG PL B722 207 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13AL PL B725 36 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13BJ PL B726 564 S. Chatr hyan et al. (CMS Collab.)

CHATRCHYAN 13BK PL B726 587 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13Q EPJ C73 2469 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13X JHEP 1305 145 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13Y JHEP 1306 081 S. Chatr hyan et al. (CMS Collab.)LEES 13C PR D87 031102 J.P. Lees et al. (BABAR Collab.)LEES 13L PR D88 031701 J.P. Lees et al. (BABAR Collab.)LEES 13R PR D88 071102 J.P. Lees et al. (BABAR Collab.)AAD 12AI PL B716 1 G. Aad et al. (ATLAS Collab.)AAD 12AJ PL B716 62 G. Aad et al. (ATLAS Collab.)AAD 12AQ PRL 108 251801 G. Aad et al. (ATLAS Collab.)AAD 12BU JHEP 1209 070 G. Aad et al. (ATLAS Collab.)AAD 12BZ PL B717 29 G. Aad et al. (ATLAS Collab.)AAD 12CA PL B717 70 G. Aad et al. (ATLAS Collab.)AAD 12CN PL B718 369 G. Aad et al. (ATLAS Collab.)AAD 12CO PL B718 391 G. Aad et al. (ATLAS Collab.)AAD 12D PL B710 383 G. Aad et al. (ATLAS Collab.)AAD 12G PRL 108 111803 G. Aad et al. (ATLAS Collab.)AAD 12N EPJ C72 2157 G. Aad et al. (ATLAS Collab.)AALTONEN 12AB PR D85 092001 T. Aaltonen et al. (CDF Collab.)AALTONEN 12AK PRL 109 181802 T. Aaltonen et al. (CDF Collab.)AALTONEN 12AM PR D86 072012 T. Aaltonen et al. (CDF Collab.)AALTONEN 12AN PL B717 173 T. Aaltonen et al. (CDF Collab.)AALTONEN 12AQ PR D86 091101 T. Aaltonen et al. (CDF and D0 Collabs.)AALTONEN 12J PRL 108 181804 T. Aaltonen et al. (CDF Collab.)AALTONEN 12Q PRL 109 111803 T. Aaltonen et al. (CDF Collab.)AALTONEN 12R PRL 109 111804 T. Aaltonen et al. (CDF Collab.)AALTONEN 12S PRL 109 111805 T. Aaltonen et al. (CDF Collab.)AALTONEN 12T PRL 109 071804 T. Aaltonen et al. (CDF and D0 Collabs.)AALTONEN 12U PR D85 012007 T. Aaltonen et al. (CDF Collab.)AALTONEN 12X PR D85 032005 T. Aaltonen et al. (CDF Collab.)ABAZOV 12G PL B710 569 V.M. Abazov et al. (D0 Collab.)ABAZOV 12K PL B716 285 V.M. Abazov et al. (D0 Collab.)ABAZOV 12O PRL 109 121803 V.M. Abazov et al. (D0 Collab.)ABAZOV 12P PRL 109 121804 V.M. Abazov et al. (D0 Collab.)BAAK 12 EPJ C72 2003 M. Baak et al. (Gtter Group)BAAK 12A EPJ C72 2205 M. Baak et al. (Gtter Group)CHATRCHYAN 12AO JHEP 1209 111 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12AY JHEP 1211 088 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12C JHEP 1203 081 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12D JHEP 1204 036 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12E PL B710 91 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12F PL B710 284 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12G PL B710 403 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12H PRL 108 111804 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12I JHEP 1203 040 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12K PL B713 68 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12N PL B716 30 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12V PRL 109 121801 S. Chatr hyan et al. (CMS Collab.)AALTONEN 11P PRL 107 031801 T. Aaltonen et al. (CDF Collab.)ABAZOV 11G PRL 106 171802 V.M. Abazov et al. (D0 Collab.)ABAZOV 11K PL B698 97 V.M. Abazov et al. (D0 Collab.)ABAZOV 11W PRL 107 121801 V.M. Abazov et al. (D0 Collab.)ABOUZAID 11A PRL 107 201803 E. Abouzaid et al. (KTeV Collab.)CHATRCHYAN 11J PL B699 25 S. Chatr hyan et al. (CMS Collab.)DEL-AMO-SA... 11J PRL 107 021804 P. del Amo San hez et al. (BABAR Collab.)LEES 11H PRL 107 221803 J.P. Lees et al. (BABAR Collab.)AALTONEN 10F PRL 104 061802 T. Aaltonen et al. (CDF and D0 Collabs.)AALTONEN 10M PR D82 011102 T. Aaltonen et al. (CDF and D0 Collabs.)ABBIENDI 10 PL B682 381 G. Abbiendi et al. (OPAL Collab.)ANDREAS 10 JHEP 1008 003 S. Andreas et al. (DESY)ERLER 10A PR D81 051301 J. Erler (UNAM)HYUN 10 PRL 105 091801 H.J. Hyun et al. (BELLE Collab.)SCHAEL 10 JHEP 1005 049 S. S hael et al. (ALEPH Collab.)AALTONEN 09A PRL 102 021802 T. Aaltonen et al. (CDF Collab.)AALTONEN 09AB PRL 103 061803 T. Aaltonen et al. (CDF Collab.)AALTONEN 09AR PRL 103 201801 T. Aaltonen et al. (CDF Collab.)ABAZOV 09U PRL 102 251801 V.M. Abazov et al. (D0 Collab.)ABAZOV 09V PRL 103 061801 V.M. Abazov et al. (D0 Collab.)AUBERT 09P PRL 103 181801 B. Aubert et al. (BABAR Collab.)AUBERT 09Z PRL 103 081803 B. Aubert et al. (BABAR Collab.)TUNG 09 PRL 102 051802 Y.C. Tung et al. (KEK E391a Collab.)ABAZOV 08U PRL 101 051801 V.M. Abazov et al. (D0 Collab.)ABDALLAH 08B EPJ C54 1 J. Abdallah et al. (DELPHI Collab.)Also EPJ C56 165 (errat.) J. Abdallah et al. (DELPHI Collab.)LOVE 08 PRL 101 151802 W. Love et al. (CLEO Collab.)ABBIENDI 07 EPJ C49 457 G. Abbiendi et al. (OPAL Collab.)BESSON 07 PRL 98 052002 D. Besson et al. (CLEO Collab.)SCHAEL 07 EPJ C49 439 S. S hael et al. (ALEPH Collab.)ABAZOV 06 PRL 96 011801 V.M. Abazov et al. (D0 Collab.)ABAZOV 06O PRL 97 151804 V.M. Abazov et al. (D0 Collab.)LEP-SLC 06 PRPL 427 257 ALEPH, DELPHI, L3, OPAL, SLD and working groupsSCHAEL 06B EPJ C47 547 S. S hael et al. (LEP Collabs.)ABBIENDI 05A EPJ C40 317 G. Abbiendi et al. (OPAL Collab.)ABDALLAH 05D EPJ C44 147 J. Abdallah et al. (DELPHI Collab.)ACHARD 05 PL B609 35 P. A hard et al. (L3 Collab.)ACOSTA 05Q PR D72 072004 D. A osta et al. (CDF Collab.)PARK 05 PRL 94 021801 H.K. Park et al. (FNAL HyperCP Collab.)ABBIENDI 04K PL B597 11 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 04M EPJ C37 49 G. Abbiendi et al. (OPAL Collab.)ABDALLAH 04 EPJ C32 145 J. Abdallah et al. (DELPHI Collab.)ABDALLAH 04B EPJ C32 475 J. Abdallah et al. (DELPHI Collab.)ABDALLAH 04L EPJ C35 313 J. Abdallah et al. (DELPHI Collab.)ABDALLAH 04O EPJ C38 1 J. Abdallah et al. (DELPHI Collab.)ACHARD 04B PL B583 14 P. A hard et al. (L3 Collab.)ACHARD 04F PL B589 89 P. A hard et al. (L3 Collab.)ABBIENDI 03B EPJ C26 479 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 03F EPJ C27 311 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 03G EPJ C27 483 G. Abbiendi et al. (OPAL Collab.)ACHARD 03C PL B568 191 P. A hard et al. (L3 Collab.)CARENA 03 EPJ C26 601 M.S. Carena et al.HEISTER 03D PL B565 61 A. Heister et al. (ALEPH, DELPHI, L3+)ALEPH, DELPHI, L3, OPAL, LEP Higgs Working GroupABBIENDI 02D EPJ C23 397 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 02F PL B544 44 G. Abbiendi et al. (OPAL Collab.)ACHARD 02C PL B534 28 P. A hard et al. (L3 Collab.)ACHARD 02H PL B545 30 P. A hard et al. (L3 Collab.)AKEROYD 02 PR D66 037702 A.G. Akeroyd et al.HEISTER 02 PL B526 191 A. Heister et al. (ALEPH Collab.)HEISTER 02L PL B544 16 A. Heister et al. (ALEPH Collab.)HEISTER 02M PL B544 25 A. Heister et al. (ALEPH Collab.)ABBIENDI 01E EPJ C18 425 G. Abbiendi et al. (OPAL Collab.)ABREU 01F PL B507 89 P. Abreu et al. (DELPHI Collab.)ACHARD 01C PL B517 319 P. A hard et al. (L3 Collab.)AFFOLDER 01H PR D64 092002 T. Aolder et al. (CDF Collab.)BARATE 01C PL B499 53 R. Barate et al. (ALEPH Collab.)ACCIARRI 00M PL B485 85 M. A iarri et al. (L3 Collab.)ACCIARRI 00R PL B489 102 M. A iarri et al. (L3 Collab.)ACCIARRI 00S PL B489 115 M. A iarri et al. (L3 Collab.)BARATE 00L PL B487 241 R. Barate et al. (ALEPH Collab.)ABBIENDI 99E EPJ C7 407 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 99O PL B464 311 G. Abbiendi et al. (OPAL Collab.)ABBOTT 99B PRL 82 2244 B. Abbott et al. (D0 Collab.)

Page 52: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

662662662662Gauge & Higgs Boson Parti le ListingsNeutral Higgs Bosons, Sear hes for, Charged Higgs Bosons (H± and H±±), Sear hes forABREU 99P PL B458 431 P. Abreu et al. (DELPHI Collab.)CARENA 99B hep-ph/9912223 M.S. Carena et al.CERN-TH/99-374ABBOTT 98 PRL 80 442 B. Abbott et al. (D0 Collab.)ACKERSTAFF 98S EPJ C5 19 K. A kersta et al. (OPAL Collab.)ACKERSTAFF 98Y PL B437 218 K. A kersta et al. (OPAL Collab.)GONZALEZ-G... 98B PR D57 7045 M.C. Gonzalez-Gar ia, S.M. Lietti, S.F. NovaesPDG 98 EPJ C3 1 C. Caso et al. (PDG Collab.)KRAWCZYK 97 PR D55 6968 M. Kraw zyk, J. Zo howski (WARS)ALEXANDER 96H ZPHY C71 1 G. Alexander et al. (OPAL Collab.)PDG 96 PR D54 1 R. M. Barnett et al. (PDG Collab.)ABREU 95H ZPHY C67 69 P. Abreu et al. (DELPHI Collab.)BALEST 95 PR D51 2053 R. Balest et al. (CLEO Collab.)PICH 92 NP B388 31 A. Pi h, J. Prades, P. Yepes (CERN, CPPM)ANTREASYAN 90C PL B251 204 D. Antreasyan et al. (Crystal Ball Collab.)Charged Higgs Bosons (H± and H±±),Sear hes forCONTENTS:CONTENTS:CONTENTS:CONTENTS:H± (Charged Higgs) Mass LimitsMass limits for H±± (doubly- harged Higgs boson)− Limits for H±± with T3 = ±1− Limits for H±± with T3 = 0H± (Charged Higgs) MASS LIMITSH± (Charged Higgs) MASS LIMITSH± (Charged Higgs) MASS LIMITSH± (Charged Higgs) MASS LIMITSUnless otherwise stated, the limits below assume B(H+ →

τ+ ν)+B(H+ → s)=1, and hold for all values of B(H+ → τ+ ντ ), andassume H+ weak isospin of T3=+1/2. In the following, tanβ is the ratioof the two va uum expe tation values in two-doublet models (2HDM).The limits are also appli able to point-like te hnipions. For a dis ussionof te hniparti les, see the Review of Dynami al Ele troweak SymmetryBreaking in this Review.For limits obtained in hadroni ollisions before the observation of the topquark, and based on the top mass values in onsistent with the urrentmeasurements, see the 1996 (Physi al Review D54D54D54D54 1 (1996)) Edition ofthis Review.Sear hes in e+ e− ollisions at and above the Z pole have on lusivelyruled out the existen e of a harged Higgs in the region mH+ . 45 GeV,and are meanwhile superseded by the sear hes in higher energy e+ e− ol-lisions at LEP. Results that are by now obsolete are therefore not in ludedin this ompilation, and an be found in a previous Edition (The EuropeanPhysi al Journal C15C15C15C15 1 (2000)) of this Review.In the following, and unless otherwise stated, results from the LEP experi-ments (ALEPH, DELPHI, L3, and OPAL) are assumed to derive from thestudy of the e+ e− → H+H− pro ess. Limits from b → s γ de ays areusually stronger in generi 2HDM models than in Supersymmetri models.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT> 80> 80> 80> 80 95 1 LEP 13 LEP e+ e− → H+H−,E m ≤209GeV> 76.3 95 2 ABBIENDI 12 OPAL e+ e− → H+H−,E m ≤209GeV> 74.4 95 ABDALLAH 04I DLPH E m ≤ 209 GeV> 76.5 95 ACHARD 03E L3 E m ≤ 209 GeV> 79.3 95 HEISTER 02P ALEP E m ≤ 209 GeV• • • We do not use the following data for averages, ts, limits, et . • • •3 AAD 15AF ATLS t → bH+4 AAD 15AF ATLS t H±5 AAD 15M ATLS H± → W±Z6 KHACHATRY...15AX CMS t → bH+, H+ → τ+ ν7 KHACHATRY...15AX CMS t H+, H+ → t b8 KHACHATRY...15AX CMS t H±, H± → τ± ν9 KHACHATRY...15BF CMS t → bH+, H+ → s10 AAD 14M ATLS H02 → H±W∓ →H0W±W∓, H0 → bb11 AALTONEN 14A CDF t → b τ ν12 AAD 13AC ATLS t → bH+13 AAD 13V ATLS t → bH+, lepton non-universality14 AAD 12BH ATLS t → bH+15 CHATRCHYAN12AA CMS t → bH+16 AALTONEN 11P CDF t → bH+, H+ → W+A0>316 95 17 DESCHAMPS 10 RVUE Type II, avor physi s data18 AALTONEN 09AJ CDF t → bH+19 ABAZOV 09AC D0 t → bH+20 ABAZOV 09AG D0 t → bH+

21 ABAZOV 09AI D0 t → bH+22 ABAZOV 09P D0 H+ → t b23 ABULENCIA 06E CDF t → bH+> 92.0 95 ABBIENDI 04 OPAL B(τ ν) = 1> 76.7 95 24 ABDALLAH 04I DLPH Type I25 ABBIENDI 03 OPAL τ → µν ν, e ν ν26 ABAZOV 02B D0 t → bH+, H → τ ν27 BORZUMATI 02 RVUE28 ABBIENDI 01Q OPAL B → τ ντ X29 BARATE 01E ALEP B → τ ντ>315 99 30 GAMBINO 01 RVUE b → s γ31 AFFOLDER 00I CDF t → bH+, H → τ ν

> 59.5 95 ABBIENDI 99E OPAL E m ≤ 183 GeV32 ABBOTT 99E D0 t → bH+33 ACKERSTAFF 99D OPAL τ → e ν ν, µν ν34 ACCIARRI 97F L3 B → τ ντ35 AMMAR 97B CLEO τ → µν ν36 COARASA 97 RVUE B → τ ντ X37 GUCHAIT 97 RVUE t → bH+, H → τ ν38 MANGANO 97 RVUE B u( ) → τ ντ39 STAHL 97 RVUE τ → µν ν

>244 95 40 ALAM 95 CLE2 b → s γ41 BUSKULIC 95 ALEP b → τ ντ X1 LEP 13 give a limit that refers to the Type II s enario. The limit for B(H+ → τ ν) =1 is 94 GeV (95% CL), and for B(H+ → s) = 1 the region below 80.5 as well as theregion 8388 GeV is ex luded (95% CL). LEP 13 also sear h for the de ay mode H+ →A0W ∗ with A0 → bb, whi h is not negligible in Type I models. The limit in Type Imodels is 72.5 GeV (95% CL) if mA0 > 12 GeV.2ABBIENDI 12 also sear h for the de ay mode H+ → A0W ∗ with A0 → bb.3AAD 15AF sear h for t t produ tion followed by t → bH+, H+ → τ+ ν in 19.5 fb−1of pp ollisions at E m = 8 TeV. Upper limits on B(t → bH+) B(H+ → τ ν) between2.3× 10−3 and 1.3× 10−2 (95% CL) are given for mH+ = 80160 GeV. See their Fig.8 for the ex luded regions in dierent ben hmark s enarios of the MSSM. The regionmH+ < 140 GeV is ex luded for tanβ > 1 in the onsidered s enarios.4AAD 15AF sear h for t H± asso iated produ tion followed by H± → τ± ν in 19.5 fb−1of pp ollisions at E m = 8 TeV. Upper limits on σ(t H±) B(H+ → τ ν) between760 and 4.5 fb (95% CL) are given for mH+ = 1801000 GeV. See their Fig. 8 for theex luded regions in dierent ben hmark s enarios of the MSSM.5AAD 15M sear h for ve tor boson fusion produ tion of H± de aying to H± → W±Z →qq ℓ+ ℓ− in 20.3 fb−1 of pp ollisions at E m = 8 TeV. See their Fig. 2 for limits on ross se tion times bran hing ratio for mH± = 2001000 GeV, and Fig. 3 for limits onthetriplet va uum expe tation value fra tion in the Georgi-Ma ha ek model.6KHACHATRYAN 15AX sear h for t t produ tion followed by t → bH+, H+ → τ+ νin 19.7 fb−1 of pp ollisions at E m = 8 TeV. Upper limits on B(t → bH+) B(H+ →τ ν) between 1.2× 10−2 and 1.5× 10−3 (95% CL) are given for mH+ = 80160 GeV.See their Fig. 11 for the ex luded regions in dierent ben hmark s enarios of the MSSM.The region mH+ < 155 GeV is ex luded for tanβ > 1 in the onsidered s enarios.7KHACHATRYAN 15AX sear h for t H± asso iated produ tion followed by H± → t b in19.7 fb−1 of pp ollisions at E m = 8 TeV. Upper limits on σ(t H±) B(H+ → t b)between 2.0 and 0.13 pb (95% CL) are given for mH+ = 180600 GeV. See their Fig.11 for the ex luded regions in dierent ben hmark s enarios of the MSSM.8KHACHATRYAN 15AX sear h for t H± asso iated produ tion followed by H± → τ± νin 19.7 fb−1 of pp ollisions at E m = 8 TeV. Upper limits on σ(t H±) B(H+ → τ ν)between 380 and 25 fb (95% CL) are given for mH+ = 180600 GeV. See their Fig. 11for the ex luded regions in dierent ben hmark s enarios of the MSSM.9KHACHATRYAN 15BF sear h for t t produ tion followed by t → bH+, H+ → s in19.7 fb−1 of pp ollisions at E m = 8 TeV. Upper limits on B(t → bH+) B(H+ → s) between 1.2× 10−2 and 6.5× 10−2 (95% CL) are given for mH+ = 90160 GeV.10AAD 14M sear h for the de ay as ade H02 → H±W∓ → H0W±W∓, H0 de ayingto bb in 20.3 fb−1 of pp ollisions at E m = 8 TeV. See their Table III for limits on ross se tion times bran hing ratio for mH02= 3251025 GeV and mH+= 225925 GeV.11AALTONEN 14A measure B(t → b τ ν) = 0.096 ± 0.028 using 9 fb−1 of pp ollisionsat E m = 1.96 TeV. For mH+= 80140 GeV, this measured value is translated to alimit B(t → bH+) < 0.059 at 95% CL assuming B(H+ → τ+ ν) = 1.12AAD 13AC sear h for t t produ tion followed by t → bH+, H+ → s ( avor uniden-tied) in 4.7 fb−1 of pp ollisions at E m = 7 TeV. Upper limits on B(t → bH+)between 0.05 and 0.01 (95%CL) are given for mH+=90150 GeV and B(H+ → s)=1.13AAD 13V sear h for t t produ tion followed by t → bH+, H+ → τ+ ν through violationof lepton universality with 4.6 fb−1 of pp ollisions at E m = 7 TeV. Upper limits onB(t → bH+) between 0.032 and 0.044 (95% CL) are given for mH+ = 90140 GeVand B(H+ → τ+ ν) = 1. By ombining with AAD 12BH, the limits improve to 0.008to 0.034 for mH+ = 90160 GeV. See their Fig. 7 for the ex luded region in the mmaxhs enario of the MSSM.14AAD 12BH sear h for t t produ tion followed by t → bH+, H+ → τ+ ν with 4.6 fb−1of pp ollisions at E m = 7 TeV. Upper limits on B(t → bH+) between 0.01 and 0.05(95% CL) are given for mH+ = 90160 GeV and B(H+ → τ+ ν) = 1. See their Fig. 8for the ex luded region in the mmaxh s enario of the MSSM.15CHATRCHYAN 12AA sear h for t t produ tion followed by t → bH+, H+ → τ+ νwith 2 fb−1 of pp ollisions at E m = 7 TeV. Upper limits on B(t → bH+) between0.019 and 0.041 (95% CL) are given for mH+ = 80160 GeV and B(H+ → τ+ ν)=1.

Page 53: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

663663663663See key on page 601 Gauge & Higgs Boson Parti le ListingsCharged Higgs Bosons (H± and H±±), Sear hes for16AALTONEN 11P sear h in 2.7 fb−1 of pp ollisions at E m = 1.96 TeV for the de ay hain t → bH+, H+ → W+A0, A0 → τ+ τ− with mA0 between 4 and 9 GeV. Seetheir Fig. 4 for limits on B(t → bH+) for 90 < mH+ < 160 GeV.17DESCHAMPS 10 make Type II two Higgs doublet model ts to weak leptoni andsemileptoni de ays, b → s γ, B, Bs mixings, and Z → bb. The limit holds irrespe tiveof tanβ.18AALTONEN 09AJ sear h for t → bH+, H+ → s in t t events in 2.2 fb−1 of pp ollisions at E m = 1.96 TeV. Upper limits on B(t → bH+) between 0.08 and 0.32(95% CL) are given for mH+ = 60150 GeV and B(H+ → s) = 1.19ABAZOV 09AC sear h for t → bH+, H+ → τ+ ν in t t events in 0.9 fb−1 of pp ollisions at E m = 1.96 TeV. Upper limits on B(t → bH+) between 0.19 and 0.25(95% CL) are given for mH+ = 80155 GeV and B(H+ → τ+ ν) = 1. See their Fig. 4for an ex luded region in a MSSM s enario.20ABAZOV 09AG measure t t ross se tions in nal states with ℓ + jets (ℓ = e, µ), ℓℓ,and τ ℓ in 1 fb−1 of pp ollisions at E m = 1.96 TeV, whi h onstrains possible t →bH+ bran hing fra tions. Upper limits (95% CL) on B(t → bH+) between 0.15 and0.40 (0.48 and 0.57) are given for B(H+ → τ+ ν) = 1 (B(H+ → s) = 1) for mH+= 80155 GeV.21ABAZOV 09AI sear h for t → bH+ in t t events in 1 fb−1 of pp ollisions at E m =1.96 TeV. Final states with ℓ + jets (ℓ = e, µ), ℓℓ, and τ ℓ are examined. Upper limits onB(t → bH+) (95% CL) between 0.15 and 0.19 (0.19 and 0.22) are given for B(H+ →τ+ ν) = 1 (B(H+ → s) = 1) for mH+ = 80155 GeV. For B(H+ → τ+ ν) = 1also a simultaneous extra tion of B(t → bH+) and the t t ross se tion is performed,yielding a limit on B(t → bH+) between 0.12 and 0.26 for mH+ = 80155 GeV. Seetheir Figs. 58 for ex luded regions in several MSSM s enarios.22ABAZOV 09P sear h for H+ produ tion by qq′ annihilation followed by H+ → t bde ay in 0.9 fb−1 of pp ollisions at E m = 1.96 TeV. Cross se tion limits in severaltwo-doublet models are given for mH+ = 180300 GeV. A region with 20 . tanβ .70 is ex luded (95% CL) for 180 GeV . mH+ . 184 GeV in type-I models.23ABULENCIA 06E sear h for asso iated H0W produ tion in pp ollisions at E m = 1.96TeV. A t is made for t t produ tion pro esses in dilepton, lepton + jets, and lepton + τnal states, with the de ays t → W+b and t → H+ b followed by H+ → τ+ ν, s,t∗ b, or W+H0. Within the MSSM the sear h is sensitive to the region tanβ < 1 or> 30 in the mass range mH+ = 80160 GeV. See Fig. 2 for the ex luded region in a ertain MSSM s enario.24ABDALLAH 04I sear h for e+ e− → H+H− with H± de aying to τ ν, s , or W ∗A0in Type-I two-Higgs-doublet models.25ABBIENDI 03 give a limit mH+ > 1.28tanβ GeV (95%CL) in Type II two-doubletmodels.26ABAZOV 02B sear h for a harged Higgs boson in top de ays with H+ → τ+ ν atE m=1.8 TeV. For mH+=75 GeV, the region tanβ > 32.0 is ex luded at 95%CL. Theex luded mass region extends to over 140 GeV for tanβ values above 100.27BORZUMATI 02 point out that the de ay modes su h as bbW , A0W , and supersym-metri ones an have substantial bran hing fra tions in the mass range explored at LEP IIand Tevatron.28ABBIENDI 01Q give a limit tanβ/mH+ < 0.53 GeV−1 (95%CL) in Type II two-doubletmodels.29BARATE 01E give a limit tanβ/mH+ < 0.40 GeV−1 (90% CL) in Type II two-doubletmodels. An independent measurement of B → τ ντ X gives tanβ/mH+ < 0.49 GeV−1(90% CL).30GAMBINO 01 use the world average data in the summer of 2001 B(b → s γ) = (3.23 ±0.42) × 10−4. The limit applies for Type-II two-doublet models.31AFFOLDER 00I sear h for a harged Higgs boson in top de ays with H+ → τ+ ν inpp ollisions at E m=1.8 TeV. The ex luded mass region extends to over 120 GeV fortanβ values above 100 and B(τ ν) = 1. If B(t → bH+)& 0.6, mH+ up to 160 GeVis ex luded. Updates ABE 97L.32ABBOTT 99E sear h for a harged Higgs boson in top de ays in pp ollisions at E m=1.8TeV, by omparing the observed t t ross se tion (extra ted from the data assuming thedominant de ay t → bW+) with theoreti al expe tation. The sear h is sensitive toregions of the domains tanβ . 1, 50 <mH+(GeV) . 120 and tanβ & 40, 50 <mH+(GeV) . 160. See Fig. 3 for the details of the ex luded region.33ACKERSTAFF 99D measure the Mi hel parameters ρ, ξ, η, and ξδ in leptoni τ de aysfrom Z → τ τ . Assuming e-µ universality, the limit mH+ > 0.97 tanβ GeV (95%CL)is obtained for two-doublet models in whi h only one doublet ouples to leptons.34ACCIARRI 97F give a limit mH+ > 2.6 tanβ GeV (90% CL) from their limit on theex lusive B → τ ντ bran hing ratio.35AMMAR 97B measure the Mi hel parameter ρ from τ → e ν ν de ays and assumes e/µuniversality to extra t the Mi hel η parameter from τ → µν ν de ays. The measurementis translated to a lower limit on mH+ in a two-doublet model mH+ > 0.97 tanβ GeV(90% CL).36COARASA 97 reanalyzed the onstraint on the (mH± ,tanβ) plane derived from thein lusive B → τ ντ X bran hing ratio in GROSSMAN 95B and BUSKULIC 95. Theyshow that the onstraint is quite sensitive to supersymmetri one-loop ee ts.37GUCHAIT 97 studies the onstraints on mH+ set by Tevatron data on ℓτ nal states int t → (W b)(H b), W → ℓν, H → τ ντ . See Fig. 2 for the ex luded region.38MANGANO 97 re onsiders the limit in ACCIARRI 97F in luding the ee t of the poten-tially large B → τ ντ ba kground to Bu → τ ντ de ays. Stronger limits are obtained.39 STAHL 97 t τ lifetime, leptoni bran hing ratios, and the Mi hel parameters and derivelimit mH+ > 1.5 tanβ GeV (90% CL) for a two-doublet model. See also STAHL 94.40ALAM 95 measure the in lusive b → s γ bran hing ratio at (4S) and give B(b →s γ)< 4.2× 10−4 (95% CL), whi h translates to the limit mH+ >[244 + 63/(tanβ)1.3GeV in the Type II two-doublet model. Light supersymmetri parti les an invalidate thisbound.41BUSKULIC 95 give a limit mH+ > 1.9 tanβ GeV (90% CL) for Type-II models fromb → τ ντ X bran hing ratio, as proposed in GROSSMAN 94.

MASS LIMITS for H±± (doubly- harged Higgs boson)MASS LIMITS for H±± (doubly- harged Higgs boson)MASS LIMITS for H±± (doubly- harged Higgs boson)MASS LIMITS for H±± (doubly- harged Higgs boson)This se tion overs sear hes for a doubly- harged Higgs boson with ou-plings to lepton pairs. Its weak isospin T3 is thus restri ted to twopossibilities depending on lepton hiralities: T3(H±±) = ±1, with the oupling gℓℓ to ℓ−L ℓ′−L and ℓ+R ℓ′+R (\left-handed") and T3(H±±) = 0,with the oupling to ℓ−R ℓ′−R and ℓ+L ℓ′+L (\right-handed"). These Higgsbosons appear in some left-right symmetri models based on the gaugegroup SU(2)L×SU(2)R×U(1), the type-II seesaw model, and the Zee-Babu model. The two ases are listed separately in the following. Unlessnoted, one of the lepton avor ombinations is assumed to be dominantin the de ay.LIMITS for H±± with T3 = ±1LIMITS for H±± with T3 = ±1LIMITS for H±± with T3 = ±1LIMITS for H±± with T3 = ±1VALUE (GeV) CL% DOCUMENT ID TECN COMMENT>551>551>551>551 95 1 AAD 15AG ATLS e e>468 95 1 AAD 15AG ATLS eµ>516 95 1 AAD 15AG ATLS µµ>400 95 2 AAD 15AP ATLS e τ>400 95 2 AAD 15AP ATLS µτ

>169 95 3 CHATRCHYAN12AU CMS τ τ

>300 95 3 CHATRCHYAN12AU CMS µτ

>293 95 3 CHATRCHYAN12AU CMS e τ

>395 95 3 CHATRCHYAN12AU CMS µµ

>391 95 3 CHATRCHYAN12AU CMS eµ

>382 95 3 CHATRCHYAN12AU CMS e e> 98.1 95 4 ABDALLAH 03 DLPH τ τ

> 99.0 95 5 ABBIENDI 02C OPAL τ τ

• • • We do not use the following data for averages, ts, limits, et . • • •6 KANEMURA 15 RVUE W (∗)±W (∗)±7 KHACHATRY...15D CMS W±W±8 KANEMURA 14 RVUE W (∗)±W (∗)±>330 95 9 AAD 13Y ATLS µµ

>237 95 9 AAD 13Y ATLS µτ

>355 95 10 AAD 12AY ATLS µµ

>398 95 11 AAD 12CQ ATLS µµ

>375 95 11 AAD 12CQ ATLS eµ

>409 95 11 AAD 12CQ ATLS e e>128 95 12 ABAZOV 12A D0 τ τ

>144 95 12 ABAZOV 12A D0 µτ

>245 95 13 AALTONEN 11AF CDF µµ

>210 95 13 AALTONEN 11AF CDF eµ

>225 95 13 AALTONEN 11AF CDF e e>114 95 14 AALTONEN 08AA CDF e τ

>112 95 14 AALTONEN 08AA CDF µτ

>168 95 15 ABAZOV 08V D0 µµ16 AKTAS 06A H1 single H±±>133 95 17 ACOSTA 05L CDF stable>118.4 95 18 ABAZOV 04E D0 µµ19 ABBIENDI 03Q OPAL E m ≤ 209 GeV, singleH±±20 GORDEEV 97 SPEC muonium onversion21 ASAKA 95 THEO> 45.6 95 22 ACTON 92M OPAL> 30.4 95 23 ACTON 92M OPALnone 6.536.6 95 24 SWARTZ 90 MRK21AAD 15AG sear h for H++H−− produ tion in 20.3 fb−1 of pp ollisions at E m = 8TeV. The limit assumes 100% bran hing ratio to the spe ied nal state. See their Fig.5 for limits for arbitrary bran hing ratios.2AAD 15AP sear h for H++H−− produ tion in 20.3 fb−1 of pp ollisions at E m = 8TeV. The limit assumes 100% bran hing ratio to the spe ied nal state.3CHATRCHYAN 12AU sear h for H++H−− produ tion with 4.9 fb−1 of pp ollisions atE m = 7 TeV. The limit assumes 100% bran hing ratio to the spe ied nal state. Seetheir Table 6 for limits in luding asso iated H++H− produ tion or assuming dierents enarios.4ABDALLAH 03 sear h for H++H−− pair produ tion either followed by H++ →

τ+ τ+, or de aying outside the dete tor.5ABBIENDI 02C sear hes for pair produ tion of H++H−−, with H±± → ℓ± ℓ± (ℓ,ℓ′= e,µ,τ). The limit holds for ℓ=ℓ′=τ , and be omes stronger for other ombinations ofleptoni nal states. To ensure the de ay within the dete tor, the limit only applies forg(H ℓℓ)& 10−7.6KANEMURA 15 examine the ase where H++ de ays preferentially to W (∗)W (∗) andestimate that a lower mass limit of ∼ 84 GeV an be derived from the same-sign dileptondata of AAD 15AG if H++ de ays with 100% bran hing ratio to W (∗)W (∗).7KHACHATRYAN 15D sear h for H±± produ tion by ve tor boson fusion followed bythe de ay H±± → W±W± in 19.4 fb−1 of pp ollisions at E m = 8 TeV. See theirFig. 4 for limits on ross se tion times bran hing ratio for mH++ between 160 and 800GeV.8KANEMURA 14 examine the ase where H++ de ays preferentially to W (∗)W (∗) andestimate that a lower mass limit of ∼ 60 GeV an be derived from the same-sign dileptondata of AAD 12CY.9AAD 13Y sear h for H++H−− produ tion in a generi sear h of events with three harged leptons in 4.6 fb−1 of pp ollisions at E m = 7 TeV. The limit assumes 100%bran hing ratio to the spe ied nal state.10AAD 12AY sear h for H++H−− produ tion with 1.6 fb−1 of pp ollisions at E m =7 TeV. The limit assumes 100% bran hing ratio to the spe ied nal state.11AAD 12CQ sear h for H++H−− produ tion with 4.7 fb−1 of pp ollisions at E m =7 TeV. The limit assumes 100% bran hing ratio to the spe ied nal state. See theirTable 1 for limits assuming smaller bran hing ratios.

Page 54: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

664664664664Gauge & Higgs Boson Parti le ListingsCharged Higgs Bosons (H± and H±±), Sear hes for12ABAZOV 12A sear h for H++H−− produ tion in 7.0 fb−1 of pp ollisions at E m =1.96 TeV.13AALTONEN 11AF sear h for H++H−− produ tion in 6.1 fb−1 of pp ollisions at E m= 1.96 TeV.14AALTONEN 08AA sear h for H++H−− produ tion in pp ollisions at E m= 1.96 TeV.The limit assumes 100% bran hing ratio to the spe ied nal state.15ABAZOV 08V sear h for H++H−− produ tion in pp ollisions at E m= 1.96 TeV.The limit is for B(H → µµ) = 1. The limit is updated in ABAZOV 12A.16AKTAS 06A sear h for single H±± produ tion in e p ollisions at HERA. Assumingthat H++ only ouples to e+µ+ with ge µ = 0.3 (ele tromagneti strength), a limitmH++ > 141 GeV (95% CL) is derived. For the ase where H++ ouples to e τ onlythe limit is 112 GeV.17ACOSTA 05L sear h for H++H−− pair produ tion in pp ollisions. The limit is validfor gℓℓ′ < 10−8 so that the Higgs de ays outside the dete tor.18ABAZOV 04E sear h for H++H−− pair produ tion in H±± → µ±µ±. The limit isvalid for gµµ & 10−7.19ABBIENDI 03Q sear hes for single H±± via dire t produ tion in e+ e− → e∓ e∓H±±,and via t- hannel ex hange in e+ e− → e+ e−. In the dire t ase, and assumingB(H±± → ℓ± ℓ±) = 1, a 95% CL limit on hee < 0.071 is set for mH±± < 160 GeV(see Fig. 6). In the se ond ase, indire t limits on hee are set for mH±± < 2 TeV (seeFig. 8).20GORDEEV 97 sear h for muonium-antimuonium onversion and nd GMM/GF < 0.14(90% CL), where GMM is the lepton- avor violating ee tive four-fermion oupling.This limit may be onverted to mH++ > 210 GeV if the Yukawa ouplings of H++to ee and µµ are as large as the weak gauge oupling. For similar limits on muonium-antimuonium onversion, see the muon Parti le Listings.21ASAKA 95 point out that H++ de ays dominantly to four fermions in a large region ofparameter spa e where the limit of ACTON 92M from the sear h of dilepton modes doesnot apply.22ACTON 92M limit assumes H±± → ℓ± ℓ± or H±± does not de ay in the dete tor.Thus the region gℓℓ ≈ 10−7 is not ex luded.23ACTON 92M from Z <40 MeV.24 SWARTZ 90 assume H±± → ℓ± ℓ± (any avor). The limits are valid for the Higgs-lepton oupling g(H ℓℓ) & 7.4 × 10−7/[mH/GeV1/2. The limits improve somewhatfor e e and µµ de ay modes.LIMITS for H±± with T3 = 0LIMITS for H±± with T3 = 0LIMITS for H±± with T3 = 0LIMITS for H±± with T3 = 0VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>374 95 1 AAD 15AG ATLS e e>402 95 1 AAD 15AG ATLS eµ

>438>438>438>438 95 1 AAD 15AG ATLS µµ

>290 95 2 AAD 15AP ATLS e τ

>290 95 2 AAD 15AP ATLS µτ

> 97.3 95 3 ABDALLAH 03 DLPH τ τ

> 97.3 95 4 ACHARD 03F L3 τ τ

> 98.5 95 5 ABBIENDI 02C OPAL τ τ

• • • We do not use the following data for averages, ts, limits, et . • • •>251 95 6 AAD 12AY ATLS µµ

>306 95 7 AAD 12CQ ATLS µµ

>310 95 7 AAD 12CQ ATLS eµ

>322 95 7 AAD 12CQ ATLS e e>113 95 8 ABAZOV 12A D0 µτ

>205 95 9 AALTONEN 11AF CDF µµ

>190 95 9 AALTONEN 11AF CDF eµ

>205 95 9 AALTONEN 11AF CDF e e>145 95 10 ABAZOV 08V D0 µµ11 AKTAS 06A H1 single H±±>109 95 12 ACOSTA 05L CDF stable> 98.2 95 13 ABAZOV 04E D0 µµ14 ABBIENDI 03Q OPAL E m ≤ 209 GeV, singleH±±15 GORDEEV 97 SPEC muonium onversion> 45.6 95 16 ACTON 92M OPAL> 25.5 95 17 ACTON 92M OPALnone 7.334.3 95 18 SWARTZ 90 MRK21AAD 15AG sear h for H++H−− produ tion in 20.3 fb−1 of pp ollisions at E m = 8TeV. The limit assumes 100% bran hing ratio to the spe ied nal state. See their Fig.5 for limits for arbitrary bran hing ratios.2AAD 15AP sear h for H++H−− produ tion in 20.3 fb−1 of pp ollisions at E m = 8TeV. The limit assumes 100% bran hing ratio to the spe ied nal state.3ABDALLAH 03 sear h for H++H−− pair produ tion either followed by H++ →

τ+ τ+, or de aying outside the dete tor.4ACHARD 03F sear h for e+ e− → H++H−− with H±± → ℓ± ℓ′±. The limit holdsfor ℓ = ℓ′ = τ , and slightly dierent limits apply for other avor ombinations. The limitis valid for gℓℓ′ & 10−7.5ABBIENDI 02C sear hes for pair produ tion of H++H−−, with H±± → ℓ± ℓ± (ℓ,ℓ′= e,µ,τ). the limit holds for ℓ=ℓ′=τ , and be omes stronger for other ombinations ofleptoni nal states. To ensure the de ay within the dete tor, the limit only applies forg(H ℓℓ)& 10−7.6AAD 12AY sear h for H++H−− produ tion with 1.6 fb−1 of pp ollisions at E m =7 TeV. The limit assumes 100% bran hing ratio to the spe ied nal state.7AAD 12CQ sear h for H++H−− produ tion with 4.7 fb−1 of pp ollisions at E m =7 TeV. The limit assumes 100% bran hing ratio to the spe ied nal state. See theirTable 1 for limits assuming smaller bran hing ratios.8ABAZOV 12A sear h for H++H−− produ tion in 7.0 fb−1 of pp ollisions at E m =1.96 TeV.

9AALTONEN 11AF sear h for H++H−− produ tion in 6.1 fb−1 of pp ollisions at E m= 1.96 TeV.10ABAZOV 08V sear h for H++H−− produ tion in pp ollisions at E m= 1.96 TeV.The limit is for B(H → µµ) = 1. The limit is updated in ABAZOV 12A.11AKTAS 06A sear h for single H±± produ tion in e p ollisions at HERA. Assumingthat H++ only ouples to e+µ+ with ge µ = 0.3 (ele tromagneti strength), a limitmH++ > 141 GeV (95% CL) is derived. For the ase where H++ ouples to e τ onlythe limit is 112 GeV.12ACOSTA 05L sear h for H++H−− pair produ tion in pp ollisions. The limit is validfor gℓℓ′ < 10−8 so that the Higgs de ays outside the dete tor.13ABAZOV 04E sear h for H++H−− pair produ tion in H±± → µ±µ±. The limit isvalid for gµµ & 10−7.14ABBIENDI 03Q sear hes for single H±± via dire t produ tion in e+ e− → e∓ e∓H±±,and via t- hannel ex hange in e+ e− → e+ e−. In the dire t ase, and assumingB(H±± → ℓ± ℓ±) = 1, a 95% CL limit on hee < 0.071 is set for mH±± < 160 GeV(see Fig. 6). In the se ond ase, indire t limits on hee are set for mH±± < 2 TeV (seeFig. 8).15GORDEEV 97 sear h for muonium-antimuonium onversion and nd GMM/GF < 0.14(90% CL), where GMM is the lepton- avor violating ee tive four-fermion oupling.This limit may be onverted to mH++ > 210 GeV if the Yukawa ouplings of H++to ee and µµ are as large as the weak gauge oupling. For similar limits on muonium-antimuonium onversion, see the muon Parti le Listings.16ACTON 92M limit assumes H±± → ℓ± ℓ± or H±± does not de ay in the dete tor.Thus the region gℓℓ ≈ 10−7 is not ex luded.17ACTON 92M from Z <40 MeV.18 SWARTZ 90 assume H±± → ℓ± ℓ± (any avor). The limits are valid for the Higgs-lepton oupling g(H ℓℓ) & 7.4 × 10−7/[mH/GeV1/2. The limits improve somewhatfor e e and µµ de ay modes.H± and H±± REFERENCESH± and H±± REFERENCESH± and H±± REFERENCESH± and H±± REFERENCESAAD 15AF JHEP 1503 088 G. Aad et al. (ATLAS Collab.)AAD 15AG JHEP 1503 041 G. Aad et al. (ATLAS Collab.)AAD 15AP JHEP 1508 138 G. Aad et al. (ATLAS Collab.)AAD 15M PRL 114 231801 G. Aad et al. (ATLAS Collab.)KANEMURA 15 PTEP 2015 051B02 S. Kanemura et al.KHACHATRY... 15AX JHEP 1511 018 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15BF JHEP 1512 178 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15D PRL 114 051801 V. Kha hatryan et al. (CMS Collab.)AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.)AALTONEN 14A PR D89 091101 T. Aaltonen et al. (CDF Collab.)KANEMURA 14 PR D90 115018 S. Kanemura et al.AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.)AAD 13V JHEP 1303 076 G. Aad et al. (ATLAS Collab.)AAD 13Y PR D87 052002 G. Aad et al. (ATLAS Collab.)LEP 13 EPJ C73 2463 LEP Collabs (ALEPH, DELPHI, L3, OPAL, LEP)AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.)AAD 12BH JHEP 1206 039 G. Aad et al. (ATLAS Collab.)AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.)AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.)ABAZOV 12A PRL 108 021801 V.M. Abazov et al. (D0 Collab.)ABBIENDI 12 EPJ C72 2076 G. Abbiendi et al. (OPAL Collab.)CHATRCHYAN 12AA JHEP 1207 143 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12AU EPJ C72 2189 S. Chatr hyan et al. (CMS Collab.)AALTONEN 11AF PRL 107 181801 T. Aaltonen et al. (CDF Collab.)AALTONEN 11P PRL 107 031801 T. Aaltonen et al. (CDF Collab.)DESCHAMPS 10 PR D82 073012 O. Des hamps et al. (CLER, ORSAY, LAPP)AALTONEN 09AJ PRL 103 101803 T. Aaltonen et al. (CDF Collab.)ABAZOV 09AC PR D80 051107 V.M. Abazov et al. (D0 Collab.)ABAZOV 09AG PR D80 071102 V.M. Abazov et al. (D0 Collab.)ABAZOV 09AI PL B682 278 V.M. Abazov et al. (D0 Collab.)ABAZOV 09P PRL 102 191802 V.M. Abazov et al. (D0 Collab.)AALTONEN 08AA PRL 101 121801 T. Aaltonen et al. (CDF Collab.)ABAZOV 08V PRL 101 071803 V.M. Abazov et al. (D0 Collab.)ABULENCIA 06E PRL 96 042003 A. Abulen ia et al. (CDF Collab.)AKTAS 06A PL B638 432 A. Aktas et al. (H1 Collab.)ACOSTA 05L PRL 95 071801 D. A osta et al. (CDF Collab.)ABAZOV 04E PRL 93 141801 V.M. Abazov et al. (D0 Collab.)ABBIENDI 04 EPJ C32 453 G. Abbiendi et al. (OPAL Collab.)ABDALLAH 04I EPJ C34 399 J. Abdallah et al. (DELPHI Collab.)ABBIENDI 03 PL B551 35 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 03Q PL B577 93 G. Abbiendi et al. (OPAL Collab.)ABDALLAH 03 PL B552 127 J. Abdallah et al. (DELPHI Collab.)ACHARD 03E PL B575 208 P. A hard et al. (L3 Collab.)ACHARD 03F PL B576 18 P. A hard et al. (L3 Collab.)ABAZOV 02B PRL 88 151803 V.M. Abazov et al. (D0 Collab.)ABBIENDI 02C PL B526 221 G. Abbiendi et al. (OPAL Collab.)BORZUMATI 02 PL B549 170 F.M. Borzumati, A. DjouadiHEISTER 02P PL B543 1 A. Heister et al. (ALEPH Collab.)ABBIENDI 01Q PL B520 1 G. Abbiendi et al. (OPAL Collab.)BARATE 01E EPJ C19 213 R. Barate et al. (ALEPH Collab.)GAMBINO 01 NP B611 338 P. Gambino, M. MisiakAFFOLDER 00I PR D62 012004 T. Aolder et al. (CDF Collab.)PDG 00 EPJ C15 1 D.E. Groom et al. (PDG Collab.)ABBIENDI 99E EPJ C7 407 G. Abbiendi et al. (OPAL Collab.)ABBOTT 99E PRL 82 4975 B. Abbott et al. (D0 Collab.)ACKERSTAFF 99D EPJ C8 3 K. A kersta et al. (OPAL Collab.)ABE 97L PRL 79 357 F. Abe et al. (CDF Collab.)ACCIARRI 97F PL B396 327 M. A iarri et al. (L3 Collab.)AMMAR 97B PRL 78 4686 R. Ammar et al. (CLEO Collab.)COARASA 97 PL B406 337 J.A. Coarasa, R.A. Jimenez, J. SolaGORDEEV 97 PAN 60 1164 V.A. Gordeev et al. (PNPI)Translated from YAF 60 1291.GUCHAIT 97 PR D55 7263 M. Gu hait, D.P. Roy (TATA)MANGANO 97 PL B410 299 M. Mangano, S. SlabospitskySTAHL 97 ZPHY C74 73 A. Stahl, H. Voss (BONN)PDG 96 PR D54 1 R. M. Barnett et al. (PDG Collab.)ALAM 95 PRL 74 2885 M.S. Alam et al. (CLEO Collab.)ASAKA 95 PL B345 36 T. Asaka, K.I. Hikasa (TOHOK)BUSKULIC 95 PL B343 444 D. Buskuli et al. (ALEPH Collab.)GROSSMAN 95B PL B357 630 Y. Grossman, H. Haber, Y. NirGROSSMAN 94 PL B332 373 Y. Grossman, Z. LigetiSTAHL 94 PL B324 121 A. Stahl (BONN)ACTON 92M PL B295 347 P.D. A ton et al. (OPAL Collab.)SWARTZ 90 PRL 64 2877 M.L. Swartz et al. (Mark II Collab.)

Page 55: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

665665665665See key on page 601 Gauge&Higgs Boson Parti le ListingsNew Heavy BosonsNew Heavy Bosons(W ′, Z ′, leptoquarks, et .),Sear hes forWe list here various limits on harged and neutral heavy ve torbosons (other than W 's and Z 's), heavy s alar bosons (other thanHiggs bosons), ve tor or s alar leptoquarks, and axigluons. Thelatest unpublished results are des ribed in \W ′ Sear hes" and \Z ′Sear hes" reviews. For re ent sear hes on s alar bosons whi h ouldbe identied as Higgs bosons, see the listings in the Higgs boson se -tion.CONTENTS:CONTENTS:CONTENTS:CONTENTS:Mass Limits for W ′ (Heavy Charged Ve tor Boson Other Than W ) in Hadron ColliderExperimentsWR (Right-Handed W Boson) Mass LimitsLimit on WL-WR Mixing Angle ζMass Limits for Z ′ (Heavy Neutral Ve tor Boson Other Than Z)− Limits for Z ′SM− Limits for ZLR− Limits for Zχ− Limits for Zψ− Limits for Zη

− Limits for other Z ′Indire t Constraints on Kaluza-Klein Gauge BosonsMass Limits for Leptoquarks from Pair Produ tionMass Limits for Leptoquarks from Single Produ tionIndire t Limits for LeptoquarksMass Limits for DiquarksMass Limits for gA (axigluon) and Other Color-O tet Gauge BosonsMass Limits for Color-O tet S alar BosonsX0 (Heavy Boson) Sear hes in Z De aysMass Limits for a Heavy Neutral Boson Coupling to e+ e−Sear h for X0 Resonan e in e+ e− CollisionsSear h for X0 Resonan e in e p CollisionsSear h for X0 Resonan e in Two-Photon Pro essSear h for X0 Resonan e in e+ e− → X0 γSear h for X0 Resonan e in Z → f f X0Sear h for X0 Resonan e in W X0 nal stateSear h for X0 Resonan e in Quarkonium De aysW ′-BOSON SEARCHES

Revised March 2016 by M.-C. Chen (UC Irvine), B.A. Dobrescu(Fermilab) and S. Willocq (U Massachusetts).

The W ′ boson is a massive hypothetical particle of spin 1

and electric charge ±1, which is a color singlet and is predicted

in various extensions of the Standard Model (SM).

W ′ couplings to quarks and leptons. The Lagrangian terms

describing couplings of a W ′+ boson to fermions are given by

W ′+µ√2

[ui

(CR

qijPR+CL

qijPL

)γµdj+νi

(CR

ℓijPR+CL

ℓijPL

)γµej

].

(1)

Here u, d, ν and e are the SM fermions in the mass eigenstate

basis, i, j = 1, 2, 3 label the fermion generation, and PR,L =

(1±γ5)/2. The coefficients CLqij

, CRqij

, CLℓij

, and CRℓij

are complex

dimensionless parameters. If CRℓij

6= 0, then the ith generation

includes a right-handed neutrino. Using this notation, the SM

W couplings are CLq = gVCKM, CL

ℓ = g ≈ 0.63 and CRq = CR

ℓ = 0.

Unitarity considerations imply that the W ′ boson is asso-

ciated with a spontaneously-broken gauge symmetry. This is

true even when it is a composite particle (e.g., ρ±-like bound

states [1]) if its mass is much smaller than the compositeness

scale, or a Kaluza-Klein mode in theories where the W bo-

son propagates in extra dimensions [2]. The simplest extension

of the electroweak gauge group that includes a W ′ boson is

SU(2)1 × SU(2)2 × U(1), but larger groups are encountered

in some theories. A generic property of these gauge theories is

that they also include a Z ′ boson [3] ; whether the W ′ boson

can be discovered first depends on theoretical and experimental

details.

A tree-level mass mixing may be induced between the

electrically-charged gauge bosons. Upon diagonalization of their

mass matrix, the W − Z mass ratio and the couplings of

the observed W boson are shifted from the SM values. Their

measurements imply that the mixing angle between the gauge

eigenstates, θ+, must be smaller than about 10−2. In certain

theories the mixing is negligible (e.g. due to a new parity [4]),

even when the W ′ mass is near the electroweak scale.

The W ′ coupling to WZ is fixed by Lorentz and gauge

invariances, and to leading order in θ+

is given by [5]

g θ+i

cos θW

[W ′+

µ

(W−

ν Zνµ + ZνW−µν

)+ ZνW−µW ′+

νµ

]+H.c., (2)

where W µν ≡ ∂µW ν − ∂νW µ, etc. The θW dependence shown

here corrects the one given in [6], which has been referred to as

the Extended Gauge Model by the experimental collaborations.

The W ′ coupling to Wh0, where h0 is the SM Higgs boson, is

−ξh gW ′

MW W ′+µ W µ−h0 + H.c., (3)

where gW ′

is the gauge coupling of the W ′ boson, and the

coefficient ξh satisfies ξh ≤ 1 in simple Higgs sectors [5].

In models based on the “left-right symmetric” gauge

group [7], SU(2)L × SU(2)R × U(1)B−L, the SM fermions that

couple to the W boson transform as doublets under SU(2)Lwhile the other fermions transform as doublets under SU(2)R.

Consequently, the W ′ boson couples primarily to right-handed

fermions; its coupling to left-handed fermions arises due to the

θ+ mixing, so that CLq is proportional to the CKM matrix and

its elements are much smaller than the diagonal elements of CRq .

Generically, CRq does not need to be proportional to VCKM.

There are many other models based on the SU(2)1 ×SU(2)2 × U(1) gauge symmetry. In the “alternate left-right”

model [8], all the couplings shown in Eq. (1) vanish, but there

are some new fermions such that the W ′ boson couples to pairs

involving a SM fermion and a new fermion. In the “ununified

SM” [9], the left-handed quarks are doublets under one SU(2),

and the left-handed leptons are doublets under a different

SU(2), leading to a mostly leptophobic W ′ boson: CLℓij

≪ CLqij

and CRℓij

= CRqij

= 0. Fermions of different generations may also

transform as doublets under different SU(2) gauge groups [10].

In particular, the couplings to third generation quarks may be

enhanced [11].

It is also possible that the W ′ couplings to SM fermions are

highly suppressed. For example, if the quarks and leptons are

singlets under one SU(2) [12], then the couplings are propor-

tional to the tiny mixing angle θ+. Similar suppressions may

arise if some vectorlike fermions mix with the SM fermions [13].

Gauge groups that embed the electroweak symmetry, such

as SU(3)W ×U(1) or SU(4)W ×U(1), also include one or more

W ′ bosons [14].

Page 56: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

666666666666Gauge&Higgs Boson Parti le ListingsNew Heavy BosonsCollider searches. At LEP-II, W ′ bosons could have been

produced in pairs via their photon and Z couplings. The produc-

tion cross section is large enough to rule out MW ′ <√

s/2 ≈ 105

GeV for most patterns of decay modes.

At hadron colliders, W ′ bosons can be detected through

resonant pair production of fermions or electroweak bosons.

Assuming that the W ′ width is much smaller than its mass,

the contribution of the s-channel W ′ boson exchange to the

total rate for pp → f f ′X , where f and f ′ are fermions with

an f f ′ electric charge of ±1, and X is any final state, may be

approximated by the branching fraction B(W ′ → f f ′) times

the production cross section

σ(pp→W ′X

)≃ π

48 s

i,j

[(CL

qij)2+(CR

qij)2

]wij

(M2

W ′/s, MW ′

).

(4)

The functions wij include the information about proton struc-

ture, and are given to leading order in αs by

wij(z, µ) =

∫ 1

z

dx

x

[ui(x, µ) dj

(z

x, µ

)+ ui(x, µ) dj

(z

x, µ

)], (5)

where ui(x, µ) and di(x, µ) are the parton distributions inside

the proton, at the factorization scale µ and parton momentum

fraction x, for the up- and down-type quark of the ith genera-

tion, respectively. QCD corrections to W ′ production are sizable

(they also include quark-gluon initial states), but preserve the

above factorization of couplings at next-to-leading order [15].

The most commonly studied W ′ signal consists of a high-

momentum electron or muon and large missing transverse

momentum, with the transverse mass distribution forming a

Jacobian peak with its endpoint at MW ′ (see Fig. 1e of [16]).

Given that the branching fractions for W ′ → eν and W ′ → µν

could be very different, these channels should be analyzed sep-

arately. Searches in these channels often implicitly assume that

the left-handed couplings vanish (no interference between W

and W ′), and that the right-handed neutrino is light compared

to the W ′ boson and escapes the detector. These assumptions

correspond to the following choice of parameters: CRq = gVCKM,

CRℓ = g, CL

q = CLℓ = 0, which define a model that is essentially

equivalent to the Sequential SM used in many searches. How-

ever, if a W ′ boson were discovered and the final state fermions

have left-handed helicity, then the effects of W −W ′ interference

could be observed [17], providing useful information about the

W ′ couplings.

In the eν channel, the ATLAS and CMS Collaborations

set limits on the W ′ production cross section times branching

fraction (and thus indirectly on the W ′ couplings) when MW ′

is in the 0.2 − 6 TeV range, based on 20 fb−1 of LHC data

at√

s = 8 TeV [16,18] and 2–3 fb−1 at√

s = 13 TeV [19,20],

as shown in Fig. 1. ATLAS sets the strongest mass lower limit

MW ′ > 4.0 TeV in the Sequential SM (all limits in this mini-

review are at the 95% CL). The coupling limits are much weaker

for MW ′ < 200 GeV, a range last explored with the Tevatron

at√

s = 1.8 TeV [21].

[TeV]W’m

1 2 3 4 5 6

B [p

b]σ

4−10

3−10

2−10

1−10

1

10Expected limit

σ 1±Expected

σ 2±Expected

Observed limit

SSMW’

PreliminaryATLAS-1 = 13 TeV, 3.3 fbs

νe→W’

Run-I Lim

it

Figure 1: Upper limit on σ(pp →W ′X)B(W ′→eν)from ATLAS [20], at 95% CL. The red line shows thetheoretical prediction in the Sequential SM.

In the µν channel, ATLAS and CMS set rate limits for MW ′

in the 0.2 − 6 TeV range from the same analyses as mentioned

above, with the strongest lower mass limit of 4.0 TeV set by

CMS [19] using the√

s = 13 TeV data. When combined with

the eν channel, the upper limit on the√

s = 13 TeV cross

section times branching fraction to ℓν varies between 1 and 2

fb for MW ′ between 1 and 5 TeV [19]. Only weak limits on

W ′ → µν exist for MW ′ < 200 GeV [22]. Note that masses of

the order of the electroweak scale are interesting from a theory

point of view, while lepton universality does not necessarily

apply to a W ′ boson.

A dedicated search for W ′ → τν has been performed by the

CMS Collaboration at 8 TeV [23]. Limits are set on σ · B for

MW ′ between 0.3 and 4.0 TeV. A lower mass limit of 2.7 TeV

is set in the Sequential SM.

The W ′ decay into a lepton and a right-handed neutrino,

νR, may also be followed by the νR decay through a virtual

W ′ boson into a lepton and two quark jets. The ATLAS [24]

and CMS [25] searches in the eejj and µµjj channels have

set limits on the cross section times branching fraction as a

function of the νR mass or of MW ′. These searches are typically

performed with same-charge lepton pairs that provide strong

background reduction and are motivated by models with a left-

right symmetry. However, it is also interesting to search in final

states with opposite-charge lepton pairs, as done in the CMS

analysis.

The tb channel is particularly important because a W ′

boson that couples only to right-handed fermions cannot decay

to leptons when the right-handed neutrinos are heavier than

the W ′ boson (additional motivations are provided by a W ′

boson with enhanced couplings to the third generation [11], and

by a leptophobic W ′ boson). The usual signature consists of a

leptonically-decaying W boson and two b-jets. Recent studies

have also incorporated the fully hadronic decay channel for

MW ′ ≫ mt with the use of jet substructure techniques to tag

Page 57: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

667667667667See key on page 601 Gauge&Higgs Boson Parti le ListingsNew Heavy Bosons

!"#$$!%&'()*+,

-./ 0 0./ 1 1./ 2

34*

5/6!78!9:":;!<=!4,

>00-

0

!"#!$

>0!?!@!&'(A!1-.2!BC$

DEF'G;'H!9:":;

IC$'JK'H!9:":;

!"

# #$% #$& #$' #$( )

*"

#

#$%

#$&

#$'

#$(

)

!"#$%&

'(

)

(##

+##

)###

))##

)%##

),##

)&##

)-##

)'##

).##

)(##

)+##

%###

%)##

%%##

%,##

%&##!"*!+$%&,-./0123$4!,!/15$67$4!!-89:!;1

!"#

Figure 2: Upper limits on W ′ couplings (at 95%CL) using the tb and tb final states, assumingthat the diagonal couplings are generation inde-pendent. Left panel: ATLAS [26] limit on CR

q11/g.Right panel: CMS [27] limit on MW ′ as contours inthe CR

q11/g – CLq11/g plane.

highly boosted top-jets. Upper limits on the W ′ couplings to

right- and left-handed quarks normalized to the SM W couplings

have been set by ATLAS [26] and CMS [27] at√

s = 8 TeV, as

shown in Fig. 2. Using about 2 fb−1 of data at√

s = 13 TeV in

the ℓ + jets channel, CMS [28] sets an upper limit on the W ′

production cross section times branching fraction to the ℓνbb

final state decreasing from 1.6 pb at MW ′ = 1 TeV to 35 fb

at MW ′ = 3 TeV The limit MW ′ > 2.38 TeV obtained in the

Sequential SM with a light νR increases with the νR mass. The

best limits on the couplings to right-handed quarks for MW ′ in

the 300–600 GeV range have been set by CDF with 9.5 fb−1

of pp collisions at√

s = 1.96 TeV [29]. Finally, if W ′ couplings

to left-handed quarks are large, then interference effects modify

the SM s-channel single-top production [30].

Searches for dijet resonances may be used to set limits on

W ′ → qq′. The best limits on W ′ couplings to quarks have been

set by UA2 [31] in the 140− 250 GeV mass range, by CDF [32]

in the 250 − 500 GeV range and by CMS [33] in the 500 − 750

GeV range. ATLAS and CMS provide similar coverage in the

∼ 0.75 − 7 TeV range with data collected at√

s = 8 and 13

TeV [34] with the most stringent lower W ′ mass limit in the

Sequential SM set to 2.6 TeV using 13 TeV data.

In some theories [4], the W ′ couplings to SM fermions are

suppressed by discrete symmetries. W ′ production then occurs

in pairs, through a photon or Z boson. The decay modes are

model-dependent and often involve other new particles. The

ensuing collider signals arise from cascade decays and typically

include missing transverse momentum.

Searches for WZ resonances at the LHC have focused on

the process pp → W ′ → WZ with the production mainly from

ud → W ′ assuming SM-like couplings to quarks. ATLAS and

CMS have set the strongest upper limits on the W ′WZ coupling

for MW ′ in the 0.2 − 4 TeV range with a combination of fully

leptonic, semi-leptonic and fully hadronic channels at both 8

and 13 TeV [35,36,37,38]. ATLAS has also combined the results

from all channels at 8 TeV and obtains MW ′ > 1.81 TeV in the

Sequential SM [39].

A fermiophobic W ′ boson that couples to WZ may be

produced at hadron colliders in association with a Z boson, or

via WZ fusion. This would give rise to (WZ)Z and (WZ)jj

final states, where the parentheses represent a resonance [40].

W ′ bosons have also been searched for recently in final

states with a W boson and a SM Higgs boson in the channels

W → ℓν and h0 → bb or h0 → WW by ATLAS [41,42] and

CMS [43] at√

s = 8 and 13 TeV. Cross section limits are set for

W ′ masses in the range between 0.4 and 3.0 TeV. The strongest

lower limit on the mass is set by the ATLAS 13 TeV analysis:

MW ′ > 1.49 TeV in the context of the Heavy Vector Triplet

weakly-coupled scenario A [44].

Low-energy constraints. The properties of W ′ bosons are

also constrained by measurements of processes at energies much

below MW ′. The bounds on W −W ′ mixing [45] are mostly due

to the change in W properties compared to the SM. Limits on

deviations in the ZWW couplings provide a leading constraint

for fermiophobic W ′ bosons [13].

Constraints arising from low-energy effects of W ′ exchange

are strongly model-dependent. If the W ′ couplings to quarks

are not suppressed, then box diagrams involving a W and a W ′

boson contribute to neutral meson-mixing. In the case of W ′

couplings to right-handed quarks as in the left-right symmetric

model, the limit from KL − KS mixing is severe: MW ′ > 2.9

TeV for CLq = CR

q [46]. However, if no correlation between the

W ′ and W couplings is assumed, then the limit on MW ′ may

be significantly relaxed [47].

W ′ exchange also contributes at tree level to various low-

energy processes. In particular, it would impact the measure-

ment of the Fermi constant GF in muon decay, which in

turn would change the predictions of many other electroweak

processes. A recent test of parity violation in polarized muon

decay [48] has set limits of about 600 GeV on MW ′, assuming

W ′ couplings to right-handed leptons as in left-right symmet-

ric models and a light νR. There are also W ′ contributions

to the neutron electric dipole moment, β decays, and other

processes [45].

If right-handed neutrinos have Majorana masses, then there

are tree-level contributions to neutrinoless double-beta decay,

and a limit on MW ′ versus the νR mass may be derived [49].

For νR masses below a few GeV, the W ′ boson contributes to

leptonic and semileptonic B meson decays, so that limits may

be placed on various combinations of W ′ parameters [47]. For

νR masses below ∼ 30 MeV, the most stringent constraints on

MW ′ are due to the limits on νR emission from supernovae.

References

1. M. Bando, T. Kugo, and K. Yamawaki, Phys. Rept. 164,217 (1988).

2. H.C. Cheng et al., Phys. Rev. D 64, 065007 (2001).

3. See the Section on “Z ′-boson searches” in this Review.

4. H.C. Cheng and I. Low, JHEP 0309, 051 (2003).

5. B. A. Dobrescu and Z. Liu, JHEP 1510, 118 (2015).

6. G. Altarelli, B. Mele and M. Ruiz-Altaba, Z. Phys. C 45,109 (1989) [Z. Phys. C 47, 676 (1990)].

Page 58: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

668668668668Gauge & Higgs Boson Parti le ListingsNew Heavy Bosons7. R.N. Mohapatra and J.C. Pati, Phys. Rev. D 11, 566

(1975); G. Senjanovic and R.N. Mohapatra, Phys. Rev. D12, 1502 (1975).

8. K.S. Babu, X.G. He, and E. Ma, Phys. Rev. D 36, 878(1987).

9. H. Georgi, E.E. Jenkins, and E.H. Simmons, Nucl. Phys.B 331, 541 (1990).

10. See, e.g., X. Li and E. Ma, J. Phys. G 19, 1265 (1993).

11. D.J. Muller and S. Nandi, Phys. Lett. B 383, 345 (1996).E. Malkawi, T. Tait, and C.P. Yuan, Phys. Lett. B 385,304 (1996).

12. A. Donini et al., Nucl. Phys. B 507, 51 (1997).

13. R.S. Chivukula et al., Phys. Rev. D 74, 075011 (2006).H.J. He, T. Tait, and C.P. Yuan, Phys. Rev. D 62, 011702(2000).

14. F. Pisano and V. Pleitez, Phys. Rev. D 46, 410 (1992);51, 3865 (1995).

15. Z. Sullivan, Phys. Rev. D 66, 075011 (2002).

16. G. Aad et al. [ATLAS Collab.], JHEP 1409, 037 (2014).

17. T.G. Rizzo, JHEP 0705, 037 (2007); E. Boos et al., Phys.Lett. B 655, 245 (2007).

18. V. Khachatryan et al. [CMS Collab.], Phys. Rev. D 91,092005 (2015).

19. CMS Collab., note PAS-EXO-15-006, Dec. 2015.

20. ATLAS Collab., note CONF-2015-063, Dec. 2015.

21. F. Abe et al. [CDF Collab.], Phys. Rev. Lett. 74, 2900(1995); S. Abachi et al. [D0 Collab.], Phys. Lett. B 358,405 (1995).

22. F. Abe et al. [CDF Collab.], Phys. Rev. Lett. 67, 2609(1991).

23. V. Khachatryan et al. [CMS Collab.], Phys. Lett. B 755,196 (2016).

24. G. Aad et al. [ATLAS Collab.], JHEP 1507, 162 (2015).

25. V. Khachatryan et al. [CMS Collab.], Eur. Phys. J. C 74,3149 (2014).

26. G. Aad et al. [ATLAS Collab.], Phys. Lett. B 743, 235(2015); Eur. Phys. J. C 75, 165 (2015).

27. V. Khachatryan et al. [CMS Collab.], JHEP 1602, 122(2016); JHEP 1405, 108 (2014).

28. CMS Collab., note PAS-B2G-15-004, Dec. 2015.

29. T. Aaltonen et al. [CDF Collab.], Phys. Rev. Lett. 115,061801 (2015).

30. T.M.P. Tait, C.-P. Yuan, Phys. Rev. D 63, 014018 (2000).

31. J. Alitti et al. [UA2 Collab.], Nucl. Phys. B 400, 3 (1993).

32. T. Aaltonen et al. [CDF Collab.], Phys. Rev. D 79, 112002(2009).

33. CMS Collab., note PAS-EXO-14-005, Oct. 2015.

34. G. Aad et al. [ATLAS Collab.], Phys. Lett. B 754, 302(2016); Phys. Rev. D 91, 052007 (2015); V. Khachatryanet al. [CMS Collab.], Phys. Rev. Lett. 116, 071801 (2016)Phys. Rev. D 91, 052009 (2015).

35. G. Aad et al. [ATLAS Collab.], Phys. Lett. B 737, 223(2014); Eur. Phys. J. C 75, 69 (2015); Eur. Phys. J. C 75,209 (2015) [Eur. Phys. J. C 75, 370 (2015)]; JHEP 1512,055 (2015).

36. ATLAS Collab., notes CONF-2015-068; CONF-2015-071;CONF-2015-073; CONF-2015-075, Dec. 2015.

37. V. Khachatryan et al. [CMS Collab.], JHEP 1408, 173(2014), Phys. Lett. B 740, 83 (2015).

38. CMS Collab., note PAS-EXO-15-002, Dec. 2015.

39. G. Aad et al. [ATLAS Collab.], Phys. Lett. B 755, 285(2016).

40. H.J. He et al., Phys. Rev. D 78, 031701 (2008).

41. G. Aad et al. [ATLAS Collab.], Eur. Phys. J. C 75, 263(2015).

42. ATLAS Collab., note CONF-2015-074, Dec. 2015.

43. V. Khachatryan et al. [CMS Collab.], JHEP 1602, 145(2016).

44. D. Pappadopulo et al., JHEP 1409, 060 (2014).

45. See the particle listings for W ′ in this Review.

46. Y. Zhang et al., Phys. Rev. D 76, 091301 (2007);S. Bertolini, A. Maiezza, and F. Nesti, Phys. Rev. D89, 095028 (2014).

47. P. Langacker and S.U. Sankar, Phys. Rev. D 40, 1569(1989).

48. J. F. Bueno et al. [TWIST Collab.], Phys. Rev. D 84,032005 (2011).

49. See Fig. 5 of G. Prezeau, M. Ramsey-Musolf, and P. Vogel,Phys. Rev. D 68, 034016 (2003).MASS LIMITS for W ′ (Heavy Charged Ve tor Boson Other Than W )MASS LIMITS for W ′ (Heavy Charged Ve tor Boson Other Than W )MASS LIMITS for W ′ (Heavy Charged Ve tor Boson Other Than W )MASS LIMITS for W ′ (Heavy Charged Ve tor Boson Other Than W )in Hadron Collider Experimentsin Hadron Collider Experimentsin Hadron Collider Experimentsin Hadron Collider ExperimentsCouplings ofW ′ to quarks and leptons are taken to be identi al with those of W . Thefollowing limits are obtained from pp or pp → W ′X with W ′ de aying to the modeindi ated in the omments. New de ay hannels (e.g., W ′ → W Z) are assumed tobe suppressed. The most re ent preliminary results an be found in the \W ′-bosonsear hes" review above.VALUE (GeV) CL% DOCUMENT ID TECN COMMENTnone 4001590 95 1 AAD 15AU ATLS W ′ → W Znone 15001760 95 2 AAD 15AV ATLS W ′ → t bnone 3001490 95 3 AAD 15AZ ATLS W ′ → W Znone 13001500 95 4 AAD 15CP ATLS W ′ → W Znone 5001920 95 5 AAD 15R ATLS W ′ → t bnone 8002450 95 6 AAD 15V ATLS W ′ → qq

>1470 95 7 KHACHATRY...15C CMS W ′ → W Z>3710>3710>3710>3710 95 8 KHACHATRY...15T CMS W ′ → e ν, µνnone 12001900 and20002200 95 9 KHACHATRY...15V CMS W ′ → qq>3240 95 AAD 14AI ATLS W ′ → e ν, µνnone 2001520 95 10 AAD 14S ATLS W ′ → W Znone 10001700 95 11 KHACHATRY...14 CMS W ′ → W Znone 10003010 95 12 KHACHATRY...14O CMS W ′ → N ℓ → ℓℓ j jnone 8001510 95 13 CHATRCHYAN13E CMS W ′ → t b• • • We do not use the following data for averages, ts, limits, et . • • •14 AAD 15BB ATLS W ′ → W hnone 300880 95 15 AALTONEN 15C CDF W ′ → t b16 AAD 14AT ATLS W ′ → W γ17 KHACHATRY...14A CMS W ′ → W Znone 500950 95 18 AAD 13AO ATLS W ′ → W Znone 11001680 95 AAD 13D ATLS W ′ → qqnone 10001920 95 CHATRCHYAN13A CMS W ′ → qq19 CHATRCHYAN13AJ CMS W ′ → W Z>2900 95 20 CHATRCHYAN13AQ CMS W ′ → e ν, µνnone 700940 95 21 CHATRCHYAN13U CMS W ′ → W Znone 7001130 95 22 AAD 12AV ATLS W ′ → t bnone 200760 95 23 AAD 12BB ATLS W ′ → W Z24 AAD 12CK ATLS W ′ → t q>2550 95 25 AAD 12CR ATLS W ′ → e ν, µν26 AAD 12M ATLS W ′ → N ℓ → ℓℓ j j27 AALTONEN 12N CDF W ′ → t qnone 2001143 95 23 CHATRCHYAN12AF CMS W ′ → W Z28 CHATRCHYAN12AR CMS W ′ → t q29 CHATRCHYAN12BG CMS W ′ → N ℓ → ℓℓ j j>1120 95 AALTONEN 11C CDF W ′ → e νnone 180690 95 30 ABAZOV 11H D0 W ′ → W Znone 600863 95 31 ABAZOV 11L D0 W ′ → t bnone 285516 95 32 AALTONEN 10N CDF W ′ → W Znone 280840 95 33 AALTONEN 09AC CDF W ′ → qq>1000 95 ABAZOV 08C D0 W ′ → e νnone 300800 95 ABAZOV 04C D0 W ′ → qqnone 225536 95 34 ACOSTA 03B CDF W ′ → t bnone 200480 95 35 AFFOLDER 02C CDF W ′ → W Z> 786 95 36 AFFOLDER 01I CDF W ′ → e ν, µνnone 300420 95 37 ABE 97G CDF W ′ → qq> 720 95 38 ABACHI 96C D0 W ′ → e ν

> 610 95 39 ABACHI 95E D0 W ′ → e ν, τ νnone 260600 95 40 RIZZO 93 RVUE W ′ → qq

Page 59: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

669669669669See key on page 601 Gauge & Higgs Boson Parti le ListingsNew Heavy Bosons1AAD 15AU sear h for W ′ de aying into the W Z nal state with W → qq′, Z →ℓ+ ℓ− using pp ollisions at √s = 8 TeV. The quoted limit assumes gW ′W Z /gW W Z= (MW /MW ′)2.2AAD 15AV limit is for a SM like right-handed W ′ using pp ollisions at √

s = 8 TeV.W ′ → ℓν de ay is assumed to be forbidden.3AAD 15AZ sear h for W ′ de aying into the W Z nal state with W → ℓν, Z → qqusing pp ollisions at √s = 8 TeV. The quoted limit assumes gW ′W Z /gW W Z =(MW /MW ′)2.4AAD 15CP sear h for W ′ de aying into the W Z nal state with W → qq, Z → qqusing pp ollisions at √s = 8 TeV. The quoted limit assumes gW ′W Z /gW W Z =(MW /MW ′)2.5AAD 15R limit is for a SM like right-handed W ′ using pp ollisions at √

s = 8 TeV.W ′ → ℓν de ay is assumed to be forbidden.6AAD 15V sear h for new resonan e de aying to dijets in pp ollisions at √s = 8 TeV.7KHACHATRYAN 15C sear h for W ′ de aying via W Z to fully leptoni nal statesusing pp ollisions at √s=8 TeV. The quoted limit assumes gW ′W Z /gW W Z = MWMZ/M2W ′ .8KHACHATRYAN 15T limit is for W ′ with SM-like oupling whi h interferes the SM Wboson onstru tively using pp ollisions at √s = 8 TeV. For W ′ without interferen e,the limit be omes > 3280 GeV.9KHACHATRYAN 15V sear h new resonan e de aying to dijets in pp ollisions at √s =8 TeV.10AAD 14S sear h for W ′ de aying into the W Z nal state with W → ℓν, Z → ℓℓusing pp ollisions at √

s=8 TeV. The quoted limit assumes gW ′W Z /gW W Z =(MW /MW ′)2.11KHACHATRYAN 14 sear h for W ′ de aying into W Z nal state with W → qq, Z →qq using pp ollisions at √s=8 TeV. The quoted limit assumes gW ′W Z /gW W Z =(MW /MW ′)2.12KHACHATRYAN 14O sear h for right-handed WR in pp ollisions at √s = 8 TeV. WRis assumed to de ay into ℓ and hypotheti al heavy neutrino N, with N de aying into ℓ j j.The quoted limit is for MνeR= MνµR = MWR /2. See their Fig. 3 and Fig. 5 forex luded regions in the MWR −Mν plane.13CHATRCHYAN 13E limit is for W ′ with SM-like oupling whi h intereferes with theSM W boson using pp ollisions at √

s=7 TeV. For W ′ with right-handed oupling,the bound be omes >1850 GeV (>1910 GeV) if W ′ de ays to both leptons and quarks(only to quarks). If both left- and right-handed ouplings are present, the limit be omes>1640 GeV.14AAD 15BB sear h for W ′ de aying into W h with W → ℓν, h → bb. See their Fig. 4for the ex lusion limits in the heavy ve tor triplet ben hmark model parameter spa e.15AALTONEN 15C limit is for a SM-like right-handed W ′ assuming W ′ → ℓν de ays areforbidden, using pp ollisions at √s=1.96 TeV. See their Fig. 3 for limit on gW ′/gW .16AAD 14AT sear h for a narrow harged ve tor boson de aying to W γ. See their Fig. 3afor the ex lusion limit in mW ′ − σB plane.17KHACHATRYAN 14A sear h for W ′ de aying into the W Z nal state with W → ℓν,Z → qq, or W → qq, Z → ℓℓ. pp ollisions data at √

s=8 TeV are used forthe sear h. See their Fig. 13 for the ex lusion limit on the number of events in themass−width plane.18AAD 13AO sear h for W ′ de aying into the W Z nal state with W → ℓν, Z →2j using pp ollisions at √s=7 TeV. The quoted limit assumes gW ′W Z /gW W Z =(MW /MW ′)2.19CHATRCHYAN 13AJ sear h for resonan es de aying to W Z pair, using the hadroni de ay modes of W and Z , in pp ollisions at √s=7 TeV. See their Fig. 7 for the limiton the ross se tion.20CHATRCHYAN 13AQ limit is for W ′ with SM-like oupling whi h interferes with the SMW boson using pp ollisions at √s=7 TeV.21CHATRCHYAN 13U sear h for W ′ de aying to the W Z nal state, with W de ayinginto jets, in pp ollisions at √s=7 TeV. The quoted limit assumes gW ′W Z /gW W Z= (MW /MW ′)2.22The AAD 12AV quoted limit is for a SM-like right-handed W ′ using pp ollisions at√

s=7 TeV. W ′ → ℓν de ay is assumed to be forbidden.23AAD 12BB use pp ollisions data at √s=7 TeV. The quoted limit assumesgW ′W Z /gW W Z = (MW /MW ′)2.24AAD 12CK sear h for pp → tW ′, W ′ → t q events in pp ollisions. See their Fig. 5for the limit on σ · B.25AAD 12CR use pp ollisions at √s=7 TeV.26AAD 12M sear h for right-handed WR in pp ollisions at √s = 7 TeV. WR is assumedto de ay into ℓ and hypotheti al heavy neutrino N, with N de aying into ℓ j j. See theirFig. 4 for the limit in the mN−mW ′ plane.27AALTONEN 12N sear h for pp → tW ′, W ′ → t d events in pp ollisions. See theirFig. 3 for the limit on σ · B.28CHATRCHYAN 12AR sear h for pp → tW ′, W ′ → t d events in pp ollisions. Seetheir Fig. 2 for the limit on σ · B.29CHATRCHYAN 12BG sear h for right-handed WR in pp ollisions √

s = 7 TeV. WR isassumed to de ay into ℓ and hypotheti al heavy neutrino N, with N de aying into ℓ j j.See their Fig. 3 for the limit in the mN−mW ′ plane.30ABAZOV 11H use data from pp ollisions at √s=1.96 TeV. The quoted limit is obtainedassumingW ′W Z oupling strength is the same as the ordinaryWW Z oupling strengthin the Standard Model.31ABAZOV 11L limit is for W ′ with SM-like oupling whi h interferes with the SM Wboson, using pp ollisions at √s=1.96 TeV. For W ′ with right-handed oupling, thebound be omes >885 GeV (>890 GeV) if W ′ de ays to both leptons and quarks (onlyto quarks). If both left- and right-handed ouplings present, the limit be omes >916GeV.32AALTONEN 10N use pp ollision data at √

s=1.96 TeV. The quoted limit assumesgW ′W Z /gW W Z = (MW /MW ′)2. See their Fig. 4 for limits in mass- oupling plane.

33AALTONEN 09AC sear h for new parti le de aying to dijets using pp ollisions at√s=1.96 TeV.34The ACOSTA 03B quoted limit is for MW ′ ≫ MνR , using pp ollisions at √s=1.8 TeV.For MW ′ <MνR , MW ′ between 225 and 566 GeV is ex luded.35The quoted limit is obtained assuming W ′W Z oupling strength is the same as theordinary WW Z oupling strength in the Standard Model, using pp ollisions at √s=1.8TeV. See their Fig. 2 for the limits on the produ tion ross se tions as a fun tion of theW ′ width.36AFFOLDER 01I ombine a new bound on W ′ → e ν of 754 GeV, using pp ollisions at√s=1.8 TeV, with the bound of ABE 00 on W ′ → µν to obtain quoted bound.37ABE 97G sear h for new parti le de aying to dijets using pp ollisions at √s=1.8 TeV.38For bounds on WR with nonzero right-handed mass, see Fig. 5 from ABACHI 96C.39ABACHI 95E assume that the de ay W ′ → W Z is suppressed and that the neutrinofrom W ′ de ay is stable and has a mass signi antly less mW ′.40RIZZO 93 analyses CDF limit on possible two-jet resonan es. The limit is sensitive tothe in lusion of the assumed K fa tor.WR (Right-Handed W Boson) MASS LIMITSWR (Right-Handed W Boson) MASS LIMITSWR (Right-Handed W Boson) MASS LIMITSWR (Right-Handed W Boson) MASS LIMITSAssuming a light right-handed neutrino, ex ept for BEALL 82, LANGACKER 89B,and COLANGELO 91. gR = gL assumed. [Limits in the se tion MASS LIMITS forW ′ below are also valid for WR if mνR ≪ mWR . Some limits assume manifestleft-right symmetry, i.e., the equality of left- and right Cabibbo-Kobayashi-Maskawamatri es. For a omprehensive review, see LANGACKER 89B. Limits on the WL-WRmixing angle ζ are found in the next se tion. Values in bra kets are from osmologi aland astrophysi al onsiderations and assume a light right-handed neutrino.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

> 592 90 1 BUENO 11 TWST µ de ay> 715> 715> 715> 715 90 2 CZAKON 99 RVUE Ele troweak• • • We do not use the following data for averages, ts, limits, et . • • •> 235 90 3 PRIEELS 14 PIE3 µ de ay> 245 90 4 WAUTERS 10 CNTR 60Co β de ay>2500 5 ZHANG 08 THEO mK0L−mK0S> 180 90 6 MELCONIAN 07 CNTR 37K β+ de ay> 290.7 90 7 SCHUMANN 07 CNTR Polarized neutron de ay[> 3300 95 8 CYBURT 05 COSM Nu leosynthesis; light νR> 310 90 9 THOMAS 01 CNTR β+ de ay> 137 95 10 ACKERSTAFF 99D OPAL τ de ay>1400 68 11 BARENBOIM 98 RVUE Ele troweak, Z -Z ′ mixing> 549 68 12 BARENBOIM 97 RVUE µ de ay> 220 95 13 STAHL 97 RVUE τ de ay> 220 90 14 ALLET 96 CNTR β+ de ay> 281 90 15 KUZNETSOV 95 CNTR Polarized neutron de ay> 282 90 16 KUZNETSOV 94B CNTR Polarized neutron de ay> 439 90 17 BHATTACH... 93 RVUE Z -Z ′ mixing> 250 90 18 SEVERIJNS 93 CNTR β+ de ay19 IMAZATO 92 CNTR K+ de ay> 475 90 20 POLAK 92B RVUE µ de ay> 240 90 21 AQUINO 91 RVUE Neutron de ay> 496 90 21 AQUINO 91 RVUE Neutron and muon de ay> 700 22 COLANGELO 91 THEO mK0L − mK0S> 477 90 23 POLAK 91 RVUE µ de ay[none 54023000 24 BARBIERI 89B ASTR SN 1987A; light νR> 300 90 25 LANGACKER 89B RVUE General> 160 90 26 BALKE 88 CNTR µ → e ν ν

> 406 90 27 JODIDIO 86 ELEC Any ζ

> 482 90 27 JODIDIO 86 ELEC ζ = 0> 800 MOHAPATRA 86 RVUE SU(2)L×SU(2)R×U(1)> 400 95 28 STOKER 85 ELEC Any ζ

> 475 95 28 STOKER 85 ELEC ζ <0.04129 BERGSMA 83 CHRM νµ e → µνe> 380 90 30 CARR 83 ELEC µ+ de ay>1600 31 BEALL 82 THEO mK0L − mK0S1The quoted limit is for manifest left-right symmetri model.2CZAKON 99 perform a simultaneous t to harged and neutral se tors.3PRIEELS 14 limit is from µ+ → e+ ν ν de ay parameter ξ′′, whi h is determined bythe positron polarization measurement.4WAUTERS 10 limit is from a measurement of the asymmetry parameter of polarized60Co β de ays. The listed limit assumes no mixing.5ZHANG 08 limit uses a latti e QCD al ulation of the relevant hadroni matrix elements,while BEALL 82 limit used the va uum saturation approximation.6MELCONIAN 07 measure the neutrino angular asymmetry in β+-de ays of polarized37K, stored in a magneto-opti al trap. Result is onsistent with SM predi tion and doesnot onstrain the WL−WR mixing angle appre iably.7 SCHUMANN 07 limit is from measurements of the asymmetry ⟨

~pν · σn⟩ in the β de ayof polarized neutrons. Zero mixing is assumed.8CYBURT 05 limit follows by requiring that three light νR 's de ouple when Tdec > 140MeV. For dierent Tdec, the bound be omes MWR > 3.3 TeV (Tdec / 140 MeV)3/4.9THOMAS 01 limit is from measurement of β+ polarization in de ay of polarized 12N.The listed limit assumes no mixing.10ACKERSTAFF 99D limit is from τ de ay parameters. Limit in rease to 145 GeV for zeromixing.11BARENBOIM 98 assumes minimal left-right model with Higgs of SU(2)R in SU(2)Ldoublet. For Higgs in SU(2)L triplet, mWR >1100 GeV. Bound al ulated from ee tof orresponding ZLR on ele troweak data through ZZLR mixing.

Page 60: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

670670670670Gauge&Higgs Boson Parti le ListingsNew Heavy Bosons12The quoted limit is from µ de ay parameters. BARENBOIM 97 also evaluate limit fromKL-KS mass dieren e.13 STAHL 97 limit is from t to τ -de ay parameters.14ALLET 96 measured polarization-asymmetry orrelation in 12Nβ+ de ay. The listedlimit assumes zero L-R mixing.15KUZNETSOV 95 limit is from measurements of the asymmetry ⟨~pν ·σn⟩ in the β de ayof polarized neutrons. Zero mixing assumed. See also KUZNETSOV 94B.16KUZNETSOV 94B limit is from measurements of the asymmetry ⟨~pν ·σn⟩ in the β de ayof polarized neutrons. Zero mixing assumed.17BHATTACHARYYA 93 uses Z -Z ′ mixing limit from LEP '90 data, assuming a spe i Higgs se tor of SU(2)L×SU(2)R×U(1) gauge model. The limit is for mt=200 GeV andslightly improves for smaller mt .18 SEVERIJNS 93 measured polarization-asymmetry orrelation in 107In β+ de ay. Thelisted limit assumes zero L-R mixing. Value quoted here is from SEVERIJNS 94 erratum.19 IMAZATO 92 measure positron asymmetry in K+ → µ+ νµ de ay and obtain

ξPµ > 0.990 (90% CL). If WR ouples to u s with full weak strength (VRus=1), theresult orresponds to mWR >653 GeV. See their Fig. 4 for mWR limits for general∣∣VRus ∣∣2=1−∣∣VRud ∣∣2.20POLAK 92B limit is from t to muon de ay parameters and is essentially determined byJODIDIO 86 data assuming ζ=0. Supersedes POLAK 91.21AQUINO 91 limits obtained from neutron lifetime and asymmetries together with uni-tarity of the CKM matrix. Manifest left-right symmetry assumed. Stronger of the twolimits also in ludes muon de ay results.22COLANGELO 91 limit uses hadroni matrix elements evaluated by QCD sum rule andis less restri tive than BEALL 82 limit whi h uses va uum saturation approximation.Manifest left-right symmetry assumed.23POLAK 91 limit is from t to muon de ay parameters and is essentially determined byJODIDIO 86 data assuming ζ=0. Superseded by POLAK 92B.24BARBIERI 89B limit holds for mνR ≤ 10 MeV.25 LANGACKER 89B limit is for any νR mass (either Dira or Majorana) and for a general lass of right-handed quark mixing matri es.26BALKE 88 limit is for mνeR = 0 and mνµR ≤ 50 MeV. Limits ome from pre isemeasurements of the muon de ay asymmetry as a fun tion of the positron energy.27 JODIDIO 86 is the same TRIUMF experiment as STOKER 85 (and CARR 83); how-ever, it uses a dierent te hnique. The results given here are ombined results of thetwo te hniques. The te hnique here involves pre ise measurement of the end-point e+spe trum in the de ay of the highly polarized µ+.28STOKER 85 is same TRIUMF experiment as CARR 83. Here they measure the de ay e+spe trum asymmetry above 46 MeV/ using a muon-spin-rotation te hnique. Assumeda light right-handed neutrino. Quoted limits are from ombining with CARR 83.29BERGSMA 83 set limit mW2/mW1 >1.9 at CL = 90%.30CARR 83 is TRIUMF experiment with a highly polarized µ+ beam. Looked for deviationfrom V−A at the high momentum end of the de ay e+ energy spe trum. Limit fromprevious world-average muon polarization parameter is mWR >240 GeV. Assumes alight right-handed neutrino.31BEALL 82 limit is obtained assuming thatWR ontribution to K0LK0S mass dieren e issmaller than the standard one, negle ting the top quark ontributions. Manifest left-rightsymmetry assumed.Limit on WL-WR Mixing Angle ζLimit on WL-WR Mixing Angle ζLimit on WL-WR Mixing Angle ζLimit on WL-WR Mixing Angle ζLighter mass eigenstate W1 = WL osζ −WRsinζ. Light νR assumed unless noted.Values in bra kets are from osmologi al and astrophysi al onsiderations.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •−0.020 to 0.017 90 BUENO 11 TWST µ → e ν ν

< 0.022 90 MACDONALD 08 TWST µ → e ν ν

< 0.12 95 1 ACKERSTAFF 99D OPAL τ de ay< 0.013 90 2 CZAKON 99 RVUE Ele troweak< 0.0333 3 BARENBOIM 97 RVUE µ de ay< 0.04 90 4 MISHRA 92 CCFR νN s attering−0.0006 to 0.0028 90 5 AQUINO 91 RVUE[none 0.000010.02 6 BARBIERI 89B ASTR SN 1987A

< 0.040 90 7 JODIDIO 86 ELEC µ de ay−0.056 to 0.040 90 7 JODIDIO 86 ELEC µ de ay1ACKERSTAFF 99D limit is from τ de ay parameters.2CZAKON 99 perform a simultaneous t to harged and neutral se tors.3The quoted limit is from µ de ay parameters. BARENBOIM 97 also evaluate limit fromKL-KS mass dieren e.4MISHRA 92 limit is from the absen e of extra large-x, large-y νµN → νµX events atTevatron, assuming left-handed ν and right-handed ν in the neutrino beam. The resultgives ζ2(1−2m2W1/m2W2)< 0.0015. The limit is independent of νR mass.5AQUINO 91 limits obtained from neutron lifetime and asymmetries together with uni-tarity of the CKM matrix. Manifest left-right asymmetry is assumed.6BARBIERI 89B limit holds for mνR ≤ 10 MeV.7 First JODIDIO 86 result assumes mWR=∞, se ond is for un onstrained mWR .

Z ′-BOSON SEARCHES

Revised Jan. 2016 by M.-C. Chen (UC Irvine), B.A. Dobrescu(Fermilab) and S. Willocq (Univ. of Massachusetts).

The Z ′ boson is a massive, electrically-neutral and color-

singlet hypothetical particle of spin 1. This particle is predicted

in many extensions of the Standard Model (SM) and has been

the object of extensive phenomenological studies [1].

Z ′ boson couplings to quarks and leptons. The couplings

of a Z ′ boson to the first-generation fermions are given by

Z ′

µ (gLu uLγµuL + gLd dLγµdL + gRu uRγµuR + gRd dRγµdR

+ gLν νLγµνL + gLe eLγµeL + gRe eRγµeR

), (1)

where u, d, ν and e are the quark and lepton fields in the

mass eigenstate basis, and the coefficients gLu, gLd, gRu, gRd, gLν,gLe, gRe are real dimensionless parameters. If the Z ′ couplings

to quarks and leptons are generation-independent, then these

seven parameters describe the couplings of the Z ′ boson to

all SM fermions. More generally, however, the Z ′ couplings

to fermions are generation-dependent, in which case Eq. (1)

may be written with generation indices i, j = 1, 2, 3 labeling

the quark and lepton fields, and with the seven coefficients

promoted to 3 × 3 Hermitian matrices (e.g., gLeij eiLγµej

L, where

e2L is the left-handed muon, etc.).

These parameters describing the Z ′ boson interactions with

quarks and leptons are subject to some theoretical constraints.

Quantum field theories that include a heavy spin-1 particle

are well behaved at high energies only if that particle is a

gauge boson associated with a spontaneously broken gauge

symmetry. Quantum effects preserve the gauge symmetry only

if the couplings of the gauge boson to fermions satisfy anomaly

cancellation conditions. Furthermore, the fermion charges under

the new gauge symmetry are constrained by the requirement

that the quarks and leptons get masses from gauge-invariant

interactions with Higgs fields.

The relation between the couplings displayed in Eq. (1)

and the gauge charges zLfi and zRfi of the fermions f = u, d, ν, e

involves the unitary 3 × 3 matrices VLf and VR

f that transform

the gauge eigenstate fermions f iL and f iR , respectively, into the

mass eigenstates. The Z ′ couplings are also modified if the new

gauge boson in the gauge eigenstate basis (Z ′µ) has a kinetic

mixing (−χ/2)BµνZ ′µν with the hypercharge gauge boson Bµ

(χ is a dimensionless parameter), or a mass mixing δM2 ZµZ ′µ

with the linear combination (Zµ) of neutral bosons that couples

as the SM Z boson [2]. Since both the kinetic and mass mixings

shift the mass and couplings of the Z boson, electroweak

measurements impose upper limits on χ and δM2/(M2Z′ −M2

Z)

of the order of 10−3 [3]. Keeping only linear terms in these two

small quantities, the couplings of the mass-eigenstate Z ′ boson

are given by

gLf ij= gzV

Lfii′ z

Lf i′

(VL

f

)†i′j

+e

cW (sWχM2

Z′ + δM2

2sW (M2

Z′−M2Z

)σ3f − ǫ Qf

),

gRf ij= gzV

Rfii′ z

Rfi′

(VR

f

)†i′j

− e

cWǫ Qf , (2)

where gz is the new gauge coupling, Qf is the electric charge of

f , e is the electromagnetic gauge coupling, sW and cW are the

Page 61: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

671671671671See key on page 601 Gauge&Higgs Boson Parti le ListingsNew Heavy BosonsTable 1: Examples of generation- indepen-dent U(1)′ charges for quarks and leptons.The parameter x is an arbitrary rational num-ber. Anomaly cancellation requires certain newfermions [5].

fermion U(1)B−xL U(1)10+x5 U(1)d−xu U(1)q+xu

(uL, dL) 1/3 1/3 0 1/3

uR 1/3 −1/3 −x/3 x/3

dR 1/3 −x/3 1/3 (2 − x)/3

(νL, eL) −x x/3 (−1 + x)/3 −1

eR −x −1/3 x/3 −(2 + x)/3

sine and cosine of the weak mixing angle, σ3f = +1 for f = u, ν

and σ3f = −1 for f = d, e, and

ǫ =χ

(M2

Z′ − c2WM2

Z

)+ sW δM2

M2Z′ − M2

Z

. (3)

The interaction of the Z ′ boson with a pair of W bosons

has the form(i(W−

µ Z ′

ν−W−

ν Z ′

µ)∂µW+ν+ H.c.)

+ i(W+

µ W−

ν −W+ν W−

µ

)∂µZ ′ν

(4)

with a coefficient of order M2W/M2

Z′ [4]. The Z ′ also couples

to one SM Higgs boson and one Z boson, Z ′µZµ h0, with a

coefficient of order MZ .

U(1) gauge groups. A simple origin of a Z ′ boson is a new

U(1)′ gauge symmetry. In that case, the matricial equalities

zLu = zLd and zLν = zLe are required by the SM SU(2)W gauge

symmetry. Given that the U(1)′ interaction is not asymptot-

ically free, the theory may be well-behaved at high energies

(e.g., by embedding U(1)′ in a non-Abelian gauge group) only

if the charges are commensurate numbers, i.e. any ratio of

charges is a rational number. Satisfying the anomaly cancella-

tion conditions (which include an equation cubic in charges)

with rational numbers is highly nontrivial and in general new

fermions charged under U(1)′ are necessary.

Consider first generation-independent couplings (the Vf

matrices then disappear from Eq. (2)) and neglect the Z − Z ′

mixing, so that there are five commensurate couplings: gLq, gRu,

gRd, gLl , gRe . Four sets of charges are displayed in Table 1, each of

them spanned by a free parameter x[5]. The first set, labelled

B − xL, has charges proportional to the baryon number minus

x times the lepton number. These charges allow all SM Yukawa

couplings to a Higgs doublet which is neutral under U(1)B−xL,

so that there is no tree-level Z − Z ′ mixing. For x = 1 one

recovers the U(1)B−L group, which is non-anomalous in the

presence of one “right-handed neutrino” (a chiral fermion that

is a singlet under the SM gauge group) per generation. For

x 6= 1, it is necessary to include some fermions that are vector-

like (i.e. their mass terms are gauge invariant) with respect

to the electroweak gauge group and chiral with respect to

U(1)B−xL. In the particular cases x = 0 or x ≫ 1, the Z ′ is

leptophobic or quark-phobic, respectively.

The second set, U(1)10+x5, has charges that commute

with the representations of the SU(5) grand unified group.

Here x is related to the mixing angle between the two U(1)

bosons encountered in the E6→SU(5)×U(1)×U(1) symmetry

breaking patterns of grand unified theories [1,6]. This set leads

to Z−Z ′ mass mixing at tree level, such that for a Z ′ mass close

to the electroweak scale, the measurements at the Z-pole require

some fine tuning between the charges and VEVs of the two Higgs

doublets. Vector-like fermions charged under the electroweak

gauge group and also carrying color are required (except for

x = −3) to make this set anomaly free. The particular cases

x = −3, 1,−1/2 are usually labelled U(1)χ, U(1)ψ, and U(1)η,

respectively. Under the third set, U(1)d−xu, the weak-doublet

quarks are neutral, and the ratio of uR and dR charges is −x.

For x = 1 this is the “right-handed” group U(1)R. For x = 0,

the charges are those of the E6-inspired U(1)I group, which

requires new quarks and leptons. Other generation-independent

sets of U(1)′ charges are given in [7].

In the absence of new fermions charged under the SM

group, the most general generation-independent charge assign-

ment is U(1)q+xu, which is a linear combination of hyper-

charge and B − L. Many other anomaly-free solutions exist

if generation-dependent charges are allowed. An example is

B − xLe − yLµ + (y − 3)Lτ , with x, y free parameters. This

allows all fermion masses to be generated by Yukawa cou-

plings to a single Higgs doublet, without inducing tree-level

flavor-changing neutral current (FCNC) processes. There are

also lepton-flavor dependent charges that allow neutrino masses

to arise only from operators of high dimensionality [8].

If the SU(2)W -doublet quarks have generation-dependent

U(1)′ charges, then the mass eigenstate quarks have flavor off-

diagonal couplings to the Z ′ boson (see Eq. (1), and note that

VLu

(VL

d

)†is the CKM matrix). These are severely constrained

by measurements of FCNC processes, which in this case are

mediated at tree-level by Z ′ boson exchange [9]. The constraints

are relaxed if the first and second generation charges are

the same, although they are increasingly tightened by the

measurements of B meson properties [10]. If only the SU(2)W -

singlet quarks have generation-dependent U(1)′ charges, there

is more freedom in adjusting the flavor off-diagonal couplings

because the V Ru,d matrices are not observable in the SM.

The anomaly cancellation conditions for U(1)′ could be

relaxed only if there is an axion with certain dimension-5

couplings to the gauge bosons. However, such a scenario violates

unitarity unless the quantum field theory description breaks

down at a scale near MZ′ [11].

Other models. Z ′ bosons may also arise from larger gauge

groups. These may extend the electroweak group, as in SU(2)×SU(2) × U(1), or may embed the electroweak group, as in

SU(3)W×U(1) [12]. If the larger group is spontaneously broken

down to SU(2)W × U(1)Y × U(1)′ at a scale v⋆ ≫ MZ′/gz,

then the above discussion applies up to corrections of order

M2Z′/(gzv⋆)

2. For v⋆ ∼ MZ′/gz, additional gauge bosons have

Page 62: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

672672672672Gauge&Higgs Boson Parti le ListingsNew Heavy Bosonsmasses comparable to MZ′ , including at least a W ′ boson [12].

If the larger gauge group breaks together with the electroweak

symmetry directly to the electromagnetic U(1)em, then the

left-handed fermion charges are no longer correlated (zLu 6= zLd,zLν 6= zLe) and a Z ′W+W− coupling is induced.

If the electroweak gauge bosons propagate in extra di-

mensions, then their Kaluza-Klein (KK) excitations include a

series of Z ′ boson pairs. Each of these pairs can be associated

with a different SU(2) × U(1) gauge group in four dimensions.

The properties of the KK particles depend strongly on the

extra-dimensional theory [13]. For example, in universal extra

dimensions there is a parity that forces all couplings of Eq. (1)

to vanish in the case of the lightest KK bosons, while allowing

couplings to pairs of fermions involving a SM and a heavy

vector-like fermion. There are also 4-dimensional gauge theo-

ries (e.g. little Higgs with T parity) with Z ′ bosons exhibiting

similar properties. By contrast, in a warped extra dimension,

the couplings of Eq. (1) may be sizable even when SM fields

propagate along the extra dimension.

Z ′ bosons may also be composite particles. For example, in

confining gauge theories [14], the ρ-like bound state is a spin-1

boson that may be interpreted as arising from a spontaneously

broken gauge symmetry [15].

Resonances versus cascade decays. In the presence of the

couplings shown in Eq. (1), the Z ′ boson may be produced in

the s-channel at colliders, and would decay to pairs of fermions.

The decay width into a pair of electrons is given by

Γ(Z ′ → e+e−

)≃

[(gLe)2

+(gRe)2

] MZ′

24π, (5)

where small corrections from electroweak loops are not included.

The decay width into qq is similar, except for an additional

color factor of 3, QCD radiative corrections, and fermion mass

corrections. Thus, one may compute the Z ′ branching fractions

in terms of the couplings of Eq. (1). However, other decay

channels, such as WW or a pair of new particles, could have

large widths and need to be added to the total decay width.

As mentioned above, there are theories in which the Z ′ cou-

plings are controlled by a discrete symmetry that forbids decays

into a pair of SM particles. Typically, such theories involve

several new particles, which may be produced only in pairs and

undergo cascade decays through Z ′ bosons, leading to signals

involving some missing (transverse) momentum. Given that the

cascade decays depend on the properties of new particles other

than the Z ′ boson, this case is not discussed further here.

LEP-II limits. The Z ′ contribution to the cross sections

for e+e− → f f proceeds through an s-channel Z ′ exchange

(when f = e, there are also t- and u-channel exchanges). For

MZ′ <√

s, the Z ′ appears as an f f resonance in the radiative

return process where photon emission tunes the effective center-

of-mass energy to MZ′. The agreement between the LEP-II

measurements and the SM predictions implies that either the

Z ′ couplings are smaller than or of order 10−2, or else MZ′ is

[TeV]Z’M0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

B [p

b]σ

-410

-310

-210

-110

1Expected limit

σ 1±Expected

σ 2±Expected

Observed limit

SSMZ’

χZ’

ψZ’

PreliminaryATLAS

ll→Z’

-1 = 13 TeV, 3.2 fbs

Figure 1: Upper limit on σ(pp →Z ′X→ℓ+ℓ−X

)

with ℓ = e or µ as a function of MZ′ [23], assumingequal couplings for electrons and muons. The lineslabelled by Z ′

ψ and Z ′χ are theoretical predictions for

the U(1)10+x5 models in Table 1 with x = −3 andx = +1, respectively, for gz fixed by an E6 unificationcondition. The Z ′

SSM line corresponds to Z ′ couplingsequal to those of the Z boson.

above 209 GeV, the maximum energy of LEP-II. In the latter

case, the Z ′ effects may be approximated up to corrections of

order s/M2Z′ by the contact interactions

g2z

M2Z′ − s

[eγµ

(zLePL + zRePR

)e] [

fγµ(zLfPL + zRfPR

)f], (6)

where PL,R are chirality projection operators, and the rela-

tion between Z ′ couplings and charges (see Eq. (2) in the

limit where the mass and kinetic mixings are neglected) is

used, assuming generation-independent charges. The four LEP

collaborations have set limits on the coefficients of such op-

erators for all possible chiral structures and for various com-

binations of fermions [16] . Thus, one may derive bounds on

(MZ′/gz)|zLezLf |−1/2 and the analogous combinations of LR, RL

and RR charges, which are typically on the order of a few TeV.

LEP-II limits were derived [5] on the four sets of charges shown

in Table 1.

Somewhat stronger bounds can be set on MZ′/gz for specific

sets of Z ′ couplings if the effects of several operators from Eq. (6)

are combined. Dedicated analyses by the LEP collaborations

have set limits on Z ′ bosons for particular values of the gauge

coupling (see section 3.5 of [16]).

Searches at hadron colliders. Z ′ bosons with couplings to

quarks (see Eq. (1)) may be produced at hadron colliders in

the s-channel and would show up as resonances in the invariant

mass distribution of the decay products. The cross section for

Page 63: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

673673673673See key on page 601 Gauge&Higgs Boson Parti le ListingsNew Heavy Bosonsproducing a Z ′ boson at the LHC, which then decays to some

f f final state, takes the form

σ(pp → Z ′X → f fX

)≃ π

48 s

q

cfq wq

(s, M2

Z′

)(7)

for flavor-diagonal couplings to quarks. Here, we have ne-

glected the interference with the SM contribution to f f produc-

tion, which is a good approximation for a narrow Z ′ resonance

(deviations from the narrow width approximation are discussed

in [17]). The coefficients

cfq =

[(gLq)2

+(gRq)2

]B(Z ′ → f f) (8)

contain all the dependence on the Z ′ couplings, while

the functions wq include all the information about parton

distributions and QCD corrections [5,7]. This factorization holds

exactly to NLO and the deviations from it induced at NNLO are

very small. Note that the wu and wd functions are substantially

larger than the wq functions for the other quarks. Eq. (7) also

applies to the Tevatron, except for changing the pp initial state

to pp, which implies that the wq(s, M2Z′) functions are replaced

by some other functions wq((1.96 TeV)2, M2Z′).

!"#$

!"#%

!"#&

!"#!

!"#$

!"#%

!"#&

!"#!

&'""()*+

&,""()*+

&-""()*+

&.""()*+

&/""()*+

%"""()*+

%!""()*+

%&""()*+

%%""()*+

%$""()*+

%'""()*+%,""()*+%-""()*+%.""()*+%/""()*+$"""()*+

01

02

!"# &"3,(45#!(6.7*+8(!!9(:(!/3-(45

#!(6.(7*+8(**9

"((χ"((ψ

"η(

"((;

"<(

=,

"

">#?(

"?@((

"((A

?@

"((;B

"((7%?

"C((

);B

BDEDFG(HFGI*J6#πK&8#πK$96#πK$8"96"8πK$96πK$8πK&9

Figure 2: Upper limits in the cℓu–cℓ

d plane(ℓ = e or µ), set by CMS [25], are shown as thinlines for certain MZ′ values. For specific setsof charges (labelled by E6, GSM and LR, anddescribed in [7]) parametrized by a mixing angle,the lower mass limit is given by the intersectionof thick and thin lines. The black dots withsmaller labels represent particular models.

It is common to present results of Z ′ searches as limits

on the cross section versus MZ′ (see for example Fig. 1). An

alternative is to plot exclusion curves for fixed MZ′ values in

the cfu − cf

d planes, allowing a simple derivation of the mass

limit within any Z ′ model. The CMS upper limits in the cℓu − cℓ

d

plane (ℓ = e or µ) for different MZ′ are shown in Fig. 2 (for

Tevatron limits, see [18,7]).

The discovery of a dilepton resonance at the LHC would

determine the Z ′ mass and width. A measurement of the total

cross section would define a band in the cℓu − cℓ

d plane. Angular

distributions can be used to measure several combinations

of Z ′ parameters (an example of how angular distributions

improve the Tevatron sensitivity is given in [19]). Even though

the original quark direction in a pp collider is unknown, the

leptonic forward-backward asymmetry AℓFB can be extracted

from the kinematics of the dilepton system, and is sensitive to

parity-violating couplings. A fit to the Z ′ rapidity distribution

can distinguish between the couplings to up and down quarks.

These measurements, combined with off-peak observables, have

the potential to differentiate among various Z ′ models [20].

With 100 fb−1 of data at√

s = 14 TeV, the spin of the Z ′

boson may be determined for MZ′ ≤ 3 TeV [21], and the

expected sensitivity extends to MZ′ ∼ 4 − 5 TeV for many

models [22].

Searches for Z ′ decays to e+e− and µ+µ− by the ATLAS

and CMS collaborations set 95% C.L. lower limits on the Z ′

mass in the range between 2.8 and 3.4 TeV, depending on the

specific model [23,24]. Lower mass limits for the flavor-violating

leptonic final states have also been reported by ATLAS and

CMS [26]; the limits obtained at 13 TeV in the e±µ∓ channel

are similar to those in the lepton-conserving channels above. In

the case of final states with taus, lower limits obtained at 8 TeV

are ≈ 2.0 TeV for the τ+τ− [27] decay and ≈ 2.2 TeV for the

flavor-violating decays e±τ∓ and µ±τ∓.

Final states with higher background, tt, bb and jj, are also

important as they probe various combinations of Z ′ couplings

to quarks. In the tt channel, the 8 TeV data [28] sets lower

mass limits in the 2–2.5 TeV range in a model where Z ′ couples

only to the quarks of the first and third generations [29] . In

the jj channel, the 13 TeV data [30] has been used to set

limits on the production cross section of Z ′ bosons of masses

larger than 1.5 TeV, where the trigger efficiency has reached its

asymptotic value. For a comparison of earlier dijet resonance

searches, see [31]. In the bb channel [32], the b tagging leads to

a reduction in both the background and the signal, so it may

prove useful only if the Z ′ → bb branching fraction is large.

Z ′ decays to Zh0 with Z → ℓ+ℓ− or νν and h0 → bb have

been studied by ATLAS [33] using 13 TeV data. The lower mass

limit obtained in the context of the Heavy Vector Triplet model

weakly-coupled scenario A [34] is 1.48 TeV. The Zh0 channel

with the Z decaying hadronically and the Higgs boson decaying

either hadronically or into τ+τ− has been studied by CMS [35]

using 8 TeV data.

Page 64: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

674674674674Gauge&Higgs Boson Parti le ListingsNew Heavy BosonsThe pp →Z ′X →W+W−X process has also been searched

for at the LHC. The channel where the Z ′ boson is produced

through its couplings to quarks, and the W bosons decay

hadronically, has been explored using boosted techniques to

analyze the 13 TeV data [36] . The Z ′ boson may also be

produced through its couplings to W bosons [37].

At the Tevatron, the CDF and DØ collaborations have

searched for Z ′ bosons in the e+e− [38], µ+µ− [39], e±µ∓ [40],

τ+τ− [41], tt [42], jj [43] and W+W− [44] final states. Although

these limits have been often superseded by the LHC results, the

Tevatron limits on certain Z ′ couplings (most notably, those

arising from jj resonance searches [31]) remain competitive for

MZ′ below about 0.5 TeV.

Table 2: Lower mass limits (in GeV) at 95%C.L. on various Z ′ bosons. The electroweak re-sults [3] from low energy and W and Z bosondata are for Higgs sectors consisting of dou-blets and singlets only (ρ0 = 1). The gauge cou-pling is fixed by an SO(10) unification conditionfor U(1)χ, U(1)ψ and U(1)η. The secluded ZS

emerges in a supersymmetric model [46], andZSSM is the sequential Z ′ (same coupling as theSM Z boson). The last three columns show thelimits from dilepton resonance searches at theLHC [23,24] and the Tevatron [39,38], and frome+e− → f f measurements at LEP-II [16].

Z ′ electroweak ATLAS/CMS CDF/DØ LEP-II

Zχ 1141 3080 930 785

Zψ 147 2790 917 500

Zη 427 2850 938 500

ZS 1257 3030 858 −ZSSM 1403 3400 1071 1760

Low-energy constraints. Z ′ boson properties are also con-

strained by a variety of low-energy experiments [45]. Polarized

electron-nucleon scattering and atomic parity violation are sen-

sitive to electron-quark contact interactions, which get contri-

butions from Z ′ exchange that can be expressed in terms of the

couplings introduced in Eq. (1) and M ′

Z . Further corrections

to the electron-quark contact interactions are induced in the

presence of Z − Z ′ mixing because of the shifts in the Z cou-

plings to quarks and leptons [2]. Deep-inelastic neutrino-nucleon

scattering is similarly affected by Z ′ bosons. Other low-energy

observables are discussed in [3] . In some models, the lower

limits on MZ′ set by low energy data are above 1 TeV, as

shown in Table 2 (for more general models, see [1,5,47]). The

mass bounds from direct searches at the LHC [23,24] exceed

the electroweak constraints by a factor of two or more for the

models considered there. While the electroweak constraints can

be slightly improved by fixing the Higgs mass to the value

measured at the LHC, and the collider bounds are moderately

weakened if there are open exotic decay channels [48], this

conclusion will not change.

Although the LHC data are most constraining for many Z ′

models, one should be careful in assessing the relative reach

of various experiments given the freedom in Z ′ couplings. For

example, a Z ′ coupled to B − yLµ + (y − 3)Lτ has implications

for the muon g− 2, neutrino oscillations or τ decays, and would

be hard to see in processes involving first-generation fermions.

Moreover, the combination of LHC searches and low-energy

measurements could allow a precise determination of the Z ′

parameters [49].

References

1. For reviews, see P. Langacker, Rev. Mod. Phys. 81, 1199(2009); A. Leike, Phys. Rept. 317, 143 (1999);J. Hewett and T. Rizzo, Phys. Rept. 183, 193 (1989).

2. K.S. Babu et al., Phys. Rev. D57, 6788 (1998); B. Holdom,Phys. Lett. B259, 329 (1991).

3. J. Erler et al., JHEP 0908, 017 (2009).

4. B. A. Dobrescu and P. J. Fox, arXiv:1511.02148.

5. M.S. Carena et al., Phys. Rev. D70, 093009 (2004).

6. See, e.g., F. Del Aguila et al., Phys. Rev. D52, 37 (1995).

7. E. Accomando et al., Phys. Rev. D83, 075012 (2011).

8. M.-C. Chen et al., Phys. Rev. D75, 055009 (2007).

9. P. Langacker and M. Plumacher, Phys. Rev. D62, 013006(2000); R.S. Chivukula and E.H. Simmons, Phys. Rev.D66, 015006 (2002).

10. A. J. Buras et al., JHEP 1302, 116 (2013).

11. L.E. Ibanez and G.G. Ross, Phys. Lett. B332, 100 (1994).

12. See the Section on “W ′ searches” in this Review.

13. J. Parsons and A. Pomarol, “Extra dimensions” in thisReview.

14. R.S. Chivukula et al., “Dynamical electroweak symmetrybreaking” in this Review.

15. M. Bando et al., Phys. Rept. 164, 217 (1988).

16. S. Schael et al. [ALEPH, DELPHI, L3, OPAL and LEPElectroweak Collaborations], Phys. Rept. 532, 119 (2013).

17. E. Accomando et al., JHEP 1310, 153 (2013).

18. A. Abulencia et al. [CDF Collab.], Phys. Rev. Lett. 95,252001 (2005).

19. A. Abulencia et al. [CDF Collab.], Phys. Rev. Lett. 96,211801 (2006).

20. F. Petriello and S. Quackenbush, Phys. Rev. D77, 115004(2008).

21. P. Osland et al., Phys. Rev. D79, 115021 (2009).

22. G.L. Bayatian et al. [CMS Collab.], J. Phys. G34, 995(2007).

23. ATLAS Collab., note CONF-2015-070, Dec. 2015.

24. CMS Collab., note PAS-EXO-15-005, Dec. 2015.

25. V. Khachatryan et al. [CMS Collab.], JHEP 1504, 025(2015).

26. ATLAS Collab., note CONF-2015-072, Dec. 2015; G. Aadet al. [ATLAS Collab.], Phys. Rev. Lett. 115, 031801(2015); CMS Collab., note PAS-EXO-13-002, Mar. 2015.

27. G. Aad et al. [ATLAS Collab.], JHEP 1507, 157 (2015);CMS Collab., note PAS-EXO-12-046, Jan. 2015.

Page 65: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

675675675675See key on page 601 Gauge&HiggsBosonParti leListingsNewHeavyBosons28. G. Aad et al. [ATLAS Collab.], JHEP 1508, 148 (2015);

V. Khachatryan et al. [CMS Collab.], Phys. Rev. D 93,012001 (2016).

29. R. M. Harris, C. T. Hill and S. J. Parke, hep-ph/9911288..

30. G. Aad et al. [ATLAS Collab.], arXiv:1512.01530; Phys.Rev. D91, 052007 (2015); V. Khachatryan et al. [CMS Col-lab.], arXiv:1512.01224; Phys. Rev. D91, 052009 (2015);CMS Collab., note PAS-EXO-14-005, Oct. 2015.

31. B.A. Dobrescu and F. Yu, Phys. Rev. D88, 035021 (2013).

32. CMS Collab., note PAS-EXO-12-023, Apr. 2013.

33. ATLAS Collab., note CONF-2015-074, Dec. 2015.

34. D. Pappadopulo et al, JHEP 1409, 060 (2014).

35. V. Khachatryan et al. [CMS Collab.], arXiv:1506.01443and Phys. Lett. B 748, 255 (2015).

36. ATLAS Collab., note CONF-2015-073, Dec. 2015.

37. H. J. He et al., Phys. Rev. D78, 031701 (2008).

38. V. M. Abazov et al. [D0 Collab.], Phys. Lett. B695, 88(2011); T. Aaltonen et al. [CDF Collab.], Phys. Rev. Lett.102, 031801 (2009).

39. T. Aaltonen et al. [CDF Collab.], Phys. Rev. Lett. 106,121801 (2011).

40. A. Abulencia et al. [CDF Collab.], Phys. Rev. Lett. 96,211802 (2006); V. M. Abazov et al. [D0 Collab.], Phys.Rev. Lett. 105, 191802 (2010).

41. D. Acosta et al. [CDF Collab.], Phys. Rev. Lett. 95,131801 (2005).

42. T. Aaltonen et al. [CDF Collab.], Phys. Rev. D84, 072004(2011); V. M. Abazov et al. [D0 Collab.], Phys. Rev. D85,051101 (2012).

43. T. Aaltonen et al. [CDF Collab.], Phys. Rev. D79, 112002(2009).

44. T. Aaltonen et al. [CDF Collab.], Phys. Rev. Lett. 104,241801 (2010).

45. See, e.g., V.D. Barger et al., Phys. Rev. D57, 391 (1998);J. Erler and M.J. Ramsey-Musolf, Prog. Part. Nucl. Phys.54, 351 (2005).

46. J. Erler et al, Phys. Rev. D66, 015002 (2002); G. Cleaveret al., Phys. Rev. D59, 055005 (1999).

47. E. Rojas and J. Erler, JHEP 1510, 063 (2015).

48. J. Kang and P. Langacker, Phys. Rev. D71, 035014(2005);C.-F. Chang et al., JHEP 1109, 058 (2011).

49. Y. Li et al., Phys. Rev. D80, 055018 (2009).MASS LIMITS for Z ′ (Heavy Neutral Ve tor Boson Other Than Z )MASS LIMITS for Z ′ (Heavy Neutral Ve tor Boson Other Than Z )MASS LIMITS for Z ′ (Heavy Neutral Ve tor Boson Other Than Z )MASS LIMITS for Z ′ (Heavy Neutral Ve tor Boson Other Than Z )Limits for Z ′SMLimits for Z ′SMLimits for Z ′SMLimits for Z ′SMZ ′SM is assumed to have ouplings with quarks and leptons whi h are identi al tothose of Z , and de ays only to known fermions. The most re ent preliminary results an be found in the \Z ′-boson sear hes" review above.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT>2020 95 1 AAD 15AMATLS pp; Z ′SM → τ+ τ−

>2900>2900>2900>2900 95 2 KHACHATRY...15AE CMS pp; Z ′SM → e+ e−, µ+µ−none 12001700 95 3 KHACHATRY...15V CMS pp; Z ′SM → qq>2900>2900>2900>2900 95 4 AAD 14V ATLS pp; Z ′SM → e+ e−, µ+µ−

>1470 95 5 CHATRCHYAN13A CMS pp; Z ′SM

→ qq>1400 95 6 CHATRCHYAN12O CMS pp; Z ′

SM→ τ+ τ−

>1500>1500>1500>1500 95 7 CHEUNG 01B RVUE Ele troweak

• • • We do not use the following data for averages, ts, limits, et . • • •>1400 95 8 AAD 13S ATLS pp; Z ′SM → τ+ τ−

>2590 95 9 CHATRCHYAN13AF CMS pp; Z ′SM

→ e+ e−, µ+µ−

>2220 95 10 AAD 12CC ATLS pp; Z ′SM

→ e+ e−, µ+µ−

>1071 95 11 AALTONEN 11I CDF pp; Z ′SM

→ µ+µ−

>1023 95 12 ABAZOV 11A D0 pp, Z ′SM → e+ e−none 247544 95 13 AALTONEN 10N CDF Z ′ → WWnone 320740 95 14 AALTONEN 09AC CDF Z ′ → qq> 963 95 12 AALTONEN 09T CDF pp, Z ′SM → e+ e−>1403 95 15 ERLER 09 RVUE Ele troweak>1305 95 16 ABDALLAH 06C DLPH e+ e−> 399 95 17 ACOSTA 05R CDF p p: Z ′

SM→ τ+ τ−none 400640 95 ABAZOV 04C D0 pp: Z ′SM → qq

>1018 95 18 ABBIENDI 04G OPAL e+ e−> 670 95 19 ABAZOV 01B D0 pp, Z ′SM→ e+ e−> 710 95 20 ABREU 00S DLPH e+ e−> 898 95 21 BARATE 00I ALEP e+ e−> 809 95 22 ERLER 99 RVUE Ele troweak> 690 95 23 ABE 97S CDF pp; Z ′SM → e+ e−, µ+µ−

> 398 95 24 VILAIN 94B CHM2 νµ e → νµ e and νµ e → νµ e> 237 90 25 ALITTI 93 UA2 pp; Z ′SM → qqnone 260600 95 26 RIZZO 93 RVUE pp; Z ′SM → qq> 426 90 27 ABE 90F VNS e+ e−1AAD 15AM sear h for resonan es de aying to τ+ τ− in pp ollisions at √s = 8 TeV.2KHACHATRYAN 15AE sear h for resonan es de aying to e+ e−, µ+µ− in pp ollisionsat √s = 8 TeV.3KHACHATRYAN 15V sear h for resonan es de aying to dijets in pp ollisions at √s =8 TeV.4AAD 14V sear h for resonan es de aying to e+ e−, µ+µ− in pp ollisions at √s = 8TeV.5CHATRCHYAN 13A use pp ollisions at √s=7 TeV.6CHATRCHYAN 12O sear h for resonan es de aying to τ+ τ− in pp ollisions at √s =7 TeV.7CHEUNG 01B limit is derived from bounds on onta t intera tions in a global ele troweakanalysis.8AAD 13S sear h for resonan es de aying to τ+ τ− in pp ollisions at √s = 7 TeV.9CHATRCHYAN 13AF sear h for resonan es de aying to e+ e−, µ+µ− in pp ollisionsat √s = 7 TeV and 8 TeV.10AAD 12CC sear h for resonan es de aying to e+ e−, µ+µ− in pp ollisions at √s = 7TeV.11AALTONEN 11I sear h for resonan es de aying to µ+µ− in pp ollisions at √s = 1.96TeV.12ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L sear h forresonan es de aying to e+ e− in pp ollisions at √s = 1.96 TeV.13The quoted limit assumes gW W Z ′/gW W Z = (MW /MZ ′)2. See their Fig. 4 for limitsin mass- oupling plane.14AALTONEN 09AC sear h for new parti le de aying to dijets.15ERLER 09 give 95% CL limit on the Z -Z ′ mixing −0.0026 < θ < 0.0006.16ABDALLAH 06C use data √

s = 130207 GeV.17ACOSTA 05R sear h for resonan es de aying to tau lepton pairs in pp ollisions at √s= 1.96 TeV.18ABBIENDI 04G give 95% CL limit on Z -Z ′ mixing −0.00422 < θ <0.00091. √s = 91to 207 GeV.19ABAZOV 01B sear h for resonan es in pp → e+ e− at √s=1.8 TeV. They nd σ ·B(Z ′ → e e)< 0.06 pb for MZ ′ > 500 GeV.20ABREU 00S uses LEP data at √s=90 to 189 GeV.21BARATE 00I sear h for deviations in ross se tion and asymmetries in e+ e− → fermionsat √s=90 to 183 GeV. Assume θ=0. Bounds in the mass-mixing plane are shown intheir Figure 18.22ERLER 99 give 90%CL limit on the Z -Z ′ mixing −0.0041 < θ < 0.0003. ρ0=1 isassumed.23ABE 97S nd σ(Z ′)×B(e+ e−,µ+µ−)< 40 fb for mZ ′ > 600 GeV at √s= 1.8 TeV.24VILAIN 94B assume mt = 150 GeV.25ALITTI 93 sear h for resonan es in the two-jet invariant mass. The limit assumes B(Z ′ →qq)=0.7. See their Fig. 5 for limits in the mZ ′−B(qq) plane.26RIZZO 93 analyses CDF limit on possible two-jet resonan es.27ABE 90F use data for R, Rℓℓ, and Aℓℓ. They x mW = 80.49 ± 0.43 ± 0.24 GeV andmZ = 91.13 ± 0.03 GeV.Limits for ZLRLimits for ZLRLimits for ZLRLimits for ZLRZLR is the extra neutral boson in left-right symmetri models. gL = gR is assumedunless noted. Values in parentheses assume stronger onstraint on the Higgs se tor,usually motivated by spe i left-right symmetri models (see the Note on the W ′).Values in bra kets are from osmologi al and astrophysi al onsiderations and assumea light right-handed neutrino. Dire t sear h bounds assume de ays to Standard Modelfermions only, unless noted.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>1162>1162>1162>1162 95 1 DEL-AGUILA 10 RVUE Ele troweak> 630> 630> 630> 630 95 2 ABE 97S CDF pp; Z ′LR → e+ e−, µ+µ−

Page 66: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

676676676676Gauge&HiggsBosonParti leListingsNewHeavyBosons• • • We do not use the following data for averages, ts, limits, et . • • •> 998 95 3 ERLER 09 RVUE Ele troweak> 600 95 SCHAEL 07A ALEP e+ e−> 455 95 4 ABDALLAH 06C DLPH e+ e−> 518 95 5 ABBIENDI 04G OPAL e+ e−> 860 95 6 CHEUNG 01B RVUE Ele troweak> 380 95 7 ABREU 00S DLPH e+ e−> 436 95 8 BARATE 00I ALEP Repl. by SCHAEL 07A> 550 95 9 CHAY 00 RVUE Ele troweak10 ERLER 00 RVUE Cs11 CASALBUONI 99 RVUE Cs(> 1205) 90 12 CZAKON 99 RVUE Ele troweak> 564 95 13 ERLER 99 RVUE Ele troweak(> 1673) 95 14 ERLER 99 RVUE Ele troweak(> 1700) 68 15 BARENBOIM 98 RVUE Ele troweak> 244 95 16 CONRAD 98 RVUE νµN s attering> 253 95 17 VILAIN 94B CHM2 νµ e → νµ e and νµ e → νµ enone 200600 95 18 RIZZO 93 RVUE pp; ZLR→ qq[> 2000 WALKER 91 COSM Nu leosynthesis; light νRnone 200500 19 GRIFOLS 90 ASTR SN 1987A; light νRnone 3502400 20 BARBIERI 89B ASTR SN 1987A; light νR1DEL-AGUILA 10 give 95% CL limit on the Z -Z ′ mixing −0.0012 < θ < 0.0004.2ABE 97S nd σ(Z ′)×B(e+ e−,µ+µ−)< 40 fb for mZ ′ > 600 GeV at √s= 1.8 TeV.3ERLER 09 give 95% CL limit on the Z -Z ′ mixing −0.0013 < θ < 0.0006.4ABDALLAH 06C give 95% CL limit ∣∣θ

∣∣ < 0.0028. See their Fig. 14 for limit ontours inthe mass-mixing plane.5ABBIENDI 04G give 95% CL limit on Z -Z ′ mixing −0.00098 < θ < 0.00190. See theirFig. 20 for the limit ontour in the mass-mixing plane. √s = 91 to 207 GeV.6CHEUNG 01B limit is derived from bounds on onta t intera tions in a global ele troweakanalysis.7ABREU 00S give 95% CL limit on Z -Z ′ mixing ∣∣θ

∣∣ < 0.0018. See their Fig. 6 for thelimit ontour in the mass-mixing plane. √s=90 to 189 GeV.8BARATE 00I sear h for deviations in ross se tion and asymmetries in e+ e− → fermionsat √s=90 to 183 GeV. Assume θ=0. Bounds in the mass-mixing plane are shown intheir Figure 18.9CHAY 00 also nd −0.0003 < θ < 0.0019. For gR free, mZ ′ > 430 GeV.10ERLER 00 dis uss the possibility that a dis repan y between the observed and predi tedvalues of QW (Cs) is due to the ex hange of Z ′. The data are better des ribed in a ertain lass of the Z ′ models in luding ZLR and Zχ.11CASALBUONI 99 dis uss the dis repan y between the observed and predi ted values ofQW (Cs). It is shown that the data are better des ribed in a lass of models in ludingthe ZLR model.12CZAKON 99 perform a simultaneous t to harged and neutral se tors. Assumes manifestleft-right symmetri model. Finds ∣∣θ∣∣ < 0.0042.13ERLER 99 give 90% CL limit on the Z -Z ′ mixing −0.0009 < θ < 0.0017.14ERLER 99 assumes 2 Higgs doublets, transforming as 10 of SO(10), embedded in E6.15BARENBOIM 98 also gives 68% CL limits on the Z -Z ′ mixing −0.0005 < θ < 0.0033.Assumes Higgs se tor of minimal left-right model.16CONRAD 98 limit is from measurements at CCFR, assuming no Z -Z ′ mixing.17VILAIN 94B assume mt = 150 GeV and θ=0. See Fig. 2 for limit ontours in themass-mixing plane.18RIZZO 93 analyses CDF limit on possible two-jet resonan es.19GRIFOLS 90 limit holds for mνR . 1 MeV. A spe i Higgs se tor is assumed. Seealso GRIFOLS 90D, RIZZO 91.20BARBIERI 89B limit holds for mνR ≤ 10 MeV. Bounds depend on assumed supernova ore temperature.Limits for ZχLimits for ZχLimits for ZχLimits for ZχZχ is the extra neutral boson in SO(10) → SU(5) × U(1)χ. gχ = e/ osθW isassumed unless otherwise stated. We list limits with the assumption ρ= 1 but withno further onstraints on the Higgs se tor. Values in parentheses assume stronger onstraint on the Higgs se tor motivated by superstring models. Values in bra ketsare from osmologi al and astrophysi al onsiderations and assume a light right-handedneutrino.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>2620>2620>2620>2620 95 1 AAD 14V ATLS pp, Z ′χ → e+ e−, µ+µ−

>1141>1141>1141>1141 95 2 ERLER 09 RVUE Ele troweak• • • We do not use the following data for averages, ts, limits, et . • • •>1970 95 3 AAD 12CC ATLS pp, Z ′

χ→ e+ e−, µ+µ−

> 930 95 4 AALTONEN 11I CDF pp; Z ′χ

→ µ+µ−

> 903 95 5 ABAZOV 11A D0 pp, Z ′χ → e+ e−>1022 95 6 DEL-AGUILA 10 RVUE Ele troweak> 862 95 5 AALTONEN 09T CDF pp, Z ′χ → e+ e−> 892 95 7 AALTONEN 09V CDF Repl. by AALTONEN 11I> 822 95 5 AALTONEN 07H CDF Repl. by AALTONEN 09T> 680 95 SCHAEL 07A ALEP e+ e−> 545 95 8 ABDALLAH 06C DLPH e+ e−> 740 5 ABULENCIA 06L CDF Repl. by AALTONEN 07H> 690 95 9 ABULENCIA 05A CDF pp; Z ′χ → e+ e−, µ+µ−

> 781 95 10 ABBIENDI 04G OPAL e+ e−>2100 11 BARGER 03B COSM Nu leosynthesis; light νR> 680 95 12 CHEUNG 01B RVUE Ele troweak> 440 95 13 ABREU 00S DLPH e+ e−

> 533 95 14 BARATE 00I ALEP Repl. by SCHAEL 07A> 554 95 15 CHO 00 RVUE Ele troweak16 ERLER 00 RVUE Cs17 ROSNER 00 RVUE Cs> 545 95 18 ERLER 99 RVUE Ele troweak(> 1368) 95 19 ERLER 99 RVUE Ele troweak> 215 95 20 CONRAD 98 RVUE νµN s attering> 595 95 21 ABE 97S CDF pp; Z ′χ → e+ e−, µ+µ−

> 190 95 22 ARIMA 97 VNS Bhabha s attering> 262 95 23 VILAIN 94B CHM2 νµ e → νµ e; νµ e → νµ e[>1470 24 FARAGGI 91 COSM Nu leosynthesis; light νR> 231 90 25 ABE 90F VNS e+ e−[> 1140 26 GONZALEZ-G...90D COSM Nu leosynthesis; light νR[> 2100 27 GRIFOLS 90 ASTR SN 1987A; light νR1AAD 14V sear h for resonan es de aying to e+ e−, µ+µ− in pp ollisions at √s = 8TeV.2ERLER 09 give 95% CL limit on the Z -Z ′ mixing −0.0016 < θ < 0.0006.3AAD 12CC sear h for resonan es de aying to e+ e−, µ+µ− in pp ollisions at √s = 7TeV.4AALTONEN 11I sear h for resonan es de aying to µ+µ− in pp ollisions at √s = 1.96TeV.5ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L sear h forresonan es de aying to e+ e− in pp ollisions at √s = 1.96 TeV.6DEL-AGUILA 10 give 95% CL limit on the Z -Z ′ mixing −0.0011 < θ < 0.0007.7AALTONEN 09V sear h for resonan es de aying to µ+µ− in pp ollisions at √

s =1.96 TeV.8ABDALLAH 06C give 95% CL limit ∣∣θ∣∣ < 0.0031. See their Fig. 14 for limit ontours inthe mass-mixing plane.9ABULENCIA 05A sear h for resonan es de aying to ele tron or muon pairs in pp ollisionsat √s = 1.96 TeV.10ABBIENDI 04G give 95% CL limit on Z -Z ′ mixing −0.00099 < θ < 0.00194. See theirFig. 20 for the limit ontour in the mass-mixing plane. √

s = 91 to 207 GeV.11BARGER 03B limit is from the nu leosynthesis bound on the ee tive number of lightneutrino δNν <1. The quark-hadron transition temperature T =150 MeV is assumed.The limit with T =400 MeV is >4300 GeV.12CHEUNG 01B limit is derived from bounds on onta t intera tions in a global ele troweakanalysis.13ABREU 00S give 95% CL limit on Z -Z ′ mixing ∣∣θ∣∣ < 0.0017. See their Fig. 6 for thelimit ontour in the mass-mixing plane. √s=90 to 189 GeV.14BARATE 00I sear h for deviations in ross se tion and asymmetries in e+ e− → fermionsat √s=90 to 183 GeV. Assume θ=0. Bounds in the mass-mixing plane are shown intheir Figure 18.15CHO 00 use various ele troweak data to onstrain Z ′ models assuming mH=100 GeV.See Fig. 3 for limits in the mass-mixing plane.16ERLER 00 dis uss the possibility that a dis repan y between the observed and predi tedvalues of QW (Cs) is due to the ex hange of Z ′. The data are better des ribed in a ertain lass of the Z ′ models in luding ZLR and Zχ.17ROSNER 00 dis usses the possibility that a dis repan y between the observed and pre-di ted values of QW (Cs) is due to the ex hange of Z ′. The data are better des ribedin a ertain lass of the Z ′ models in luding Zχ.18 ERLER 99 give 90% CL limit on the Z -Z ′ mixing −0.0020 < θ < 0.0015.19ERLER 99 assumes 2 Higgs doublets, transforming as 10 of SO(10), embedded in E6.20CONRAD 98 limit is from measurements at CCFR, assuming no Z -Z ′ mixing.21ABE 97S nd σ(Z ′)×B(e+ e−,µ+µ−)< 40 fb for mZ ′ > 600 GeV at √s= 1.8 TeV.22Z -Z ′ mixing is assumed to be zero. √s= 57.77 GeV.23VILAIN 94B assume mt = 150 GeV and θ=0. See Fig. 2 for limit ontours in themass-mixing plane.24 FARAGGI 91 limit assumes the nu leosynthesis bound on the ee tive number of neu-trinos Nν < 0.5 and is valid for mνR < 1 MeV.25ABE 90F use data for R, Rℓℓ, and Aℓℓ. ABE 90F x mW = 80.49 ± 0.43 ± 0.24 GeVand mZ = 91.13 ± 0.03 GeV.26Assumes the nu leosynthesis bound on the ee tive number of light neutrinos (δNν < 1)and that νR is light (. 1 MeV).27GRIFOLS 90 limit holds for mνR . 1 MeV. See also GRIFOLS 90D, RIZZO 91.Limits for ZψLimits for ZψLimits for ZψLimits for ZψZψ is the extra neutral boson in E6 → SO(10) × U(1)ψ . gψ = e/ osθW is assumedunless otherwise stated. We list limits with the assumption ρ= 1 but with no fur-ther onstraints on the Higgs se tor. Values in bra kets are from osmologi al andastrophysi al onsiderations and assume a light right-handed neutrino.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>2570>2570>2570>2570 95 1 KHACHATRY...15AE CMS pp; Z ′ψ

→ e+ e−, µ+µ−

>2510 95 2 AAD 14V ATLS pp, Z ′ψ → e+ e−, µ+µ−

>1100 95 3 CHATRCHYAN12O CMS pp, Z ′ψ → τ+ τ−

> 476> 476> 476> 476 95 4 DEL-AGUILA 10 RVUE Ele troweak• • • We do not use the following data for averages, ts, limits, et . • • •>2260 95 5 CHATRCHYAN13AF CMS pp, Z ′ψ → e+ e−, µ+µ−

>1790 95 6 AAD 12CC ATLS pp, Z ′ψ → e+ e−, µ+µ−

>2000 95 7 CHATRCHYAN12M CMS Repl. by CHA-TRCHYAN 13AF> 917 95 8 AALTONEN 11I CDF pp; Z ′ψ → µ+µ−

> 891 95 9 ABAZOV 11A D0 pp, Z ′ψ → e+ e−> 851 95 9 AALTONEN 09T CDF pp, Z ′

ψ→ e+ e−

> 878 95 10 AALTONEN 09V CDF Repl. by AALTONEN 11I> 147 95 11 ERLER 09 RVUE Ele troweak

Page 67: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

677677677677See key on page 601 Gauge&HiggsBosonParti leListingsNewHeavyBosons> 822 95 9 AALTONEN 07H CDF Repl. by AALTONEN 09T> 410 95 SCHAEL 07A ALEP e+ e−> 475 95 12 ABDALLAH 06C DLPH e+ e−> 725 9 ABULENCIA 06L CDF Repl. by AALTONEN 07H> 675 95 13 ABULENCIA 05A CDF Repl. by AALTONEN 11Iand AALTONEN 09T> 366 95 14 ABBIENDI 04G OPAL e+ e−> 600 15 BARGER 03B COSM Nu leosynthesis; light νR> 350 95 16 ABREU 00S DLPH e+ e−> 294 95 17 BARATE 00I ALEP Repl. by SCHAEL 07A> 137 95 18 CHO 00 RVUE Ele troweak> 146 95 19 ERLER 99 RVUE Ele troweak> 54 95 20 CONRAD 98 RVUE νµN s attering> 590 95 21 ABE 97S CDF pp; Z ′ψ → e+ e−, µ+µ−

> 135 95 22 VILAIN 94B CHM2 νµ e → νµ e; νµ e → νµ e> 105 90 23 ABE 90F VNS e+ e−[> 160 24 GONZALEZ-G...90D COSM Nu leosynthesis; light νR[> 2000 25 GRIFOLS 90D ASTR SN 1987A; light νR1KHACHATRYAN 15AE sear h for resonan es de aying to e+ e−, µ+µ− in pp ollisionsat √s = 8 TeV.2AAD 14V sear h for resonan es de aying to e+ e−, µ+µ− in pp ollisions at √s = 8TeV.3CHATRCHYAN 12O sear h for resonan es de aying to τ+ τ− in pp ollisions at √s =7 TeV.4DEL-AGUILA 10 give 95% CL limit on the Z -Z ′ mixing −0.0019 < θ < 0.0007.5CHATRCHYAN 13AF sear h for resonan es de aying to e+ e−, µ+µ− in pp ollisionsat √s = 7 TeV and 8 TeV.6AAD 12CC sear h for resonan es de aying to e+ e−, µ+µ− in pp ollisions at √s = 7TeV.7CHATRCHYAN 12M sear h for resonan es de aying to e+ e− or µ+µ− in pp ollisionsat √s = 7 TeV.8AALTONEN 11I sear h for resonan es de aying to µ+µ− in pp ollisions at √s = 1.96TeV.9ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L sear h forresonan es de aying to e+ e− in pp ollisions at √s = 1.96 TeV.10AALTONEN 09V sear h for resonan es de aying to µ+µ− in pp ollisions at √

s =1.96 TeV.11ERLER 09 give 95% CL limit on the Z -Z ′ mixing −0.0018 < θ < 0.0009.12ABDALLAH 06C give 95% CL limit ∣∣θ∣∣ < 0.0027. See their Fig. 14 for limit ontours inthe mass-mixing plane.13ABULENCIA 05A sear h for resonan es de aying to ele tron or muon pairs in pp ollisionsat √s = 1.96 TeV.14ABBIENDI 04G give 95% CL limit on Z -Z ′ mixing −0.00129 < θ < 0.00258. See theirFig. 20 for the limit ontour in the mass-mixing plane. √

s = 91 to 207 GeV.15BARGER 03B limit is from the nu leosynthesis bound on the ee tive number of lightneutrino δNν <1. The quark-hadron transition temperature T =150 MeV is assumed.The limit with T =400 MeV is >1100 GeV.16ABREU 00S give 95% CL limit on Z -Z ′ mixing ∣∣θ∣∣ < 0.0018. See their Fig. 6 for thelimit ontour in the mass-mixing plane. √s=90 to 189 GeV.17BARATE 00I sear h for deviations in ross se tion and asymmetries in e+ e− → fermionsat √s=90 to 183 GeV. Assume θ=0. Bounds in the mass-mixing plane are shown intheir Figure 18.18CHO 00 use various ele troweak data to onstrain Z ′ models assuming mH=100 GeV.See Fig. 3 for limits in the mass-mixing plane.19ERLER 99 give 90% CL limit on the Z -Z ′ mixing −0.0013 < θ < 0.0024.20CONRAD 98 limit is from measurements at CCFR, assuming no Z -Z ′ mixing.21ABE 97S nd σ(Z ′)×B(e+ e−,µ+µ−)< 40 fb for mZ ′ > 600 GeV at √s= 1.8 TeV.22VILAIN 94B assume mt = 150 GeV and θ=0. See Fig. 2 for limit ontours in themass-mixing plane.23ABE 90F use data for R, Rℓℓ, and Aℓℓ. ABE 90F x mW = 80.49 ± 0.43 ± 0.24 GeVand mZ = 91.13 ± 0.03 GeV.24Assumes the nu leosynthesis bound on the ee tive number of light neutrinos (δNν < 1)and that νR is light (. 1 MeV).25GRIFOLS 90D limit holds for mνR . 1 MeV. See also RIZZO 91.Limits for ZηLimits for ZηLimits for ZηLimits for ZηZη is the extra neutral boson in E6 models, orresponding to Qη = √3/8 Qχ −

√5/8 Qψ . gη = e/ osθW is assumed unless otherwise stated. We list limits withthe assumption ρ= 1 but with no further onstraints on the Higgs se tor. Values inparentheses assume stronger onstraint on the Higgs se tor motivated by superstringmodels. Values in bra kets are from osmologi al and astrophysi al onsiderations andassume a light right-handed neutrino.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT>1870>1870>1870>1870 95 1 AAD 12CC ATLS pp, Z ′

η→ e+ e−, µ+µ−

> 619> 619> 619> 619 95 2 CHO 00 RVUE Ele troweak• • • We do not use the following data for averages, ts, limits, et . • • •> 938 95 3 AALTONEN 11I CDF pp; Z ′η → µ+µ−

> 923 95 4 ABAZOV 11A D0 pp, Z ′η → e+ e−> 488 95 5 DEL-AGUILA 10 RVUE Ele troweak> 877 95 4 AALTONEN 09T CDF pp, Z ′η → e+ e−> 904 95 6 AALTONEN 09V CDF Repl. by AALTONEN 11I> 427 95 7 ERLER 09 RVUE Ele troweak> 891 95 4 AALTONEN 07H CDF Repl. by AALTONEN 09T> 350 95 SCHAEL 07A ALEP e+ e−> 360 95 8 ABDALLAH 06C DLPH e+ e−> 745 4 ABULENCIA 06L CDF Repl. by AALTONEN 07H> 720 95 9 ABULENCIA 05A CDF Repl. by AALTONEN 11Iand AALTONEN 09T

> 515 95 10 ABBIENDI 04G OPAL e+ e−>1600 11 BARGER 03B COSM Nu leosynthesis; light νR> 310 95 12 ABREU 00S DLPH e+ e−> 329 95 13 BARATE 00I ALEP Repl. by SCHAEL 07A> 365 95 14 ERLER 99 RVUE Ele troweak> 87 95 15 CONRAD 98 RVUE νµN s attering> 620 95 16 ABE 97S CDF pp; Z ′

η→ e+ e−, µ+µ−

> 100 95 17 VILAIN 94B CHM2 νµ e → νµ e; νµ e → νµ e> 125 90 18 ABE 90F VNS e+ e−[> 820 19 GONZALEZ-G...90D COSM Nu leosynthesis; light νR[> 3300 20 GRIFOLS 90 ASTR SN 1987A; light νR[> 1040 19 LOPEZ 90 COSM Nu leosynthesis; light νR1AAD 12CC sear h for resonan es de aying to e+ e−, µ+µ− in pp ollisions at √s = 7TeV.2CHO 00 use various ele troweak data to onstrain Z ′ models assuming mH=100 GeV.See Fig. 3 for limits in the mass-mixing plane.3AALTONEN 11I sear h for resonan es de aying to µ+µ− in pp ollisions at √s = 1.96TeV.4ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L sear h forresonan es de aying to e+ e− in pp ollisions at √s = 1.96 TeV.5DEL-AGUILA 10 give 95% CL limit on the Z -Z ′ mixing −0.0023 < θ < 0.0027.6AALTONEN 09V sear h for resonan es de aying to µ+µ− in pp ollisions at √

s =1.96 TeV.7ERLER 09 give 95% CL limit on the Z -Z ′ mixing −0.0047 < θ < 0.0021.8ABDALLAH 06C give 95% CL limit ∣∣θ∣∣ < 0.0092. See their Fig. 14 for limit ontours inthe mass-mixing plane.9ABULENCIA 05A sear h for resonan es de aying to ele tron or muon pairs in pp ollisionsat √s = 1.96 TeV.10ABBIENDI 04G give 95% CL limit on Z -Z ′ mixing −0.00447 < θ <0.00331. See theirFig. 20 for the limit ontour in the mass-mixing plane. √

s = 91 to 207 GeV.11BARGER 03B limit is from the nu leosynthesis bound on the ee tive number of lightneutrino δNν <1. The quark-hadron transition temperature T =150 MeV is assumed.The limit with T =400 MeV is >3300 GeV.12ABREU 00S give 95% CL limit on Z -Z ′ mixing ∣∣θ∣∣ < 0.0024. See their Fig. 6 for thelimit ontour in the mass-mixing plane. √s=90 to 189 GeV.13BARATE 00I sear h for deviations in ross se tion and asymmetries in e+ e− → fermionsat √s=90 to 183 GeV. Assume θ=0. Bounds in the mass-mixing plane are shown intheir Figure 18.14ERLER 99 give 90% CL limit on the Z -Z ′ mixing −0.0062 < θ < 0.0011.15CONRAD 98 limit is from measurements at CCFR, assuming no Z -Z ′ mixing.16ABE 97S nd σ(Z ′)×B(e+ e−,µ+µ−)< 40 fb for mZ ′ > 600 GeV at √s= 1.8 TeV.17VILAIN 94B assume mt = 150 GeV and θ=0. See Fig. 2 for limit ontours in themass-mixing plane.18ABE 90F use data for R, Rℓℓ, and Aℓℓ. ABE 90F x mW = 80.49 ± 0.43 ± 0.24 GeVand mZ = 91.13 ± 0.03 GeV.19These authors laim that the nu leosynthesis bound on the ee tive number of lightneutrinos (δNν < 1) onstrains Z ′ masses if νR is light (. 1 MeV).20GRIFOLS 90 limit holds for mνR . 1 MeV. See also GRIFOLS 90D, RIZZO 91.Limits for other Z ′Limits for other Z ′Limits for other Z ′Limits for other Z ′VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •>2400 95 1 KHACHATRY...16E CMS Z ′ → t t2 AAD 15AO ATLS Z ′ → t t3 AAD 15AT ATLS monotop4 AAD 15CD ATLS h → Z Z ′, Z ′Z ′; Z ′ →

ℓ+ ℓ−5 AAD 15O ATLS Z ′ → e µ, e τ , µτ6 KHACHATRY...15F CMS monotop7 KHACHATRY...15O CMS Z ′ → hZ8 AAD 14AT ATLS Z ′ → Z γ9 KHACHATRY...14A CMS Z ′ → V V10 MARTINEZ 14 RVUE Ele troweak11 AAD 13AI ATLS Z ′ → e µ, e τ , µτnone 5001740 95 12 AAD 13AQ ATLS Z ′ → t t>1320 or 10001280 95 13 AAD 13G ATLS Z ′ → t t> 915 95 13 AALTONEN 13A CDF Z ′ → t t>1300 95 14 CHATRCHYAN13AP CMS Z ′ → t t>2100 95 13 CHATRCHYAN13BMCMS Z ′ → t t15 AAD 12BV ATLS Z ′ → t t16 AAD 12K ATLS Z ′ → t t17 AALTONEN 12AR CDF Chromophili 18 AALTONEN 12N CDF Z ′ → t u> 835 95 19 ABAZOV 12R D0 Z ′ → t t20 CHATRCHYAN12AI CMS Z ′ → t u21 CHATRCHYAN12AQ CMS Z ′ → t t>1490 95 13 CHATRCHYAN12BL CMS Z ′ → t t22 AAD 11H ATLS Z ′ → e µ23 AAD 11Z ATLS Z ′ → e µ24 AALTONEN 11AD CDF Z ′ → t t25 AALTONEN 11AE CDF Z ′ → t t26 CHATRCHYAN11O CMS pp → t t27 AALTONEN 08D CDF Z ′ → t t

Page 68: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

678678678678Gauge&Higgs Boson Parti le ListingsNew Heavy Bosons27 AALTONEN 08Y CDF Z ′ → t t27 ABAZOV 08AA D0 Z ′ → t t28 ABULENCIA 06M CDF Z ′ → e µ29 ABAZOV 04A D0 Repl. by ABAZOV 08AA30 BARGER 03B COSM Nu leosynthesis; light νR31 CHO 00 RVUE E6-motivated32 CHO 98 RVUE E6-motivated33 ABE 97G CDF Z ′ → q q1KHACHATRYAN 16E sear h for a leptophobi top- olor Z ′ de aying to t t using pp ollisions at √s = 8 TeV. The quoted limit assumes that Z ′/mZ ′ = 0.012. AlsomZ ′ < 2.9 TeV is ex luded for wider top olor Z ′ with Z ′/mZ ′ = 0.1.2AAD 15AO sear h for narrow resonan e de aying to t t using pp ollisions at √

s = 8TeV. See Fig. 11 for limit on σB.3AAD 15AT sear h for monotop produ tion plus large missing ET events in pp ollisionsat √s = 8 TeV and give onstraints on a Z ′ model having Z ′ u t oupling. Z ′ is assumedto de ay invisibly. See their Fig. 6 for limits on σ · B.4AAD 15CD sear h for de ays of Higgs bosons to 4 ℓ states via Z ′ bosons, h → Z Z ′ →4ℓ or h → Z ′Z ′ → 4ℓ. See Fig. 5 for the limit on the signal strength of the h →Z Z ′ → 4ℓ pro ess and Fig. 16 for the limit on h → Z ′Z ′ → 4ℓ.5AAD 15O sear h for new parti le with lepton avor violating de ay in pp ollisions at√s = 8 TeV. See their Fig. 2 for limits on σB.6KHACHATRYAN 15F sear h for monotop produ tion plus large missing ET events inpp ollisions at √s = 8 TeV and give onstraints on a Z ′ model having Z ′ u t oupling.Z ′ is assumed to de ay invisibly. See Fig. 3 for limits on σB.7KHACHATRYAN 15O sear h for narrow Z ′ resonan e de aying to Z h in pp ollisions at√s = 8 TeV. See their Fig. 6 for limit on σB.8AAD 14AT sear h for a narrow neutral ve tor boson de aying to Z γ. See their Fig. 3bfor the ex lusion limit in mZ ′ − σB plane.9KHACHATRYAN 14A sear h for new resonan e in the WW (ℓν qq) and the Z Z (ℓℓqq) hannels using pp ollisions at √

s=8 TeV. See their Fig.13 for the ex lusion limit onthe number of events in the mass-width plane.10MARTINEZ 14 use various ele troweak data to onstrain the Z ′ boson in the 3-3-1models.11AAD 13AI sear h for new parti le with lepton avor violating de ay in pp ollisions at√s = 7 TeV. See their Fig. 2 for limits on σ · B.12AAD 13AQ sear h for a leptophobi top- olor Z ′ de aying to t t . The quoted limitassumes that Z ′/mZ ′ = 0.012.13CHATRCHYAN 13BM sear h for top- olor Z ′ de aying to t t using pp ollisions at √s=8TeV. The quoted limit is for Z ′/mZ ′ = 0.012.14CHATRCHYAN 13AP sear h for top- olor leptophobi Z ′ de aying to t t using pp olli-sions at √s=7 TeV. The quoted limit is for Z ′/mZ ′ = 0.012.15AAD 12BV sear h for narrow resonan e de aying to t t using pp ollisions at √s=7 TeV.See their Fig. 7 for limit on σ · B.16AAD 12K sear h for narrow resonan e de aying to t t using pp ollisions at √s=7 TeV.See their Fig. 5 for limit on σ · B.17AALTONEN 12AR sear h for hromophili Z ′ in pp ollisions at √

s = 1.96 TeV. Seetheir Fig. 5 for limit on σ · B.18AALTONEN 12N sear h for pp → t Z ′, Z ′ → t u events in pp ollisions. See their Fig.3 for the limit on σ · B.19ABAZOV 12R sear h for top- olor Z ′ boson de aying ex lusively to t t . The quoted limitis for Z ′/mZ ′= 0.012.20CHATRCHYAN 12AI sear h for pp → t t events and give onstraints on a Z ′ modelhaving Z ′ u t oupling. See their Fig. 4 for the limit in mass- oupling plane.21 Sear h for resonan e de aying to t t . See their Fig. 6 for limit on σ · B.22AAD 11H sear h for new parti le with lepton avor violating de ay in pp ollisions at√s = 7 TeV. See their Fig. 3 for ex lusion plot on the produ tion ross se tion.23AAD 11Z sear h for new parti le with lepton avor violating de ay in pp ollisions at √s= 7 TeV. See their Fig. 3 for limit on σ · B.24Sear h for narrow resonan e de aying to t t . See their Fig. 4 for limit on σ · B.25Sear h for narrow resonan e de aying to t t . See their Fig. 3 for limit on σ · B.26CHATRCHYAN 11O sear h for same-sign top produ tion in pp ollisions indu ed by ahypotheti al FCNC Z ′ at √s = 7 TeV. See their Fig. 3 for limit in mass- oupling plane.27 Sear h for narrow resonan e de aying to t t . See their Fig. 3 for limit on σ · B.28ABULENCIA 06M sear h for new parti le with lepton avor violating de ay at √

s =1.96 TeV. See their Fig. 4 for an ex lusion plot on a mass- oupling plane.29 Sear h for narrow resonan e de aying to t t . See their Fig. 2 for limit on σ · B.30BARGER 03B use the nu leosynthesis bound on the ee tive number of light neutrinoδNν . See their Figs. 45 for limits in general E6 motivated models.31CHO 00 use various ele troweak data to onstrain Z ′ models assuming mH=100 GeV.See Fig. 2 for limits in general E6-motivated models.32CHO 98 study onstraints on four-Fermi onta t intera tions obtained from low-energyele troweak experiments, assuming no Z -Z ′ mixing.33 Sear h for Z ′ de aying to dijets at √s=1.8 TeV. For Z ′ with ele tromagneti strength oupling, no bound is obtained.Indire t Constraints on Kaluza-Klein Gauge BosonsIndire t Constraints on Kaluza-Klein Gauge BosonsIndire t Constraints on Kaluza-Klein Gauge BosonsIndire t Constraints on Kaluza-Klein Gauge BosonsBounds on a Kaluza-Klein ex itation of the Z boson or photon in d=1 extra dimension.These bounds an also be interpreted as a lower bound on 1/R, the size of the extradimension. Unless otherwise stated, bounds assume all fermions live on a single braneand all gauge elds o upy the 4+d-dimensional bulk. See also the se tion on \ExtraDimensions" in the \Sear hes" Listings in this Review.VALUE (TeV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •

> 4.7 1 MUECK 02 RVUE Ele troweak> 3.3 95 2 CORNET 00 RVUE e ν qq′>5000 3 DELGADO 00 RVUE ǫK> 2.6 95 4 DELGADO 00 RVUE Ele troweak> 3.3 95 5 RIZZO 00 RVUE Ele troweak> 2.9 95 6 MARCIANO 99 RVUE Ele troweak> 2.5 95 7 MASIP 99 RVUE Ele troweak> 1.6 90 8 NATH 99 RVUE Ele troweak> 3.4 95 9 STRUMIA 99 RVUE Ele troweak1MUECK 02 limit is 2σ and is from global ele troweak t ignoring orrelations amongobservables. Higgs is assumed to be onned on the brane and its mass is xed. For s e-narios of bulk Higgs, of brane-SU(2)L , bulk-U(1)Y , and of bulk-SU(2)L , brane-U(1)Y ,the orresponding limits are > 4.6 TeV, > 4.3 TeV and > 3.0 TeV, respe tively.2Bound is derived from limits on e ν qq′ onta t intera tion, using data from HERA andthe Tevatron.3Bound holds only if rst two generations of quarks lives on separate branes. If quarkmixing is not omplex, then bound lowers to 400 TeV from mK .4 See Figs. 1 and 2 of DELGADO 00 for several model variations. Spe ial boundary on-ditions an be found whi h permit KK states down to 950 GeV and that agree with themeasurement of QW (Cs). Quoted bound assumes all Higgs bosons onned to brane;pla ing one Higgs doublet in the bulk lowers bound to 2.3 TeV.5Bound is derived from global ele troweak analysis assuming the Higgs eld is trapped onthe matter brane. If the Higgs propagates in the bulk, the bound in reases to 3.8 TeV.6Bound is derived from global ele troweak analysis but onsidering only presen e of theKK W bosons.7Global ele troweak analysis used to obtain bound independent of position of Higgs onbrane or in bulk.8Bounds from ee t of KK states on GF , α, MW , and MZ . Hard uto at string s aledetermined using gauge oupling uni ation. Limits for d=2,3,4 rise to 3.5, 5.7, and 7.8TeV.9Bound obtained for Higgs onned to the matter brane with mH=500 GeV. For Higgsin the bulk, the bound in reases to 3.5 TeV.LEPTOQUARKS

Updated September 2015 by S. Rolli (US Department of Energy)and M. Tanabashi (Nagoya U.)

Leptoquarks are hypothetical particles carrying both baryon

number (B) and lepton number (L). The possible quantum num-

bers of leptoquark states can be restricted by assuming that

their direct interactions with the ordinary SM fermions are di-

mensionless and invariant under the standard model (SM) gauge

group. Table 1 shows the list of all possible quantum numbers

with this assumption [1]. The columns of SU(3)C , SU(2)W ,

and U(1)Y in Table 1 indicate the QCD representation, the

weak isospin representation, and the weak hypercharge, respec-

tively. The spin of a leptoquark state is taken to be 1 (vector

leptoquark) or 0 (scalar leptoquark).

Table 1: Possible leptoquarks and their quan-tum numbers.

Spin 3B + L SU(3)c SU(2)W U(1)Y Allowed coupling

0 −2 3 1 1/3 qcLℓL or uc

ReR

0 −2 3 1 4/3 dcReR

0 −2 3 3 1/3 qcLℓL

1 −2 3 2 5/6 qcLγµeR or dc

RγµℓL

1 −2 3 2 −1/6 ucRγµℓL

0 0 3 2 7/6 qLeR or uRℓL

0 0 3 2 1/6 dRℓL

1 0 3 1 2/3 qLγµℓL or dRγµeR

1 0 3 1 5/3 uRγµeR

1 0 3 3 2/3 qLγµℓL

Page 69: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

679679679679See key on page 601 Gauge&Higgs Boson Parti le ListingsNew Heavy BosonsIf we do not require leptoquark states to couple directly

with SM fermions, different assignments of quantum numbers

become possible [2,3].

Leptoquark states are expected to exist in various exten-

sions of SM. The Pati-Salam model [4] is an example predicting

the existence of a leptoquark state. Vector leptoquark states

also exist in grand unification theories based on SU(5) [5],

SO(10) [6], which includes Pati-Salam color SU(4), and larger

gauge groups. Scalar quarks in supersymmetric models with

R-parity violation may also have leptoquark-type Yukawa cou-

plings. The bounds on the leptoquark states can therefore be

applied to constrain R-parity-violating supersymmetric models.

Scalar leptoquarks are expected to exist at TeV scale in ex-

tended technicolor models [7,8] where leptoquark states appear

as the bound states of techni-fermions. Compositeness of quarks

and leptons also provides examples of models which may have

light leptoquark states [9].

Bounds on leptoquark states are obtained both directly and

indirectly. Direct limits are from their production cross sections

at colliders, while indirect limits are calculated from the bounds

on the leptoquark-induced four-fermion interactions, which are

obtained from low-energy experiments, or from collider experi-

ments below threshold.

If a leptoquark couples to fermions belonging to more

than a single generation in the mass eigenbasis of the

SM fermions, it can induce four-fermion interactions caus-

ing flavor-changing neutral currents and lepton-family-number

violations. The quantum number assignment of Table 1 al-

lows several leptoquark states to couple to both left- and

right-handed quarks simultaneously. Such leptoquark states are

called non-chiral and may cause four-fermion interactions af-

fecting the (π → eν)/(π → µν) ratio [10]. Non-chiral scalar

leptoquarks also contribute to the muon anomalous magnetic

moment [11,12]. Since indirect limits provide more stringent

constraints on these types of leptoquarks, it is often assumed

that a leptoquark state couples only to a single generation

in a chiral interaction, for which indirect limits become much

weaker. Additionally, this assumption gives strong constraints

on concrete models of leptoquarks.

Leptoquark states which couple only to left- or right-

handed quarks are called chiral leptoquarks. Leptoquark states

which couple only to the first (second, third) generation

are referred as the first- (second-, third-) generation lepto-

quarks. Refs. [13,14] give extensive lists of the bounds on the

leptoquark-induced four-fermion interactions. For the isoscalar

and vector leptoquarks S0 and V0, for example, which cou-

ple with the first- (second-) generation left-handed quark,

and the first-generation left-handed lepton, the bounds of

Ref. 13 read λ2 < 0.03 × (MLQ/300 GeV)2 for S0, and

λ2 < 0.02×(MLQ/300 GeV)2 for V0 (λ2 < 5×(MLQ/300 GeV)2

for S0, and λ2 < 3 × (MLQ/300 GeV)2 for V0) with λ be-

ing the leptoquark coupling strength. The e+e− experiments

are sensitive to the indirect effects coming from t- and u-

channel exchanges of leptoquarks in the e+e− → qq process.

The HERA experiments give bounds on the leptoquark-induced

four-fermion interaction. For detailed bounds obtained in this

way, see the Boson Particle Listings for “Indirect Limits for

Leptoquarks” and its references.

Collider experiments provide direct limits on the lepto-

quark states through limits on the pair- and single-production

cross sections. The leading-order cross sections of the parton

processes

q + q → LQ + LQ

g + g → LQ + LQ

e + q → LQ (1)

may be written as [15]

σLO

[qq → LQ + LQ

]=

2α2sπ

27sβ3,

σLO

[gg → LQ + LQ

]=

α2sπ

96s

×[β(41 − 31β2) + (18β2 − β4 − 17) log

1 + β

1 − β

],

σLO

[eq → LQ

]=

πλ2

4δ(s − M2

LQ) (2)

for a scalar leptoquark. Here√

s is the invariant energy of the

parton subprocess, and β ≡√

1 − 4M2LQ/s. The leptoquark

Yukawa coupling is given by λ. Leptoquarks are also produced

singly at hadron colliders through g + q → LQ + ℓ [16], which

allows extending to higher masses the collider reach in the

leptoquark search [17], depending on the leptoquark Yukawa

coupling.

The LHC, Tevatron and LEP experiments search for pair

production of the leptoquark states, which arises from the

leptoquark gauge interaction. The searches are carried on in

signatures including high PT leptons, ET jets and large missing

transverse energy, due to the typical decay of the leptoquark.

The gauge couplings of a scalar leptoquark are determined

uniquely according to its quantum numbers in Table 1. Since

all of the leptoquark states belong to color-triplet representa-

tion, the scalar leptoquark pair-production cross section at the

Tevatron and LHC can be determined solely as a function of

the leptoquark mass without making further assumptions. This

is in contrast to the indirect or single-production limits, which

give constraints in the leptoquark mass-coupling plane. For the

first- and second-generation scalar leptoquark states with de-

caying branching fraction β = B(eq) = 1 and β = B(µq) = 1,

the CDF and DØ experiments obtain the lower bounds on

the leptoquark mass > 236 GeV (first generation, CDF) [18],

> 299 GeV (first generation, DØ) [19], > 226 GeV (second

generation, CDF) [20], and > 316 GeV (second generation,

DØ) [21] at 95% CL. Third generation leptoquark mass bounds

come from the DØ experiment [22] which sets a limit at 247 GeV

for a charge −1/3 third generation scalar leptoquark, at 95%

C.L.

Page 70: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

680680680680Gauge&Higgs Boson Parti le ListingsNew Heavy BosonsRecent results from the LHC proton-proton collider, running

at a center of mass energy of 7 and 8 TeV, extend previous

Tevatron mass limits for scalar leptoquarks to > 830 GeV (first

generation, CMS, β =1,√

s = 7 TeV) and > 640 GeV(first

generation, CMS, β =0.5,√

s = 7 TeV) [23]; > 1050 GeV (first

generation, ATLAS, β =1,,√

s = 8 TeV) and > 900 GeV (first

generation, ATLAS, β =0.5,√

s = 8 TeV) [24]; > 1070 GeV

(second generation, CMS, β =1,√

s = 7 TeV) [25] and >

785 GeV (second generation, CMS, β =0.5,√

s = 7 TeV) [25];

and > 1000 GeV (second generation, ATLAS, β =1,√

s = 8

TeV) and > 850 GeV (second generation, ATLAS, β =0.5,√

s =

8 TeV) [24]. All limits at 95% C.L.

As for third generation leptoquarks, CMS results are the

following: 1) assuming that all leptoquarks decay to a top quark

and a τ lepton, the existence of pair produced, third-generation

leptoquarks up to a mass of 685 GeV (β =1) is excluded at 95%

confidence level [26]; 2) assuming that all leptoquarks decay to

a bottom quark and a τ lepton, the existence of pair produced,

third-generation leptoquarks up to a mass of 740 GeV (β =1)

is excluded at 95% confidence level [27]; 3)assuming that all

leptoquarks decay to a bottom quark and a τ neutrino, the

existence of pair produced, third-generation leptoquarks up to

a mass of 450 GeV (β =0.5)is excluded at 95% confidence

level [28].

The ATLAS collaboration has a limit on third generation

scalar leptoquark for the case of β =1 of 525 GeV [29] and

625 GeV for third-generation leptoquarks in the bottom τ neu-

trino channel, and 640 GeV in the top τ neutrino channel [24].

The magnetic-dipole-type and the electric-quadrupole-type

interactions of a vector leptoquark are not determined even if

we fix its gauge quantum numbers as listed in the Table [30].

The production of vector leptoquarks depends in general on

additional assumptions that the leptoquark couplings and their

pair-production cross sections are enhanced relative to the scalar

leptoquark contributions. At the Tevatron for instance, since

the acceptance for vector and scalar leptoquark detection is

similar, limits on the vector leptoquark mass will be more strin-

gent (see for example [36,19]) . The leptoquark pair-production

cross sections in e+e− collisions depend on the leptoquark

SU(2)×U(1) quantum numbers and Yukawa coupling with elec-

tron [31]. The OPAL experiment sets mass bounds on various

leptoquark states from the pair-production cross sections [32].

For a second-generation weak-isosinglet weak-hypercharge −4/3

scalar-leptoquark state, for example, the OPAL pair-production

bound is MLQ > 100 GeV/c2 at 95% C.L. The LEP experi-

ments also searched for the single production of the leptoquark

states from the process eγ → LQ + q.

The most stringent searches for the leptoquark single pro-

duction are performed by the HERA experiments. Since the lep-

toquark single-production cross section depends on its Yukawa

coupling, the leptoquark mass limits from HERA are usually

displayed in the mass-coupling plane. For leptoquark Yukawa

coupling λ = 0.1, the ZEUS bounds on the first-generation

leptoquarks range from 248 to 290 GeV, depending on the lep-

toquark species [33]. Recently the H1 Collaboration released a

comprehensive summary of searches for first generation lepto-

quarks using the full data sample collected in ep collisions at

HERA (446 pb−1). No evidence of production of leptoquarks

is observed in final states with a large transverse momentum

electron or large missing transverse momentum. For a coupling

strength λ = 0.3, first generation leptoquarks with masses up

to 800 GeV are excluded at 95% C.L. [35]

The search for LQ will be continued with more LHC data.

Early feasability studies by the LHC experiments ATLAS [37]

and CMS [38] indicate that clear signals can be established

for masses up to about M(LQ) 1.3 to 1.4 TeV for first- and

second-generation scalar LQ, with a likely final reach 1.5 TeV,

for collisions at 14 TeV in the center of mass.

Reference

1. W. Buchmuller, R. Ruckl, and D. Wyler, Phys. Lett.B191, 442 (1987).

2. K.S. Babu, C.F. Kolda, and J. March-Russell, Phys. Lett.B408, 261 (1997).

3. J.L. Hewett and T.G. Rizzo, Phys. Rev. D58, 055005(1998).

4. J.C. Pati and A. Salam, Phys. Rev. D10, 275 (1974).

5. H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438(1974).

6. H. Georgi, AIP Conf. Porc. 23, 575 (1975);H. Fritzsch and P. Minkowski, Ann. Phys. 93, 193 (1975).

7. For a review, see, E. Farhi and L. Susskind, Phys. Reports74, 277 (1981).

8. K. Lane and M. Ramana, Phys. Rev. D44, 2678 (1991).

9. See, for example, B. Schremp and F. Schremp, Phys. Lett.153B, 101 (1985).

10. O. Shanker, Nucl. Phys. B204, 375, (1982).

11. U. Mahanta, Eur. Phys. J. C21, 171 (2001) [Phys. Lett.B515, 111 (2001)].

12. K. Cheung, Phys. Rev. D64, 033001 (2001).

13. S. Davidson, D.C. Bailey, and B.A. Campbell, Z. Phys.C61, 613 (1994).

14. M. Leurer, Phys. Rev. D49, 333 (1994);Phys. Rev. D50, 536 (1994).

15. T. Plehn et al., Z. Phys. C74, 611 (1997);M. Kramer et al., Phys. Rev. Lett. 79, 341 (1997); andreferences therein.

16. J.L. Hewett and S. Pakvasa, Phys. Rev. D37, 3165 (1988);O.J.P. Eboli and A.V. Olinto, Phys. Rev. D38, 3461(1988);A. Dobado, M.J. Herrero, and C. Munoz, Phys. Lett.207B, 97 (1988);V.D. Barger et al., Phys. Lett. B220, 464 (1989);M. De Montigny and L. Marleau, Phys. Rev. D40, 2869(1989) [Erratum-ibid. D56, 3156 (1997)].

17. A. Belyaev et al., JHEP 0509, 005 (2005).

18. D. Acosta et al. [CDF Collab.], Phys. Rev. D72, 051107(2005).

19. V.M. Abazov et al. [DØCollab.], Phys. Lett. B681, 224(2009).

Page 71: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

681681681681See key on page 601 Gauge & Higgs Boson Parti le ListingsNew Heavy Bosons20. A. Abulencia et al. [CDF Collab.], Phys. Rev. D73, 051102

(2006).

21. V.M. Abazov et al. [DØCollab.], Phys. Lett. B671, 224(2009).

22. V.Abazov et al. [DØCollab.], Phys. Lett. B693, 95 (2010).

23. S. Chatrchyan et al. [CMS Collab.], Phys. Rev. D86,052013 (2012).

24. G.Aad et al. [ATLAS Collab.], arXiv:1508.04735v1.

25. S. Chatrchyan et al. [CMS Collab.], CMS PAS EXO-12-042(2013).

26. V. Khachatryan et al. [CMS Collab.], JHEP 07, 042(2015).

27. V. Khachatryan et al. [CMS Collab.], Phys. Lett. B739,229 (2014).

28. S. Chatrchyan et al. [CMS Collab.], JHEP 012, 055 (2012).

29. G. Aad et al. [ATLAS Collab.], JHEP 06, 033 (2013).

30. J. Blumlein, E. Boos, and A. Kryukov, Z. Phys. C76, 137(1997).

31. J. Blumlein and R. Ruckl, Phys. Lett. B304, 337 (1993).

32. G. Abbiendi et al. [OPAL Collab.], Eur. Phys. J. C31, 281(2003).

33. S. Chekanov et al. [ZEUS Collab.], Phys. Rev. D68,052004 (2003).

34. A. Aktas et al. [H1 Collab.], Phys. Lett. B629, 9 (2005).

35. F.D. Aaron et al. [H1 Collab.], Phys. Lett. B704, 388(2011).

36. T. Aalton et al. [CDF Collab.], Phys. Rev. D77, 091105(2008).

37. V.A. Mitsou et al., Czech. J. Phys. 55, B659 (2005).

38. S. Abdulin and F. Charles, Phys. Lett. B464, 223 (1999).MASS LIMITS for Leptoquarks from Pair Produ tionMASS LIMITS for Leptoquarks from Pair Produ tionMASS LIMITS for Leptoquarks from Pair Produ tionMASS LIMITS for Leptoquarks from Pair Produ tionThese limits rely only on the olor or ele troweak harge of the leptoquark.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT>1050>1050>1050>1050 95 1 AAD 16G ATLS First generation>1000>1000>1000>1000 95 2 AAD 16G ATLS Se ond generation> 625 95 3 AAD 16G ATLS Third generationnone 200640 95 4 AAD 16G ATLS Third generation> 685 95 5 KHACHATRY...15AJ CMS Third generation> 740> 740> 740> 740 95 6 KHACHATRY...14T CMS Third generation> 534 95 7 AAD 13AE ATLS Third generation> 830 95 8 CHATRCHYAN12AG CMS First generation> 840 95 9 CHATRCHYAN12AG CMS Se ond generation• • • We do not use the following data for averages, ts, limits, et . • • •> 525 95 10 CHATRCHYAN13M CMS Third generation> 660 95 11 AAD 12H ATLS First generation> 685 95 12 AAD 12O ATLS Se ond generation> 450 95 13 CHATRCHYAN12BO CMS Third generation> 376 95 14 AAD 11D ATLS Superseded by AAD 12H> 422 95 15 AAD 11D ATLS Superseded by AAD 12O> 326 95 16 ABAZOV 11V D0 First generation> 339 95 17 CHATRCHYAN11N CMS Superseded by CHA-TRCHYAN 12AG> 384 95 18 KHACHATRY...11D CMS Superseded by CHA-TRCHYAN 12AG> 394 95 19 KHACHATRY...11E CMS Superseded by CHA-TRCHYAN 12AG> 247 95 20 ABAZOV 10L D0 Third generation> 316 95 21 ABAZOV 09 D0 Se ond generation> 299 95 22 ABAZOV 09AF D0 Superseded by ABAZOV 11V23 AALTONEN 08P CDF Third generation> 153 95 24 AALTONEN 08Z CDF Third generation> 205 95 25 ABAZOV 08ADD0 All generations> 210 95 24 ABAZOV 08AN D0 Third generation> 229 95 26 ABAZOV 07J D0 Superseded by ABAZOV 10L> 251 95 27 ABAZOV 06A D0 Superseded by ABAZOV 09> 136 95 28 ABAZOV 06L D0 Superseded by ABAZOV 08AD> 226 95 29 ABULENCIA 06T CDF Se ond generation> 256 95 30 ABAZOV 05H D0 First generation> 117 95 25 ACOSTA 05I CDF First generation> 236 95 31 ACOSTA 05P CDF First generation> 99 95 32 ABBIENDI 03R OPAL First generation

> 100 95 32 ABBIENDI 03R OPAL Se ond generation> 98 95 32 ABBIENDI 03R OPAL Third generation> 98 95 33 ABAZOV 02 D0 All generations> 225 95 34 ABAZOV 01D D0 First generation> 85.8 95 35 ABBIENDI 00M OPAL Superseded by ABBIENDI 03R> 85.5 95 35 ABBIENDI 00M OPAL Superseded by ABBIENDI 03R> 82.7 95 35 ABBIENDI 00M OPAL Superseded by ABBIENDI 03R> 200 95 36 ABBOTT 00C D0 Se ond generation> 123 95 37 AFFOLDER 00K CDF Se ond generation> 148 95 38 AFFOLDER 00K CDF Third generation> 160 95 39 ABBOTT 99J D0 Se ond generation> 225 95 40 ABBOTT 98E D0 First generation> 94 95 41 ABBOTT 98J D0 Third generation> 202 95 42 ABE 98S CDF Se ond generation> 242 95 43 GROSS-PILCH...98 First generation> 99 95 44 ABE 97F CDF Third generation> 213 95 45 ABE 97X CDF First generation> 45.5 95 46,47 ABREU 93J DLPH First + se ond generation> 44.4 95 48 ADRIANI 93M L3 First generation> 44.5 95 48 ADRIANI 93M L3 Se ond generation> 45 95 48 DECAMP 92 ALEP Third generationnone 8.922.6 95 49 KIM 90 AMY First generationnone 10.223.2 95 49 KIM 90 AMY Se ond generationnone 520.8 95 50 BARTEL 87B JADEnone 720.5 95 51 BEHREND 86B CELL1AAD 16G sear h for s alar leptoquarks using e e j j events in ollisions at √

s = 8 TeV.The limit above assumes B(e q) = 1.2AAD 16G sear h for s alar leptoquarks using µµ j j events in ollisions at √s = 8 TeV.The limit above assumes B(µq) = 1.3AAD 16G sear h for s alar leptoquarks de aying to bν. The limit above assumes B(bν)= 1.4AAD 16G sear h for s alar leptoquarks de aying to t ν. The limit above assumes B(t ν)= 1.5KHACHATRYAN 15AJ sear h for s alar leptoquarks using τ τ t t events in pp ollisionsat √s = 8 TeV. The limit above assumes B(τ t) = 1.6KHACHATRYAN 14T sear h for s alar leptoquarks de aying to τ b using pp ollisionsat √s=8 TeV. The limit above assumes B(τ b) = 1. See their Fig. 5 for ex lusion limitas fun tion of B(τ b).7AAD 13AE sear h for s alar leptoquarks using τ τ bb events in pp ollisions at E m =7 TeV. The limit above assumes B(τ b) = 1.8CHATRCHYAN 12AG sear h for s alar leptoquarks using e e j j and e ν j j events in pp ollisions at E m = 7 TeV. The limit above assumes B(e q) = 1. For B(e q) = 0.5, thelimit be omes 640 GeV.9CHATRCHYAN 12AG sear h for s alar leptoquarks using µµ j j and µν j j events in pp ollisions at E m = 7 TeV. The limit above assumes B(µq) = 1. For B(µq) = 0.5, thelimit be omes 650 GeV.10CHATRCHYAN 13M sear h for s alar and ve tor leptoquarks de aying to τ b in pp ollisions at E m = 7 TeV. The limit above is for s alar leptoquarks with B(τ b) = 1.11AAD 12H sear h for s alar leptoquarks using e e j j and e ν j j events in pp ollisions atE m = 7 TeV. The limit above assumes B(e q) = 1. For B(e q) = 0.5, the limit be omes607 GeV.12AAD 12O sear h for s alar leptoquarks using µµ j j and µν j j events in pp ollisions atE m = 7 TeV. The limit above assumes B(µq) = 1. For B(µq) = 0.5, the limit be omes594 GeV.13CHATRCHYAN 12BO sear h for s alar leptoquarks de aying to ν b in pp ollisions at √s= 7 TeV. The limit above assumes B(ν b) = 1.14AAD 11D sear h for s alar leptoquarks using e e j j and e ν j j events in pp ollisions atE m = 7 TeV.The limit above assumes B(e q) = 1. For B(e q) = 0.5, the limit be omes319 GeV.15AAD 11D sear h for s alar leptoquarks using µµ j j and µν j j events in pp ollisions atE m = 7 TeV. The limit above assumes B(µq) = 1. For B(µq) = 0.5, the limit be omes362 GeV.16ABAZOV 11V sear h for s alar leptoquarks using e ν j j events in pp ollisions at E m= 1.96 TeV. The limit above assumes B(e q) = 0.5.17CHATRCHYAN 11N sear h for s alar leptoquarks using e ν j j events in pp ollisions atE m = 7 TeV. The limit above assumes B(e q) = 0.5.18KHACHATRYAN 11D sear h for s alar leptoquarks using e e j j events in pp ollisions atE m = 7 TeV. The limit above assumes B(e q) = 1.19KHACHATRYAN 11E sear h for s alar leptoquarks using µµ j j events in pp ollisions atE m = 7 TeV. The limit above assumes B(µq) = 1.20ABAZOV 10L sear h for pair produ tions of s alar leptoquark state de aying to ν b inpp ollisions at E m = 1.96 TeV. The limit above assumes B(ν b) = 1.21ABAZOV 09 sear h for s alar leptoquarks using µµ j j and µν j j events in pp ollisionsat E m = 1.96 TeV. The limit above assumes B(µq) = 1. For B(µq) = 0.5, the limitbe omes 270 GeV.22ABAZOV 09AF sear h for s alar leptoquarks using e e j j and e ν j j events in pp ollisionsat E m = 1.96 TeV. The limit above assumes B(e q) = 1. For B(e q) = 0.5 the boundbe omes 284 GeV.23AALTONEN 08P sear h for ve tor leptoquarks using τ+ τ− bb events in pp ollisionsat E m = 1.96 TeV. Assuming Yang-Mills (minimal) ouplings, the mass limit is >317GeV (251 GeV) at 95% CL for B(τ b) = 1.24 Sear h for pair produ tion of s alar leptoquark state de aying to τ b in pp ollisions atE m= 1.96 TeV. The limit above assumes B(τ b) = 1.25 Sear h for s alar leptoquarks using ν ν j j events in pp ollisions at E m = 1.96 TeV.The limit above assumes B(ν q) = 1.26ABAZOV 07J sear h for pair produ tions of s alar leptoquark state de aying to ν b inpp ollisions at E m = 1.96 TeV. The limit above assumes B(ν b) = 1.27ABAZOV 06A sear h for s alar leptoquarks using µµ j j events in pp ollisions at E m= 1.8 TeV and 1.96 TeV. The limit above assumes B(µq) = 1. For B(µq) = 0.5, thelimit be omes 204 GeV.28ABAZOV 06L sear h for s alar leptoquarks using ν ν j j events in pp ollisions at E m =1.8 TeV and at 1.96 TeV. The limit above assumes B(ν q) = 1.

Page 72: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

682682682682Gauge & Higgs Boson Parti le ListingsNew Heavy Bosons29ABULENCIA 06T sear h for s alar leptoquarks using µµ j j, µν j j, and ν ν j j events inpp ollisions at E m = 1.96 TeV. The quoted limit assumes B(µq) = 1. For B(µq) =0.5 or 0.1, the bound be omes 208 GeV or 143 GeV, respe tively. See their Fig. 4 for theex lusion limit as a fun tion of B(µq).30ABAZOV 05H sear h for s alar leptoquarks using e e j j and e ν j j events in p p ollisionsat E m = 1.8 TeV and 1.96 TeV. The limit above assumes B(e q) = 1. For B(e q) =0.5 the bound be omes 234 GeV.31ACOSTA 05P sear h for s alar leptoquarks using e e j j, e ν j j events in p p ollisions atE m = 1.96TeV. The limit above assumes B(e q) = 1. For B(e q) = 0.5 and 0.1, thebound be omes 205 GeV and 145 GeV, respe tively.32ABBIENDI 03R sear h for s alar/ve tor leptoquarks in e+ e− ollisions at √s = 189209GeV. The quoted limits are for harge −4/3 isospin 0 s alar-leptoquark with B(ℓq) = 1.See their table 12 for other ases.33ABAZOV 02 sear h for s alar leptoquarks using ν ν j j events in p p ollisions at E m=1.8TeV. The bound holds for all leptoquark generations. Ve tor leptoquarks are likewise onstrained to lie above 200 GeV.34ABAZOV 01D sear h for s alar leptoquarks using e ν j j , e e j j, and ν ν j j events in pp ollisions at E m=1.8 TeV. The limit above assumes B(e q)=1. For B(e q)=0.5 and 0,the bound be omes 204 and 79 GeV, respe tively. Bounds for ve tor leptoquarks are alsogiven. Supersedes ABBOTT 98E.35ABBIENDI 00M sear h for s alar/ve tor leptoquarks in e+ e− ollisions at √s=183 GeV.The quoted limits are for harge −4/3 isospin 0 s alar-leptoquarks with B(ℓq)=1. Seetheir Table 8 and Figs. 69 for other ases.36ABBOTT 00C sear h for s alar leptoquarks using µµ j j, µν j j, and ν ν j j events in pp ollisions at E m=1.8 TeV. The limit above assumes B(µq)=1. For B(µq)=0.5 and 0,the bound be omes 180 and 79 GeV respe tively. Bounds for ve tor leptoquarks are alsogiven.37AFFOLDER 00K sear h for s alar leptoquark using ν ν events in pp ollisions atE m=1.8 TeV. The quoted limit assumes B(ν )=1. Bounds for ve tor leptoquarks arealso given.38AFFOLDER 00K sear h for s alar leptoquark using ν ν bb events in pp ollisions atE m=1.8 TeV. The quoted limit assumes B(ν b)=1. Bounds for ve tor leptoquarks arealso given.39ABBOTT 99J sear h for leptoquarks using µν j j events in pp ollisions at E m= 1.8TeV.The quoted limit is for a s alar leptoquark with B(µq) = B(ν q) = 0.5. Limits on ve torleptoquarks range from 240 to 290 GeV.40ABBOTT 98E sear h for s alar leptoquarks using e ν j j , e e j j, and ν ν j j events in pp ollisions at E m=1.8 TeV. The limit above assumes B(e q)=1. For B(e q)=0.5 and 0,the bound be omes 204 and 79 GeV, respe tively.41ABBOTT 98J sear h for harge −1/3 third generation s alar and ve tor leptoquarks inpp ollisions at E m= 1.8 TeV. The quoted limit is for s alar leptoquark with B(ν b)=1.42ABE 98S sear h for s alar leptoquarks using µµ j j events in pp ollisions at E m=1.8 TeV. The limit is for B(µq)= 1. For B(µq)=B(ν q)=0.5, the limit is > 160 GeV.43GROSS-PILCHER 98 is the ombined limit of the CDF and D Collaborations as deter-mined by a joint CDF/D working group and reported in this FNAL Te hni al Memo.Original data published in ABE 97X and ABBOTT 98E.44ABE 97F sear h for third generation s alar and ve tor leptoquarks in pp ollisions atE m = 1.8 TeV. The quoted limit is for s alar leptoquark with B(τ b) = 1.45ABE 97X sear h for s alar leptoquarks using e e j j events in pp ollisions at E m=1.8TeV. The limit is for B(e q)=1.46 Limit is for harge −1/3 isospin-0 leptoquark with B(ℓq) = 2/3.47 First and se ond generation leptoquarks are assumed to be degenerate. The limit isslightly lower for ea h generation.48 Limits are for harge −1/3, isospin-0 s alar leptoquarks de aying to ℓ− q or ν q with anybran hing ratio. See paper for limits for other harge-isospin assignments of leptoquarks.49KIM 90 assume pair produ tion of harge 2/3 s alar-leptoquark via photon ex hange.The de ay of the rst (se ond) generation leptoquark is assumed to be any mixture ofd e+ and uν (s µ+ and ν). See paper for limits for spe i bran hing ratios.50BARTEL 87B limit is valid when a pair of harge 2/3 spinless leptoquarks X is produ edwith point oupling, and when they de ay under the onstraint B(X → νµ) + B(X →s µ+) = 1.51BEHREND 86B assumed that a harge 2/3 spinless leptoquark, χ, de ays either intosµ+ or ν: B(χ → sµ+) + B(χ → ν) = 1.MASS LIMITS for Leptoquarks from Single Produ tionMASS LIMITS for Leptoquarks from Single Produ tionMASS LIMITS for Leptoquarks from Single Produ tionMASS LIMITS for Leptoquarks from Single Produ tionThese limits depend on the q-ℓ-leptoquark oupling gLQ . It is often assumed thatg2LQ/4π=1/137. Limits shown are for a s alar, weak isos alar, harge −1/3 lepto-quark.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT>304>304>304>304 95 1 ABRAMOWICZ12A ZEUS First generation> 73> 73> 73> 73 95 2 ABREU 93J DLPH Se ond generation• • • We do not use the following data for averages, ts, limits, et . • • •3 AARON 11A H1 Lepton- avor violation>300 95 4 AARON 11B H1 First generation5 ABAZOV 07E D0 Se ond generation>295 95 6 AKTAS 05B H1 First generation7 CHEKANOV 05A ZEUS Lepton- avor violation>298 95 8 CHEKANOV 03B ZEUS First generation>197 95 9 ABBIENDI 02B OPAL First generation10 CHEKANOV 02 ZEUS Repl. by CHEKANOV 05A>290 95 11 ADLOFF 01C H1 First generation>204 95 12 BREITWEG 01 ZEUS First generation13 BREITWEG 00E ZEUS First generation>161 95 14 ABREU 99G DLPH First generation>200 95 15 ADLOFF 99 H1 First generation16 DERRICK 97 ZEUS Lepton- avor violation>168 95 17 DERRICK 93 ZEUS First generation

1ABRAMOWICZ 12A limit is for a s alar, weak isos alar, harge −1/3 leptoquark oupledwith eR . See their Figs. 1217 and Table 4 for states with dierent quantum numbers.2 Limit from single produ tion in Z de ay. The limit is for a leptoquark oupling ofele tromagneti strength and assumes B(ℓq) = 2/3. The limit is 77 GeV if rst andse ond leptoquarks are degenerate.3AARON 11A sear h for various leptoquarks with lepton- avor violating ouplings. Seetheir Figs. 23 and Tables 14 for detailed limits.4The quoted limit is for a s alar, weak isos alar, harge −1/3 leptoquark oupled witheR . See their Figs. 35 for limits on states with dierent quantum numbers.5ABAZOV 07E sear h for leptoquark single produ tion through qg fusion pro ess in pp ollisions. See their Fig. 4 for ex lusion plot in mass- oupling plane.6AKTAS 05B limit is for a s alar, weak isos alar, harge −1/3 leptoquark oupled witheR . See their Fig. 3 for limits on states with dierent quantum numbers.7CHEKANOV 05 sear h for various leptoquarks with lepton- avor violating ouplings. Seetheir Figs.610 and Tables 18 for detailed limits.8CHEKANOV 03B limit is for a s alar, weak isos alar, harge −1/3 leptoquark oupledwith eR . See their Figs. 1112 and Table 5 for limits on states with dierent quantumnumbers.9 For limits on states with dierent quantum numbers and the limits in the mass- ouplingplane, see their Fig. 4 and Fig. 5.10CHEKANOV 02 sear h for various leptoquarks with lepton- avor violating ouplings. Seetheir Figs. 67 and Tables 56 for detailed limits.11 For limits on states with dierent quantum numbers and the limits in the mass- ouplingplane, see their Fig. 3.12 See their Fig. 14 for limits in the mass- oupling plane.13BREITWEG 00E sear h for F=0 leptoquarks in e+ p ollisions. For limits in mass- oupling plane, see their Fig. 11.14ABREU 99G limit obtained from pro ess e γ → LQ+q. For limits on ve tor and s alarstates with dierent quantum numbers and the limits in the oupling-mass plane, seetheir Fig. 4 and Table 2.15 For limits on states with dierent quantum numbers and the limits in the mass- ouplingplane, see their Fig. 13 and Fig. 14. ADLOFF 99 also sear h for leptoquarks with lepton- avor violating ouplings. ADLOFF 99 supersedes AID 96B.16DERRICK 97 sear h for various leptoquarks with lepton- avor violating ouplings. Seetheir Figs. 58 and Table 1 for detailed limits.17DERRICK 93 sear h for single leptoquark produ tion in e p ollisions with the de ay e qand ν q. The limit is for leptoquark oupling of ele tromagneti strength and assumesB(e q) = B(ν q) = 1/2. The limit for B(e q) = 1 is 176 GeV. For limits on states withdierent quantum numbers, see their Table 3.Indire t Limits for LeptoquarksIndire t Limits for LeptoquarksIndire t Limits for LeptoquarksIndire t Limits for LeptoquarksVALUE (TeV) CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •1 BESSAA 15 RVUE qq → e+ e−

> 14 95 2 SAHOO 15A RVUE B s,d → µ+µ−3 SAKAKI 13 RVUE B → D(∗) τ ν, B → Xs ν ν4 KOSNIK 12 RVUE b → s ℓ+ ℓ−> 2.5 95 5 AARON 11C H1 First generation6 DORSNER 11 RVUE s alar, weak singlet, harge 4/37 AKTAS 07A H1 Lepton- avor violation> 0.49 95 8 SCHAEL 07A ALEP e+ e− → qq9 SMIRNOV 07 RVUE K → e µ, B → e τ10 CHEKANOV 05A ZEUS Lepton- avor violation> 1.7 96 11 ADLOFF 03 H1 First generation> 46 90 12 CHANG 03 BELL Pati-Salam type13 CHEKANOV 02 ZEUS Repl. by CHEKANOV 05A> 1.7 95 14 CHEUNG 01B RVUE First generation> 0.39 95 15 ACCIARRI 00P L3 e+ e− → qq> 1.5 95 16 ADLOFF 00 H1 First generation> 0.2 95 17 BARATE 00I ALEP Repl. by SCHAEL 07A18 BARGER 00 RVUE Cs19 GABRIELLI 00 RVUE Lepton avor violation> 0.74 95 20 ZARNECKI 00 RVUE S1 leptoquark21 ABBIENDI 99 OPAL> 19.3 95 22 ABE 98V CDF Bs → e±µ∓, Pati-Salam type23 ACCIARRI 98J L3 e+ e− → qq24 ACKERSTAFF 98V OPAL e+ e− → qq, e+ e− → bb> 0.76 95 25 DEANDREA 97 RVUE R2 leptoquark26 DERRICK 97 ZEUS Lepton- avor violation27 GROSSMAN 97 RVUE B → τ+ τ− (X)28 JADACH 97 RVUE e+ e− → qq>1200 29 KUZNETSOV 95B RVUE Pati-Salam type30 MIZUKOSHI 95 RVUE Third generation s alar leptoquark> 0.3 95 31 BHATTACH... 94 RVUE Spin-0 leptoquark oupled to eR tL32 DAVIDSON 94 RVUE> 18 33 KUZNETSOV 94 RVUE Pati-Salam type> 0.43 95 34 LEURER 94 RVUE First generation spin-1 leptoquark> 0.44 95 34 LEURER 94B RVUE First generation spin-0 leptoquark35 MAHANTA 94 RVUE P and T violation> 1 36 SHANKER 82 RVUE Non hiral spin-0 leptoquark> 125 36 SHANKER 82 RVUE Non hiral spin-1 leptoquark1BESSAA 15 obtain limit on leptoquark indu ed four-fermion intera tions from the ATLASand CMS limit on the q qe e onta t intera tions.2 SAHOO 15A obtain limit on leptoquark indu ed four-fermion intera tions from B s,d →

µ+µ− for λ ≃ O(1).3 SAKAKI 13 explain the B → D(∗) τ ν anomaly using Wilson oeÆ ients of leptoquark-indu ed four-fermion operators.

Page 73: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

683683683683See key on page 601 Gauge & Higgs Boson Parti le ListingsNew Heavy Bosons4KOSNIK 12 obtains limits on leptoquark indu ed four-fermion intera tions from b →s ℓ+ ℓ− de ays.5AARON 11C limit is for weak isotriplet spin-0 leptoquark at strong oupling λ = √4π.For the limits of leptoquarks with dierent quantum numbers, see their Table 3. Limitsare derived from bounds of e q onta t interera tions.6DORSNER 11 give bounds on s alar, weak singlet, harge 4/3 leptoquark from K , B, τde ays, meson mixings, LFV, g−2 and Z → bb.7AKTAS 07A sear h for lepton- avor violation in e p ollision. See their Tables 47 forlimits on lepton- avor violating four-fermion intera tions indu ed by various leptoquarks.8 SCHAEL 07A limit is for the weak-isos alar spin-0 left-handed leptoquark with the ou-pling of ele tromagneti strength. For the limits of leptoquarks with dierent quantumnumbers, see their Table 35.9 SMIRNOV 07 obtains mass limits for the ve tor and s alar hiral leptoquark states fromK → e µ, B → e τ de ays.10CHEKANOV 05 sear h for various leptoquarks with lepton- avor violating ouplings. Seetheir Figs.610 and Tables 18 for detailed limits.11ADLOFF 03 limit is for the weak isotriplet spin-0 leptoquark at strong oupling λ=√4π.For the limits of leptoquarks with dierent quantum numbers, see their Table 3. Limitsare derived from bounds on e± q onta t intera tions.12The bound is derived from B(B0 → e±µ∓) < 1.7× 10−7.13CHEKANOV 02 sear h for lepton- avor violation in e p ollisions. See their Tables 14for limits on lepton- avor violating and four-fermion intera tions indu ed by variousleptoquarks.14CHEUNG 01B quoted limit is for a s alar, weak isos alar, harge −1/3 leptoquark witha oupling of ele tromagneti strength. The limit is derived from bounds on onta tintera tions in a global ele troweak analysis. For the limits of leptoquarks with dierentquantum numbers, see Table 5.15ACCIARRI 00P limit is for the weak isos alar spin-0 leptoquark with the oupling ofele tromagneti strength. For the limits of leptoquarks with dierent quantum numbers,see their Table 4.16ADLOFF 00 limit is for the weak isotriplet spin-0 leptoquark at strong oupling,λ=√4π. For the limits of leptoquarks with dierent quantum numbers, see their Table 2.ADLOFF 00 limits are from the Q2 spe trum measurement of e+ p → e+X.17BARATE 00I sear h for deviations in ross se tion and jet- harge asymmetry in e+ e− →q q due to t- hannel ex hange of a leptoquark at √s=130 to 183 GeV. Limits for others alar and ve tor leptoquarks are also given in their Table 22.18BARGER 00 explain the deviation of atomi parity violation in esium atoms from pre-di tion is explained by s alar leptoquark ex hange.19GABRIELLI 00 al ulate various pro ess with lepton avor violation in leptoquark models.20ZARNECKI 00 limit is derived from data of HERA, LEP, and Tevatron and from variouslow-energy data in luding atomi parity violation. Leptoquark oupling with ele tromag-neti strength is assumed.21ABBIENDI 99 limits are from e+ e− → qq ross se tion at 130136, 161172, 183GeV. See their Fig. 8 and Fig. 9 for limits in mass- oupling plane.22ABE 98V quoted limit is from B(Bs → e±µ∓)< 8.2 × 10−6. ABE 98V also obtaina similar limit on MLQ > 20.4 TeV from B(Bd → e±µ∓)< 4.5 × 10−6. Bothbounds assume the non- anoni al asso iation of the b quark with ele trons or muonsunder SU(4).23ACCIARRI 98J limit is from e+ e− → qq ross se tion at √s= 130172 GeV whi h an be ae ted by the t- and u- hannel ex hanges of leptoquarks. See their Fig. 4 andFig. 5 for limits in the mass- oupling plane.24ACKERSTAFF 98V limits are from e+ e− → qq and e+ e− → bb ross se tions at √s= 130172 GeV, whi h an be ae ted by the t- and u- hannel ex hanges of leptoquarks.See their Fig. 21 and Fig. 22 for limits of leptoquarks in mass- oupling plane.25DEANDREA 97 limit is for R2 leptoquark obtained from atomi parity violation (APV).The oupling of leptoquark is assumed to be ele tromagneti strength. See Table 2 forlimits of the four-fermion intera tions indu ed by various s alar leptoquark ex hange.DEANDREA 97 ombines APV limit and limits from Tevatron and HERA. See Fig. 14for ombined limits of leptoquark in mass- oupling plane.26DERRICK 97 sear h for lepton- avor violation in e p ollision. See their Tables 25 forlimits on lepton- avor violating four-fermion intera tions indu ed by various leptoquarks.27GROSSMAN 97 estimate the upper bounds on the bran hing fra tion B → τ+ τ− (X)from the absen e of the B de ay with large missing energy. These bounds an be usedto onstrain leptoquark indu ed four-fermion intera tions.28 JADACH 97 limit is from e+ e− → qq ross se tion at √s=172.3 GeV whi h an beae ted by the t- and u- hannel ex hanges of leptoquarks. See their Fig. 1 for limits onve tor leptoquarks in mass- oupling plane.29KUZNETSOV 95B use π, K , B, τ de ays and µe onversion and give a list of boundson the leptoquark mass and the fermion mixing matrix in the Pati-Salam model. Thequoted limit is from KL → µe de ay assuming zero mixing.30MIZUKOSHI 95 al ulate the one-loop radiative orre tion to the Z -physi s parametersin various s alar leptoquark models. See their Fig. 4 for the ex lusion plot of thirdgeneration leptoquark models in mass- oupling plane.31BHATTACHARYYA 94 limit is from one-loop radiative orre tion to the leptoni de aywidth of the Z . mH=250 GeV, αs (mZ )=0.12, mt=180 GeV, and the ele troweakstrength of leptoquark oupling are assumed. For leptoquark oupled to eL tR , µt, andτ t, see Fig. 2 in BHATTACHARYYA 94B erratum and Fig. 3.32DAVIDSON 94 gives an extensive list of the bounds on leptoquark-indu ed four-fermionintera tions from π, K , D, B, µ, τ de ays and meson mixings, et . See Table 15 ofDAVIDSON 94 for detail.33KUZNETSOV 94 gives mixing independent bound of the Pati-Salam leptoquark fromthe osmologi al limit on π0 → ν ν.34 LEURER 94, LEURER 94B limits are obtained from atomi parity violation and apply toany hiral leptoquark whi h ouples to the rst generation with ele tromagneti strength.For a non hiral leptoquark, universality in πℓ2 de ay provides a mu h more stringentbound.35MAHANTA 94 gives bounds of P- and T-violating s alar-leptoquark ouplings fromatomi and mole ular experiments.36 From (π → e ν)/(π → µν) ratio. SHANKER 82 assumes the leptoquark indu edfour-fermion oupling 4g2/M2 (νeL uR ) (dL eR )with g=0.004 for spin-0 leptoquarkand g2/M2 (νeL γµ uL) (dR γµ eR ) with g≃ 0.6 for spin-1 leptoquark.MASS LIMITS for DiquarksMASS LIMITS for DiquarksMASS LIMITS for DiquarksMASS LIMITS for DiquarksVALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>4700 (CL = 95%) OUR LIMIT>4700 (CL = 95%) OUR LIMIT>4700 (CL = 95%) OUR LIMIT>4700 (CL = 95%) OUR LIMITnone 12004700none 12004700none 12004700none 12004700 95 1 KHACHATRY...15V CMS E6 diquark

• • • We do not use the following data for averages, ts, limits, et . • • •>3750 95 2 CHATRCHYAN13A CMS E6 diquarknone 10004280 95 3 CHATRCHYAN13AS CMS Superseded by KHACHA-TRYAN 15V>3520 95 4 CHATRCHYAN11Y CMS Superseded by CHA-TRCHYAN 13Anone 9701080,14501600 95 5 KHACHATRY...10 CMS Superseded by CHA-TRCHYAN 13Anone 290630 95 6 AALTONEN 09AC CDF E6 diquarknone 290420 95 7 ABE 97G CDF E6 diquarknone 1531.7 95 8 ABREU 94O DLPH SUSY E6 diquark1KHACHATRYAN 15V sear h for resonan es de aying to dijets in pp ollisions at √s =8 TeV.2CHATRCHYAN 13A sear h for new resonan e de aying to dijets in pp ollisions at √s= 7 TeV.3CHATRCHYAN 13AS sear h for new resonan e de aying to dijets in pp ollisions at √s= 8 TeV.4CHATRCHYAN 11Y sear h for new resonan e de aying to dijets in pp ollisions at√

s= 7 TeV.5KHACHATRYAN 10 sear h for new resonan e de aying to dijets in pp ollisions at√s= 7 TeV.6AALTONEN 09AC sear h for new narrow resonan e de aying to dijets.7ABE 97G sear h for new parti le de aying to dijets.8ABREU 94O limit is from e+ e− → s s . Range extends up to 43 GeV if diquarks aredegenerate in mass.MASS LIMITS for gA (axigluon) and Other Color-O tet Gauge BosonsMASS LIMITS for gA (axigluon) and Other Color-O tet Gauge BosonsMASS LIMITS for gA (axigluon) and Other Color-O tet Gauge BosonsMASS LIMITS for gA (axigluon) and Other Color-O tet Gauge BosonsAxigluons are massive olor-o tet gauge bosons in hiral olor models and have axial-ve tor oupling to quarks with the same oupling strength as gluons.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>3600 (CL = 95%) OUR LIMIT>3600 (CL = 95%) OUR LIMIT>3600 (CL = 95%) OUR LIMIT>3600 (CL = 95%) OUR LIMITnone 13003600none 13003600none 13003600none 13003600 95 1 KHACHATRY...15V CMS pp → gAX , gA → 2j• • • We do not use the following data for averages, ts, limits, et . • • •>2800 95 2 KHACHATRY...16E CMS pp → gKK X , gKK →t t3 KHACHATRY...15AV CMS pp → 00 → bbZ g4 AALTONEN 13R CDF pp → gAX , gA → σσ,

σ → 2j>3360 95 5 CHATRCHYAN13A CMS pp → gAX, gA → 2jnone 10003270 95 6 CHATRCHYAN13AS CMS Superseded by KHACHA-TRYAN 15Vnone 250740 95 7 CHATRCHYAN13AU CMS pp → 2gAX ,gA → 2j> 775 95 8 ABAZOV 12R D0 pp → gAX , gA → t t>2470 95 9 CHATRCHYAN11Y CMS Superseded by CHA-TRCHYAN 13A10 AALTONEN 10L CDF pp → gAX , gA → t tnone 14701520 95 11 KHACHATRY...10 CMS Superseded by CHA-TRCHYAN 13Anone 2601250 95 12 AALTONEN 09AC CDF pp → gAX, gA → 2j> 910 95 13 CHOUDHURY 07 RVUE pp → t t X> 365 95 14 DONCHESKI 98 RVUE (Z → hadron)none 200980 95 15 ABE 97G CDF pp → gAX, gA → 2jnone 200870 95 16 ABE 95N CDF pp → gAX, gA → qqnone 240640 95 17 ABE 93G CDF pp → gAX, gA → 2j> 50 95 18 CUYPERS 91 RVUE σ(e+ e− → hadrons)none 120210 95 19 ABE 90H CDF pp → gAX, gA → 2j> 29 20 ROBINETT 89 THEO Partial-wave unitaritynone 150310 95 21 ALBAJAR 88B UA1 pp → gAX, gA → 2j> 20 BERGSTROM 88 RVUE pp → X via gAg> 9 22 CUYPERS 88 RVUE de ay> 25 23 DONCHESKI 88B RVUE de ay1KHACHATRYAN 15V sear h for resonan es de aying to dijets in pp ollisions at √s =8 TeV.2KHACHATRYAN 16E sear h for KK gluon de aying to t t in pp ollisions at √

s = 8TeV.3KHACHATRYAN 15AV sear h for pair produ tions of neutral olor-o tet weak-triplets alar parti les (0), de aying to bb, Z g or γ g , in pp ollisions at √s = 8 TeV.The 0 parti le is often predi ted in oloron (G ′, olor-o tet gauge boson) models andappear in the pp ollisions through G ′ → 00 de ays. Assuming B(0 → bb) =0.5, they give limits m0 > 623 GeV (426 GeV) for mG ′ = 2.3 m0 (mG ′ = 5 m0).4AALTONEN 13R sear h for new resonan e de aying to σσ, with hypotheti al stronglyintera ting σ parti le subsequently de aying to 2 jets, in pp ollisions at √s = 1.96 TeV,using data orresponding to an integrated luminosity of 6.6 fb−1. For 50 GeV < mσ <mgA/2, axigluons in mass range 150400 GeV are ex luded.5CHATRCHYAN 13A sear h for new resonan e de aying to dijets in pp ollisions at √s= 7 TeV.6CHATRCHYAN 13AS sear h for new resonan e de aying to dijets in pp ollisions at √s= 8 TeV.7CHATRCHYAN 13AU sear h for the pair produ ed olor-o tet ve tor bosons de aying toqq pairs in pp ollisions. The quoted limit is for B(gA → qq) = 1.8ABAZOV 12R sear h for massive olor o tet ve tor parti le de aying to t t . The quotedlimit assumes gA ouplings with light quarks are suppressed by 0.2.9CHATRCHYAN 11Y sear h for new resonan e de aying to dijets in pp ollisions at√

s= 7 TeV.10AALTONEN 10L sear h for massive olor o tet non- hiral ve tor parti le de aying intot t pair with mass in the range 400 GeV < M < 800 GeV. See their Fig. 6 for limit inthe mass- oupling plane.11KHACHATRYAN 10 sear h for new resonan e de aying to dijets in pp ollisions at√s= 7 TeV.12AALTONEN 09AC sear h for new narrow resonan e de aying to dijets.13CHOUDHURY 07 limit is from the t t produ tion ross se tion measured at CDF.

Page 74: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

684684684684Gauge&HiggsBosonParti leListingsNewHeavyBosons14DONCHESKI 98 ompare αs derived from low-energy data and that from (Z →hadrons)/(Z → leptons).15ABE 97G sear h for new parti le de aying to dijets.16ABE 95N assume axigluons de aying to quarks in the Standard Model only.17ABE 93G assume (gA) = NαsmgA/6 with N = 10.18CUYPERS 91 ompare αs measured in de ay and that from R at PEP/PETRAenergies.19ABE 90H assumes (gA) = NαsmgA/6 with N = 5 ((gA) = 0.09mgA). For N = 10,the ex luded region is redu ed to 120150 GeV.20ROBINETT 89 result demands partial-wave unitarity of J = 0 tt → tt s atteringamplitude and derives a limit mgA > 0.5 mt . Assumes mt > 56 GeV.21ALBAJAR 88B result is from the nonobservation of a peak in two-jet invariant massdistribution. (gA) < 0.4 mgA assumed. See also BAGGER 88.22CUYPERS 88 requires ( → g gA)< ( → g g g). A similar result is obtained byDONCHESKI 88.23DONCHESKI 88B requires ( → g qq)/( → g g g) < 0.25, where the formerde ay pro eeds via axigluon ex hange. A more onservative estimate of < 0.5 leads tomgA > 21 GeV.MASS LIMITS for Color-O tet S alar BosonsMASS LIMITS for Color-O tet S alar BosonsMASS LIMITS for Color-O tet S alar BosonsMASS LIMITS for Color-O tet S alar BosonsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •1 KHACHATRY...15AV CMS pp → 00 → bbZ gnone 150287 95 2 AAD 13K ATLS pp → S8 S8X ,S8 → 2 jets1KHACHATRYAN 15AV sear h for pair produ tions of neutral olor-o tet weak-triplets alar parti les (0), de aying to bb, Z g or γ g , in pp ollisions at √

s = 8 TeV.The 0 parti le is often predi ted in oloron (G ′, olor-o tet gauge boson) models andappear in the pp ollisions through G ′ → 00 de ays. Assuming B(0 → bb) =0.5, they give limits m0 > 623 GeV (426 GeV) for mG ′ = 2.3 m0 (mG ′ = 5 m0).2AAD 13K sear h for pair produ tion of olor-o tet s alar parti les in pp ollisions at √s= 7 TeV. Cross se tion limits are interpreted as mass limits on s alar partners of a Dira gluino.X 0 (Heavy Boson) Sear hes in Z De aysX 0 (Heavy Boson) Sear hes in Z De aysX 0 (Heavy Boson) Sear hes in Z De aysX 0 (Heavy Boson) Sear hes in Z De aysSear hes for radiative transition of Z to a lighter spin-0 state X0 de aying to hadrons,a lepton pair, a photon pair, or invisible parti les as shown in the omments. Thelimits are for the produ t of bran hing ratios.VALUE CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •1 BARATE 98U ALEP X0 → ℓℓ, qq, g g , γ γ, ν ν2 ACCIARRI 97Q L3 X0 → invisible parti le(s)3 ACTON 93E OPAL X0 → γ γ4 ABREU 92D DLPH X0 → hadrons5 ADRIANI 92F L3 X0 → hadrons6 ACTON 91 OPAL X0 → anything<1.1× 10−4 95 7 ACTON 91B OPAL X0 → e+ e−<9 × 10−5 95 7 ACTON 91B OPAL X0 → µ+µ−<1.1× 10−4 95 7 ACTON 91B OPAL X0 → τ+ τ−<2.8× 10−4 95 8 ADEVA 91D L3 X0 → e+ e−<2.3× 10−4 95 8 ADEVA 91D L3 X0 → µ+µ−<4.7× 10−4 95 9 ADEVA 91D L3 X0 → hadrons<8 × 10−4 95 10 AKRAWY 90J OPAL X0 → hadrons1BARATE 98U obtain limits on B(Z → γX0)B(X0 → ℓℓ , qq , g g , γ γ , ν ν). Seetheir Fig. 17.2 See Fig. 4 of ACCIARRI 97Q for the upper limit on B(Z → γX0; Eγ >Emin) as afun tion of Emin.3ACTON 93E give σ(e+ e− → X0 γ)·B(X0 → γ γ)< 0.4 pb (95%CL) for mX 0=60 ±2.5 GeV. If the pro ess o urs via s- hannel γ ex hange, the limit translates to(X0)·B(X0 → γ γ)2 <20 MeV for mX 0 = 60 ± 1 GeV.4ABREU 92D give σZ · B(Z → γX0) · B(X0 → hadrons) <(310) pb for mX 0 =1078 GeV. A very similar limit is obtained for spin-1 X0.5ADRIANI 92F sear h for isolated γ in hadroni Z de ays. The limit σZ · B(Z → γX0)

· B(X0 → hadrons) <(210) pb (95%CL) is given for mX 0 = 2585 GeV.6ACTON 91 sear hes for Z → Z∗X0, Z∗ → e+ e−, µ+µ−, or ν ν. Ex ludes anynew s alar X0 with mX 0 < 9.5 GeV/ if it has the same oupling to Z Z∗ as the MSMHiggs boson.7ACTON 91B limits are for mX 0 = 6085 GeV.8ADEVA 91D limits are for mX 0 = 3089 GeV.9ADEVA 91D limits are for mX 0 = 3086 GeV.10AKRAWY 90J give (Z → γX0)·B(X0 → hadrons) < 1.9 MeV (95%CL) for mX 0= 3280 GeV. We divide by (Z) = 2.5 GeV to get produ t of bran hing ratios. Fornonresonant transitions, the limit is B(Z → γ qq) < 8.2 MeV assuming three-bodyphase spa e distribution.MASS LIMITS for a Heavy Neutral Boson Coupling to e+ e−MASS LIMITS for a Heavy Neutral Boson Coupling to e+ e−MASS LIMITS for a Heavy Neutral Boson Coupling to e+ e−MASS LIMITS for a Heavy Neutral Boson Coupling to e+ e−VALUE (GeV) CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •

none 5561 1 ODAKA 89 VNS (X0 → e+ e−) ·B(X0 → had.)& 0.2 MeV>45 95 2 DERRICK 86 HRS (X0 → e+ e−)=6 MeV>46.6 95 3 ADEVA 85 MRKJ (X0 → e+ e−)=10 keV>48 95 3 ADEVA 85 MRKJ (X0 → e+ e−)=4 MeV4 BERGER 85B PLUTnone 39.845.5 5 ADEVA 84 MRKJ (X0 → e+ e−)=10 keV>47.8 95 5 ADEVA 84 MRKJ (X0 → e+ e−)=4 MeVnone 39.845.2 5 BEHREND 84C CELL>47 95 5 BEHREND 84C CELL (X0 → e+ e−)=4 MeV1ODAKA 89 looked for a narrow or wide s alar resonan e in e+ e− → hadrons at E m= 55.060.8 GeV.2DERRICK 86 found no deviation from the Standard Model Bhabha s attering at E m=29 GeV and set limits on the possible s alar boson e+ e− oupling. See their gure 4for ex luded region in the (X0 → e+ e−)-mX 0 plane. Ele troni hiral invarian erequires a parity doublet of X0, in whi h ase the limit applies for (X0 → e+ e−) =3 MeV.3ADEVA 85 rst limit is from 2γ, µ+µ−, hadrons assuming X0 is a s alar. Se ond limitis from e+ e− hannel. E m = 4047 GeV. Supersedes ADEVA 84.4BERGER 85B looked for ee t of spin-0 boson ex hange in e+ e− → e+ e− and µ+µ−at E m = 34.7 GeV. See Fig. 5 for ex luded region in the mX 0 − (X0) plane.5ADEVA 84 and BEHREND 84C have E m = 39.845.5 GeV. MARK-J sear hed X0 ine+ e− → hadrons, 2γ, µ+µ−, e+ e− and CELLO in the same hannels plus τ pair.No narrow or broad X0 is found in the energy range. They also sear hed for the ee t ofX0 with mX > E m. The se ond limits are from Bhabha data and for spin-0 singlet.The same limits apply for (X0 → e+ e−) = 2 MeV if X0 is a spin-0 doublet. These ond limit of BEHREND 84C was read o from their gure 2. The original papers alsolist limits in other hannels.Sear h for X 0 Resonan e in e+ e− CollisionsSear h for X 0 Resonan e in e+ e− CollisionsSear h for X 0 Resonan e in e+ e− CollisionsSear h for X 0 Resonan e in e+ e− CollisionsThe limit is for (X0 → e+ e−) · B(X0 → f ), where f is the spe ied nal state.Spin 0 is assumed for X0.VALUE (keV) CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •<103 95 1 ABE 93C VNS (e e)<(0.410) 95 2 ABE 93C VNS f = γ γ

<(0.35) 95 3,4 ABE 93D TOPZ f = γ γ

<(212) 95 3,4 ABE 93D TOPZ f = hadrons<(4200) 95 4,5 ABE 93D TOPZ f = e e<(0.16) 95 4,5 ABE 93D TOPZ f = µµ

<(0.58) 90 6 STERNER 93 AMY f = γ γ1 Limit is for (X0 → e+ e−) mX 0 = 5663.5 GeV for (X0) = 0.5 GeV.2 Limit is for mX 0 = 5661.5 GeV and is valid for (X0) ≪ 100 MeV. See their Fig. 5 forlimits for = 1,2 GeV.3 Limit is for mX 0 = 57.260 GeV.4 Limit is valid for (X0) ≪ 100 MeV. See paper for limits for = 1 GeV and those forJ = 2 resonan es.5 Limit is for mX 0 = 56.660 GeV.6 STERNER 93 limit is for mX 0 = 5759.6 GeV and is valid for (X0)<100 MeV. Seetheir Fig. 2 for limits for = 1,3 GeV.Sear h for X 0 Resonan e in e p CollisionsSear h for X 0 Resonan e in e p CollisionsSear h for X 0 Resonan e in e p CollisionsSear h for X 0 Resonan e in e p CollisionsVALUE DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •1 CHEKANOV 02B ZEUS X → j j1CHEKANOV 02B sear h for photoprodu tion of X de aying into dijets in e p ollisions.See their Fig. 5 for the limit on the photoprodu tion ross se tion.Sear h for X 0 Resonan e in e+ e− → X 0 γSear h for X 0 Resonan e in e+ e− → X 0 γSear h for X 0 Resonan e in e+ e− → X 0 γSear h for X 0 Resonan e in e+ e− → X 0 γVALUE (GeV) DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •1 ABBIENDI 03D OPAL X0 → γ γ2 ABREU 00Z DLPH X0 de aying invisibly3 ADAM 96C DLPH X0 de aying invisibly1ABBIENDI 03D measure the e+ e− → γ γ γ ross se tion at √s=181209 GeV. Theupper bound on the produ tion ross se tion, σ(e+ e− → X0 γ) times the bran hingratio for X0 → γ γ, is less than 0.03 pb at 95%CL for X0 masses between 20 and 180GeV. See their Fig. 9b for the limits in the mass- ross se tion plane.2ABREU 00Z is from the single photon ross se tion at √s=183, 189 GeV. The produ tion ross se tion upper limit is less than 0.3 pb for X0 mass between 40 and 160 GeV. Seetheir Fig. 4 for the limit in mass- ross se tion plane.3ADAM 96C is from the single photon produ tion ross at √s=130, 136 GeV. The upperbound is less than 3 pb for X0 masses between 60 and 130 GeV. See their Fig. 5 for theexa t bound on the ross se tion σ(e+ e− → γX0).Sear h for X 0 Resonan e in Z → f f X 0Sear h for X 0 Resonan e in Z → f f X 0Sear h for X 0 Resonan e in Z → f f X 0Sear h for X 0 Resonan e in Z → f f X 0The limit is for B(Z → f f X0) · B(X0 → F ) where f is a fermion and F is thespe ied nal state. Spin 0 is assumed for X0.VALUE CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •

Page 75: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

685685685685See key on page 601 Gauge&HiggsBosonParti le ListingsNewHeavy Bosons1 ABREU 96T DLPH f=e,µ,τ ; F=γ γ

<3.7× 10−6 95 2 ABREU 96T DLPH f=ν; F=γ γ3 ABREU 96T DLPH f=q; F=γ γ

<6.8× 10−6 95 2 ACTON 93E OPAL f=e,µ,τ ; F=γ γ

<5.5× 10−6 95 2 ACTON 93E OPAL f=q; F=γ γ

<3.1× 10−6 95 2 ACTON 93E OPAL f=ν; F=γ γ

<6.5× 10−6 95 2 ACTON 93E OPAL f=e,µ; F=ℓℓ, qq, ν ν

<7.1× 10−6 95 2 BUSKULIC 93F ALEP f=e,µ; F=ℓℓ, qq, ν ν4 ADRIANI 92F L3 f=q; F=γ γ1ABREU 96T obtain limit as a fun tion of mX 0 . See their Fig. 6.2 Limit is for mX 0 around 60 GeV.3ABREU 96T obtain limit as a fun tion of mX 0 . See their Fig. 15.4ADRIANI 92F give σZ · B(Z → qqX0) · B(X0 → γ γ)<(0.751.5) pb (95%CL) formX 0 = 1070 GeV. The limit is 1 pb at 60 GeV.Sear h for X 0 Resonan e in W X 0 nal stateSear h for X 0 Resonan e in W X 0 nal stateSear h for X 0 Resonan e in W X 0 nal stateSear h for X 0 Resonan e in W X 0 nal stateVALUE (MeV) DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •1 AALTONEN 13AA CDF X0 → j j2 CHATRCHYAN12BR CMS X0 → j j3 ABAZOV 11I D0 X0 → j j4 ABE 97W CDF X0 → bb1AALTONEN 13AA sear h for X0 produ tion asso iated with W (or Z) in pp ollisionsat E m = 1.96 TeV. The upper limit on the ross se tion σ(pp → WX0) is 2.2 pb forMX 0 = 145 GeV.2CHATRCHYAN 12BR sear h for X0 produ tion asso iated with W in pp ollisions atE m = 7 TeV. The upper limit on the ross se tion is 5.0 pb at 95% CL for mX 0 =150 GeV.3ABAZOV 11I sear h for X0 produ tion asso iated with W in pp ollisions at E m =1.96 TeV. The 95% CL upper limit on the ross se tion ranges from 2.57 to 1.28 pb forX0 mass between 110 and 170 GeV.4ABE 97W sear h for X0 produ tion asso iated with W in pp ollisions at E m=1.8TeV. The 95%CL upper limit on the produ tion ross se tion times the bran hing ratiofor X0 → bb ranges from 14 to 19 pb for X0 mass between 70 and 120 GeV. See theirFig. 3 for upper limits of the produ tion ross se tion as a fun tion of mX 0.Sear h for X 0 Resonan e in Quarkonium De aysSear h for X 0 Resonan e in Quarkonium De aysSear h for X 0 Resonan e in Quarkonium De aysSear h for X 0 Resonan e in Quarkonium De aysLimits are for bran hing ratios to modes shown. Spin 1 is assumed for X0.VALUE CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •< 3× 10−56× 10−3 90 1 BALEST 95 CLE2 (1S) → X0X0 γ,mX 0 < 3.9 GeV1BALEST 95 three-body limit is for phase-spa e photon energy distribution and angulardistribution same as for → g g γ.REFERENCES FOR Sear hes for New Heavy Bosons (W ′, Z ′, leptoquarks, et .)REFERENCES FOR Sear hes for New Heavy Bosons (W ′, Z ′, leptoquarks, et .)REFERENCES FOR Sear hes for New Heavy Bosons (W ′, Z ′, leptoquarks, et .)REFERENCES FOR Sear hes for New Heavy Bosons (W ′, Z ′, leptoquarks, et .)AAD 16G EPJ C76 5 G. Aad et al. (ATLAS Collab.)KHACHATRY... 16E PR D93 012001 V. Kha hatryan et al. (CMS Collab.)AAD 15AM JHEP 1507 157 G. Aad et al. (ATLAS Collab.)AAD 15AO JHEP 1508 148 G. Aad et al. (ATLAS Collab.)AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.)AAD 15AU EPJ C75 69 G. Aad et al. (ATLAS Collab.)AAD 15AV EPJ C75 165 G. Aad et al. (ATLAS Collab.)AAD 15AZ EPJ C75 209 G. Aad et al. (ATLAS Collab.)AAD 15BB EPJ C75 263 G. Aad et al. (ATLAS Collab.)AAD 15CD PR D92 092001 G. Aad et al. (ATLAS Collab.)AAD 15CP JHEP 1512 055 G. Aad et al. (ATLAS Collab.)AAD 15O PRL 115 031801 G. Aad et al. (ATLAS Collab.)AAD 15R PL B743 235 G. Aad et al. (ATLAS Collab.)AAD 15V PR D91 052007 G. Aad et al. (ATLAS Collab.)AALTONEN 15C PRL 115 061801 T. Aaltonen et al. (CDF Collab.)BESSAA 15 EPJ C75 97 A. Bessaa, S. DavidsonKHACHATRY... 15AE JHEP 1504 025 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15AJ JHEP 1507 042 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15AV JHEP 1509 201 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15C PL B740 83 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15F PRL 114 101801 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15O PL B748 255 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15T PR D91 092005 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 15V PR D91 052009 V. Kha hatryan et al. (CMS Collab.)SAHOO 15A PR D91 094019 S. Sahoo, R. MohantaAAD 14AI JHEP 1409 037 G. Aad et al. (ATLAS Collab.)AAD 14AT PL B738 428 G. Aad et al. (ATLAS Collab.)AAD 14S PL B737 223 G. Aad et al. (ATLAS Collab.)AAD 14V PR D90 052005 G. Aad et al. (ATLAS Collab.)KHACHATRY... 14 JHEP 1408 173 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 14A JHEP 1408 174 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 14O EPJ C74 3149 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 14T PL B739 229 V. Kha hatryan et al. (CMS Collab.)MARTINEZ 14 PR D90 015028 R. Martinez, F. O hoaPRIEELS 14 PR D90 112003 R. Prieels et al. (LOUV, ETH, PSI+)AAD 13AE JHEP 1306 033 G. Aad et al. (ATLAS Collab.)AAD 13AI PL B723 15 G. Aad et al. (ATLAS Collab.)AAD 13AO PR D87 112006 G. Aad et al. (ATLAS Collab.)AAD 13AQ PR D88 012004 G. Aad et al. (ATLAS Collab.)AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.)AAD 13G JHEP 1301 116 G. Aad et al. (ATLAS Collab.)AAD 13K EPJ C73 2263 G. Aad et al. (ATLAS Collab.)AAD 13S PL B719 242 G. Aad et al. (ATLAS Collab.)AALTONEN 13A PRL 110 121802 T. Aaltonen et al. (CDF Collab.)AALTONEN 13AA PR D88 092004 T. Aaltonen et al. (CDF Collab.)AALTONEN 13R PRL 111 031802 T. Aaltonen et al. (CDF Collab.)CHATRCHYAN 13A JHEP 1301 013 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13AF PL B720 63 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13AJ PL B723 280 S. Chatr hyan et al. (CMS Collab.)

CHATRCHYAN 13AP PR D87 072002 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13AQ PR D87 072005 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13AS PR D87 114015 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13AU PRL 110 141802 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13BM PRL 111 211804 S. Chatr hyan et al. (CMS Collab.)Also PRL 112 119903 (errat.) S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13E PL B718 1229 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13M PRL 110 081801 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 13U JHEP 1302 036 S. Chatr hyan et al. (CMS Collab.)SAKAKI 13 PR D88 094012 Y. Sakaki et al.AAD 12AV PRL 109 081801 G. Aad et al. (ATLAS Collab.)AAD 12BB PR D85 112012 G. Aad et al. (ATLAS Collab.)AAD 12BV JHEP 1209 041 G. Aad et al. (ATLAS Collab.)AAD 12CC JHEP 1211 138 G. Aad et al. (ATLAS Collab.)AAD 12CK PR D86 091103 G. Aad et al. (ATLAS Collab.)AAD 12CR EPJ C72 2241 G. Aad et al. (ATLAS Collab.)AAD 12H PL B709 158 G. Aad et al. (ATLAS Collab.)Also PL B711 442 (errat.) G. Aad et al. (ATLAS Collab.)AAD 12K EPJ C72 2083 G. Aad et al. (ATLAS Collab.)AAD 12M EPJ C72 2056 G. Aad et al. (ATLAS Collab.)AAD 12O EPJ C72 2151 G. Aad et al. (ATLAS Collab.)AALTONEN 12AR PR D86 112002 T. Aaltonen et al. (CDF Collab.)AALTONEN 12N PRL 108 211805 T. Aaltonen et al. (CDF Collab.)ABAZOV 12R PR D85 051101 V.M. Abazov et al. (D0 Collab.)ABRAMOWICZ 12A PR D86 012005 H. Abramowi z et al. (ZEUS Collab.)CHATRCHYAN 12AF PRL 109 141801 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12AG PR D86 052013 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12AI JHEP 1208 110 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12AQ JHEP 1209 029 S. Chatr hyan et al. (CMS Collab.)Also JHEP 1403 132 (errat.) S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12AR PL B717 351 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12BG PRL 109 261802 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12BL JHEP 1212 015 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12BO JHEP 1212 055 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12BR PRL 109 251801 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12M PL B714 158 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 12O PL B716 82 S. Chatr hyan et al. (CMS Collab.)KOSNIK 12 PR D86 055004 N. Kosnik (LALO, STFN)AAD 11D PR D83 112006 G. Aad et al. (ATLAS Collab.)AAD 11H PRL 106 251801 G. Aad et al. (ATLAS Collab.)AAD 11Z EPJ C71 1809 G. Aad et al. (ATLAS Collab.)AALTONEN 11AD PR D84 072003 T. Aaltonen et al. (CDF Collab.)AALTONEN 11AE PR D84 072004 T. Aaltonen et al. (CDF Collab.)AALTONEN 11C PR D83 031102 T. Aaltonen et al. (CDF Collab.)AALTONEN 11I PRL 106 121801 T. Aaltonen et al. (CDF Collab.)AARON 11A PL B701 20 F. D. Aaron et al. (H1 Collab.)AARON 11B PL B704 388 F. D. Aaron et al. (H1 Collab.)AARON 11C PL B705 52 F. D. Aaron et al. (H1 Collab.)ABAZOV 11A PL B695 88 V.M. Abazov et al. (D0 Collab.)ABAZOV 11H PRL 107 011801 V. M. Abazov et al. (D0 Collab.)ABAZOV 11I PRL 107 011804 V. M. Abazov et al. (D0 Collab.)ABAZOV 11L PL B699 145 V. M. Abazov et al. (D0 Collab.)ABAZOV 11V PR D84 071104 V. M. Abazov et al. (D0 Collab.)BUENO 11 PR D84 032005 J.F. Bueno et al. (TWIST Collab.)Also PR D85 039908 (errat.) J.F. Bueno et al. (TWIST Collab.)CHATRCHYAN 11N PL B703 246 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 11O JHEP 1108 005 S. Chatr hyan et al. (CMS Collab.)CHATRCHYAN 11Y PL B704 123 S. Chatr hyan et al. (CMS Collab.)DORSNER 11 JHEP 1111 002 I. Dorsner et al.KHACHATRY... 11D PRL 106 201802 V. Kha hatryan et al. (CMS Collab.)KHACHATRY... 11E PRL 106 201803 V. Kha hatryan et al. (CMS Collab.)AALTONEN 10L PL B691 183 T. Aaltonen et al. (CDF Collab.)AALTONEN 10N PRL 104 241801 T. Aaltonen et al. (CDF Collab.)ABAZOV 10L PL B693 95 V.M. Abazov et al. (D0 Collab.)DEL-AGUILA 10 JHEP 1009 033 F. del Aguila, J. de Blas, M. Perez-Vi toria (GRAN)KHACHATRY... 10 PRL 105 211801 V. Kha hatryan et al. (CMS Collab.)Also PRL 106 029902 V. Kha hatryan et al. (CMS Collab.)WAUTERS 10 PR C82 055502 F. Wauters et al. (REZ, TAMU)AALTONEN 09AC PR D79 112002 T. Aaltonen et al. (CDF Collab.)AALTONEN 09T PRL 102 031801 T. Aaltonen et al. (CDF Collab.)AALTONEN 09V PRL 102 091805 T. Aaltonen et al. (CDF Collab.)ABAZOV 09 PL B671 224 V.M. Abazov et al. (D0 Collab.)ABAZOV 09AF PL B681 224 V.M. Abazov et al. (D0 Collab.)ERLER 09 JHEP 0908 017 J. Erler et al.AALTONEN 08D PR D77 051102 T. Aaltonen et al. (CDF Collab.)AALTONEN 08P PR D77 091105 T. Aaltonen et al. (CDF Collab.)AALTONEN 08Y PRL 100 231801 T. Aaltonen et al. (CDF Collab.)AALTONEN 08Z PRL 101 071802 T. Aaltonen et al. (CDF Collab.)ABAZOV 08AA PL B668 98 V.M. Abazov et al. (D0 Collab.)ABAZOV 08AD PL B668 357 V.M. Abazov et al. (D0 Collab.)ABAZOV 08AN PRL 101 241802 V.M. Abazov et al. (D0 Collab.)ABAZOV 08C PRL 100 031804 V.M. Abazov et al. (D0 Collab.)MACDONALD 08 PR D78 032010 R.P. Ma Donald et al. (TWIST Collab.)ZHANG 08 NP B802 247 Y. Zhang et al. (PKGU, UMD)AALTONEN 07H PRL 99 171802 T. Aaltonen et al. (CDF Collab.)ABAZOV 07E PL B647 74 V.M. Abazov et al. (D0 Collab.)ABAZOV 07J PRL 99 061801 V.M. Abazov et al. (D0 Collab.)AKTAS 07A EPJ C52 833 A. Aktas et al. (H1 Collab.)CHOUDHURY 07 PL B657 69 D. Choudhury et al.MELCONIAN 07 PL B649 370 D. Mel onian et al. (TRIUMF)SCHAEL 07A EPJ C49 411 S. S hael et al. (ALEPH Collab.)SCHUMANN 07 PRL 99 191803 M. S humann et al. (HEID, ILLG, KARL+)SMIRNOV 07 MPL A22 2353 A.D. SmirnovABAZOV 06A PL B636 183 V.M. Abazov et al. (D0 Collab.)ABAZOV 06L PL B640 230 V.M. Abazov et al. (D0 Collab.)ABDALLAH 06C EPJ C45 589 J. Abdallah et al. (DELPHI Collab.)ABULENCIA 06L PRL 96 211801 A. Abulen ia et al. (CDF Collab.)ABULENCIA 06M PRL 96 211802 A. Abulen ia et al. (CDF Collab.)ABULENCIA 06T PR D73 051102 A. Abulen ia et al. (CDF Collab.)ABAZOV 05H PR D71 071104 V.M. Abazov et al. (D0 Collab.)ABULENCIA 05A PRL 95 252001 A. Abulen ia et al. (CDF Collab.)ACOSTA 05I PR D71 112001 D. A osta et al. (CDF Collab.)ACOSTA 05P PR D72 051107 D. A osta et al. (CDF Collab.)ACOSTA 05R PRL 95 131801 D. A osta et al. (CDF Collab.)AKTAS 05B PL B629 9 A. Aktas et al. (H1 Collab.)CHEKANOV 05 PL B610 212 S. Chekanov et al. (HERA ZEUS Collab.)CHEKANOV 05A EPJ C44 463 S. Chekanov et al. (ZEUS Collab.)CYBURT 05 ASP 23 313 R.H. Cyburt et al.ABAZOV 04A PRL 92 221801 V.M. Abazov et al. (D0 Collab.)ABAZOV 04C PR D69 111101 V.M. Abazov et al. (D0 Collab.)ABBIENDI 04G EPJ C33 173 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 03D EPJ C26 331 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 03R EPJ C31 281 G. Abbiendi et al. (OPAL)ACOSTA 03B PRL 90 081802 D. A osta et al. (CDF Collab.)ADLOFF 03 PL B568 35 C. Adlo et al. (H1 Collab.)BARGER 03B PR D67 075009 V. Barger, P. Langa ker, H. LeeCHANG 03 PR D68 111101 M.-C. Chang et al. (BELLE Collab.)CHEKANOV 03B PR D68 052004 S. Chekanov et al. (ZEUS Collab.)ABAZOV 02 PRL 88 191801 V.M. Abazov et al. (D0 Collab.)ABBIENDI 02B PL B526 233 G. Abbiendi et al. (OPAL Collab.)AFFOLDER 02C PRL 88 071806 T. Aolder et al. (CDF Collab.)

Page 76: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

686686686686Gauge&Higgs Boson Parti le ListingsNew Heavy Bosons, Axions (A0) and Other Very Light BosonsCHEKANOV 02 PR D65 092004 S. Chekanov et al. (ZEUS Collab.)CHEKANOV 02B PL B531 9 S. Chekanov et al. (ZEUS Collab.)MUECK 02 PR D65 085037 A. Mue k, A. Pilaftsis, R. Rue klABAZOV 01B PRL 87 061802 V.M. Abazov et al. (D0 Collab.)ABAZOV 01D PR D64 092004 V.M. Abazov et al. (D0 Collab.)ADLOFF 01C PL B523 234 C. Adlo et al. (H1 Collab.)AFFOLDER 01I PRL 87 231803 T. Aolder et al. (CDF Collab.)BREITWEG 01 PR D63 052002 J. Breitweg et al. (ZEUS Collab.)CHEUNG 01B PL B517 167 K. CheungTHOMAS 01 NP A694 559 E. Thomas et al.ABBIENDI 00M EPJ C13 15 G. Abbiendi et al. (OPAL Collab.)ABBOTT 00C PRL 84 2088 B. Abbott et al. (D0 Collab.)ABE 00 PRL 84 5716 F. Abe et al. (CDF Collab.)ABREU 00S PL B485 45 P. Abreu et al. (DELPHI Collab.)ABREU 00Z EPJ C17 53 P. Abreu et al. (DELPHI Collab.)ACCIARRI 00P PL B489 81 M. A iarri et al. (L3 Collab.)ADLOFF 00 PL B479 358 C. Adlo et al. (H1 Collab.)AFFOLDER 00K PRL 85 2056 T. Aolder et al. (CDF Collab.)BARATE 00I EPJ C12 183 R. Barate et al. (ALEPH Collab.)BARGER 00 PL B480 149 V. Barger, K. CheungBREITWEG 00E EPJ C16 253 J. Breitweg et al. (ZEUS Collab.)CHAY 00 PR D61 035002 J. Chay, K.Y. Lee, S. NamCHO 00 MPL A15 311 G. ChoCORNET 00 PR D61 037701 F. Cornet, M. Relano, J. Ri oDELGADO 00 JHEP 0001 030 A. Delgado, A. Pomarol, M. QuirosERLER 00 PRL 84 212 J. Erler, P. Langa kerGABRIELLI 00 PR D62 055009 E. GabrielliRIZZO 00 PR D61 016007 T.G. Rizzo, J.D. WellsROSNER 00 PR D61 016006 J.L. RosnerZARNECKI 00 EPJ C17 695 A. Zarne kiABBIENDI 99 EPJ C6 1 G. Abbiendi et al. (OPAL Collab.)ABBOTT 99J PRL 83 2896 B. Abbott et al. (D0 Collab.)ABREU 99G PL B446 62 P. Abreu et al. (DELPHI Collab.)ACKERSTAFF 99D EPJ C8 3 K. A kersta et al. (OPAL Collab.)ADLOFF 99 EPJ C11 447 C. Adlo et al. (H1 Collab.)Also EPJ C14 553 (errat.) C. Adlo et al. (H1 Collab.)CASALBUONI 99 PL B460 135 R. Casalbuoni et al.CZAKON 99 PL B458 355 M. Czakon, J. Gluza, M. ZralekERLER 99 PL B456 68 J. Erler, P. Langa kerMARCIANO 99 PR D60 093006 W. Mar ianoMASIP 99 PR D60 096005 M. Masip, A. PomarolNATH 99 PR D60 116004 P. Nath, M. Yamagu hiSTRUMIA 99 PL B466 107 A. StrumiaABBOTT 98E PRL 80 2051 B. Abbott et al. (D0 Collab.)ABBOTT 98J PRL 81 38 B. Abbott et al. (D0 Collab.)ABE 98S PRL 81 4806 F. Abe et al. (CDF Collab.)ABE 98V PRL 81 5742 F. Abe et al. (CDF Collab.)ACCIARRI 98J PL B433 163 M. A iarri et al. (L3 Collab.)ACKERSTAFF 98V EPJ C2 441 K. A kersta et al. (OPAL Collab.)BARATE 98U EPJ C4 571 R. Barate et al. (ALEPH Collab.)BARENBOIM 98 EPJ C1 369 G. BarenboimCHO 98 EPJ C5 155 G. Cho, K. Hagiwara, S. MatsumotoCONRAD 98 RMP 70 1341 J.M. Conrad, M.H. Shaevitz, T. BoltonDONCHESKI 98 PR D58 097702 M.A. Don heski, R.W. RobinettGROSS-PILCH...98 hep-ex/9810015 C. Grosso-Pil her, G. Landsberg, M. PaternoABE 97F PRL 78 2906 F. Abe et al. (CDF Collab.)ABE 97G PR D55 R5263 F. Abe et al. (CDF Collab.)ABE 97S PRL 79 2192 F. Abe et al. (CDF Collab.)ABE 97W PRL 79 3819 F. Abe et al. (CDF Collab.)ABE 97X PRL 79 4327 F. Abe et al. (CDF Collab.)ACCIARRI 97Q PL B412 201 M. A iarri et al. (L3 Collab.)ARIMA 97 PR D55 19 T. Arima et al. (VENUS Collab.)BARENBOIM 97 PR D55 4213 G. Barenboim et al. (VALE, IFIC)DEANDREA 97 PL B409 277 A. Deandrea (MARS)DERRICK 97 ZPHY C73 613 M. Derri k et al. (ZEUS Collab.)GROSSMAN 97 PR D55 2768 Y. Grossman, Z. Ligeti, E. Nardi (REHO, CIT)JADACH 97 PL B408 281 S. Jada h, B.F.L. Ward, Z. Was (CERN, INPK+)STAHL 97 ZPHY C74 73 A. Stahl, H. Voss (BONN)ABACHI 96C PRL 76 3271 S. Aba hi et al. (D0 Collab.)ABREU 96T ZPHY C72 179 P. Abreu et al. (DELPHI Collab.)ADAM 96C PL B380 471 W. Adam et al. (DELPHI Collab.)AID 96B PL B369 173 S. Aid et al. (H1 Collab.)ALLET 96 PL B383 139 M. Allet et al. (VILL, LEUV, LOUV, WISC)ABACHI 95E PL B358 405 S. Aba hi et al. (D0 Collab.)ABE 95N PRL 74 3538 F. Abe et al. (CDF Collab.)BALEST 95 PR D51 2053 R. Balest et al. (CLEO Collab.)KUZNETSOV 95 PRL 75 794 I.A. Kuznetsov et al. (PNPI, KIAE, HARV+)KUZNETSOV 95B PAN 58 2113 A.V. Kuznetsov, N.V. Mikheev (YARO)Translated from YAF 58 2228.MIZUKOSHI 95 NP B443 20 J.K. Mizukoshi, O.J.P. Eboli, M.C. Gonzalez-Gar iaABREU 94O ZPHY C64 183 P. Abreu et al. (DELPHI Collab.)BHATTACH... 94 PL B336 100 G. Bhatta haryya, J. Ellis, K. Sridhar (CERN)Also PL B338 522 (erratum) G. Bhatta haryya, J. Ellis, K. Sridhar (CERN)BHATTACH... 94B PL B338 522 (erratum) G. Bhatta haryya, J. Ellis, K. Sridhar (CERN)DAVIDSON 94 ZPHY C61 613 S. Davidson, D. Bailey, B.A. Campbell (CFPA+)KUZNETSOV 94 PL B329 295 A.V. Kuznetsov, N.V. Mikheev (YARO)KUZNETSOV 94B JETPL 60 315 I.A. Kuznetsov et al. (PNPI, KIAE, HARV+)Translated from ZETFP 60 311.LEURER 94 PR D50 536 M. Leurer (REHO)LEURER 94B PR D49 333 M. Leurer (REHO)Also PRL 71 1324 M. Leurer (REHO)MAHANTA 94 PL B337 128 U. Mahanta (MEHTA)SEVERIJNS 94 PRL 73 611 (erratum) N. Severijns et al. (LOUV, WISC, LEUV+)VILAIN 94B PL B332 465 P. Vilain et al. (CHARM II Collab.)ABE 93C PL B302 119 K. Abe et al. (VENUS Collab.)ABE 93D PL B304 373 T. Abe et al. (TOPAZ Collab.)ABE 93G PRL 71 2542 F. Abe et al. (CDF Collab.)ABREU 93J PL B316 620 P. Abreu et al. (DELPHI Collab.)ACTON 93E PL B311 391 P.D. A ton et al. (OPAL Collab.)ADRIANI 93M PRPL 236 1 O. Adriani et al. (L3 Collab.)ALITTI 93 NP B400 3 J. Alitti et al. (UA2 Collab.)BHATTACH... 93 PR D47 R3693 G. Bhatta haryya et al. (CALC, JADA, ICTP+)BUSKULIC 93F PL B308 425 D. Buskuli et al. (ALEPH Collab.)DERRICK 93 PL B306 173 M. Derri k et al. (ZEUS Collab.)RIZZO 93 PR D48 4470 T.G. Rizzo (ANL)SEVERIJNS 93 PRL 70 4047 N. Severijns et al. (LOUV, WISC, LEUV+)Also PRL 73 611 (erratum) N. Severijns et al. (LOUV, WISC, LEUV+)STERNER 93 PL B303 385 K.L. Sterner et al. (AMY Collab.)ABREU 92D ZPHY C53 555 P. Abreu et al. (DELPHI Collab.)ADRIANI 92F PL B292 472 O. Adriani et al. (L3 Collab.)DECAMP 92 PRPL 216 253 D. De amp et al. (ALEPH Collab.)IMAZATO 92 PRL 69 877 J. Imazato et al. (KEK, INUS, TOKY+)MISHRA 92 PRL 68 3499 S.R. Mishra et al. (COLU, CHIC, FNAL+)POLAK 92B PR D46 3871 J. Polak, M. Zralek (SILES)ACTON 91 PL B268 122 D.P. A ton et al. (OPAL Collab.)ACTON 91B PL B273 338 D.P. A ton et al. (OPAL Collab.)ADEVA 91D PL B262 155 B. Adeva et al. (L3 Collab.)AQUINO 91 PL B261 280 M. Aquino, A. Fernandez, A. Gar ia (CINV, PUEB)COLANGELO 91 PL B253 154 P. Colangelo, G. Nardulli (BARI)CUYPERS 91 PL B259 173 F. Cuypers, A.F. Falk, P.H. Frampton (DURH, HARV+)FARAGGI 91 MPL A6 61 A.E. Faraggi, D.V. Nanopoulos (TAMU)POLAK 91 NP B363 385 J. Polak, M. Zralek (SILES)

RIZZO 91 PR D44 202 T.G. Rizzo (WISC, ISU)WALKER 91 APJ 376 51 T.P. Walker et al. (HSCA, OSU, CHIC+)ABE 90F PL B246 297 K. Abe et al. (VENUS Collab.)ABE 90H PR D41 1722 F. Abe et al. (CDF Collab.)AKRAWY 90J PL B246 285 M.Z. Akrawy et al. (OPAL Collab.)GONZALEZ-G... 90D PL B240 163 M.C. Gonzalez-Gar ia, J.W.F. Valle (VALE)GRIFOLS 90 NP B331 244 J.A. Grifols, E. Masso (BARC)GRIFOLS 90D PR D42 3293 J.A. Grifols, E. Masso, T.G. Rizzo (BARC, CERN+)KIM 90 PL B240 243 G.N. Kim et al. (AMY Collab.)LOPEZ 90 PL B241 392 J.L. Lopez, D.V. Nanopoulos (TAMU)BARBIERI 89B PR D39 1229 R. Barbieri, R.N. Mohapatra (PISA, UMD)LANGACKER 89B PR D40 1569 P. Langa ker, S. Uma Sankar (PENN)ODAKA 89 JPSJ 58 3037 S. Odaka et al. (VENUS Collab.)ROBINETT 89 PR D39 834 R.W. Robinett (PSU)ALBAJAR 88B PL B209 127 C. Albajar et al. (UA1 Collab.)BAGGER 88 PR D37 1188 J. Bagger, C. S hmidt, S. King (HARV, BOST)BALKE 88 PR D37 587 B. Balke et al. (LBL, UCB, COLO, NWES+)BERGSTROM 88 PL B212 386 L. Bergstrom (STOH)CUYPERS 88 PRL 60 1237 F. Cuypers, P.H. Frampton (UNCCH)DONCHESKI 88 PL B206 137 M.A. Don heski, H. Grot h, R. Robinett (PSU)DONCHESKI 88B PR D38 412 M.A. Don heski, H. Grot h, R.W. Robinett (PSU)BARTEL 87B ZPHY C36 15 W. Bartel et al. (JADE Collab.)BEHREND 86B PL B178 452 H.J. Behrend et al. (CELLO Collab.)DERRICK 86 PL 166B 463 M. Derri k et al. (HRS Collab.)Also PR D34 3286 M. Derri k et al. (HRS Collab.)JODIDIO 86 PR D34 1967 A. Jodidio et al. (LBL, NWES, TRIU)Also PR D37 237 (erratum) A. Jodidio et al. (LBL, NWES, TRIU)MOHAPATRA 86 PR D34 909 R.N. Mohapatra (UMD)ADEVA 85 PL 152B 439 B. Adeva et al. (Mark-J Collab.)BERGER 85B ZPHY C27 341 C. Berger et al. (PLUTO Collab.)STOKER 85 PRL 54 1887 D.P. Stoker et al. (LBL, NWES, TRIU)ADEVA 84 PRL 53 134 B. Adeva et al. (Mark-J Collab.)BEHREND 84C PL 140B 130 H.J. Behrend et al. (CELLO Collab.)BERGSMA 83 PL 122B 465 F. Bergsma et al. (CHARM Collab.)CARR 83 PRL 51 627 J. Carr et al. (LBL, NWES, TRIU)BEALL 82 PRL 48 848 G. Beall, M. Bander, A. Soni (UCI, UCLA)SHANKER 82 NP B204 375 O. Shanker (TRIU)Axions (A0) and OtherVery Light Bosons, Sear hes forAXIONS AND OTHER SIMILAR PARTICLES

Revised January 2016 by A. Ringwald (DESY), L.J Rosenbergand G. Rybka (U. of Washington).

Introduction

In this section, we list coupling-strength and mass limits for

light neutral scalar or pseudoscalar bosons that couple weakly

to normal matter and radiation. Such bosons may arise from

a global spontaneously broken U(1) symmetry, resulting in a

massless Nambu-Goldstone (NG) boson. If there is a small

explicit symmetry breaking, either already in the Lagrangian or

due to quantum effects such as anomalies, the boson acquires a

mass and is called a pseudo-NG boson. Typical examples are

axions (A0) [1,2], familons [3] and Majorons [4], associated,

respectively, with a spontaneously broken Peccei-Quinn, family

and lepton-number symmetry.

A common characteristic among these light bosons φ is that

their coupling to Standard-Model particles is suppressed by the

energy scale that characterizes the symmetry breaking, i.e., the

decay constant f . The interaction Lagrangian is

L = f−1Jµ∂µ φ , (1)

where Jµ is the Noether current of the spontaneously broken

global symmetry. If f is very large, these new particles inter-

act very weakly. Detecting them would provide a window to

physics far beyond what can be probed at accelerators.

Axions are of particular interest because the Peccei-Quinn

(PQ) mechanism remains perhaps the most credible scheme to

preserve CP in QCD. Moreover, the cold dark matter of the

universe may well consist of axions and they are searched for in

dedicated experiments with a realistic chance of discovery.

Originally it was assumed that the PQ scale fA was re-

lated to the electroweak symmetry-breaking scale vweak =

Page 77: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

687687687687See key on page 601 Gauge&Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosons(√

2GF)−1/2 = 247 GeV. However, the associated “standard”

and “variant” axions were quickly excluded—we refer to the

Listings for detailed limits. Here we focus on “invisible axions”

with fA ≫ vweak as the main possibility.

Axions have a characteristic two-photon vertex, inherited

from their mixing with π0 and η. This coupling allows for

the main search strategy based on axion-photon conversion

in external magnetic fields [5], an effect that also can be

of astrophysical interest. While for axions the product “Aγγ

interaction strength × mass” is essentially fixed by the corre-

sponding π0 properties, one may consider a more general class

of axion-like particles (ALPs) where the two parameters (cou-

pling and mass) are independent. A number of experiments

explore this more general parameter space. ALPs populating

the latter are predicted to arise generically, in addition to the

axion, in low-energy effective field theories emerging from string

theory [6]. The latter often contain also very light Abelian

vector bosons under which the Standard-Model particles are

not charged: so-called hidden-sector photons, dark photons or

paraphotons. They share a number of phenomenological fea-

tures with the axion and ALPs, notably the possibility of

hidden photon to photon conversion. Their physics cases and

the current constraints are compiled in Ref. [7].

I. THEORY

I.1 Peccei-Quinn mechanism and axions

The QCD Lagrangian includes a CP-violating term LΘ =

−Θ (αs/8π) GµνaGaµν , where −π ≤ Θ ≤ +π is the effective

Θ parameter after diagonalizing quark masses, Gaµν is the

color field strength tensor, and Ga,µν ≡ ǫµνλρGaλρ/2, with

ε0123 = 1, its dual. Limits on the neutron electric dipole

moment [8] imply |Θ| <∼ 10−10 even though Θ = O(1) is

otherwise completely satisfactory. The spontaneously broken

global Peccei-Quinn symmetry U(1)PQ was introduced to solve

this “strong CP problem” [1], the axion being the pseudo-NG

boson of U(1)PQ [2]. This symmetry is broken due to the

axion’s anomalous triangle coupling to gluons,

L =

(φA

fA− Θ

)αs

8πGµνaGa

µν , (2)

where φA is the axion field and fA the axion decay constant.

Color anomaly factors have been absorbed in the normalization

of fA which is defined by this Lagrangian. Thus normalized,

fA is the quantity that enters all low-energy phenomena [9].

Non-perturbative topological fluctuations of the gluon fields in

QCD induce a potential for φA whose minimum is at φA = Θ fA,

thereby canceling the Θ term in the QCD Lagrangian and thus

restoring CP symmetry.

The resulting axion mass, in units of the PQ scale fA, is

identical to the square root of the topological susceptibility in

QCD, mAfA =√

χ. The latter can be evaluated further [10],

exploiting the chiral limit (masses of up and down quarks much

smaller than the scale of QCD), yielding mAfA =√

χ ≈ fπmπ,

where mπ = 135 MeV and fπ ≈ 92 MeV. In more detail one

finds, to leading order in chiral perturbation theory,

mA =z1/2

1 + z

fπmπ

fA=

0.60 meV

fA/1010 GeV, (3)

where z = mu/md. We have used the canonical value z =

0.56 [11], although the range z = 0.38–0.58 is plausible [12].

The next-to-leading order correction to the axion mass has been

evaluated recently in Ref. [13].

Originally one assumed fA ∼ vweak [1,2]. Tree-level flavor

conservation fixes the axion properties in terms of a single

parameter: the ratio of the vacuum expectation values of two

Higgs fields that appear as a minimal ingredient. This “stan-

dard axion” was excluded after extensive searches [14]. A nar-

row peak structure observed in positron spectra from heavy ion

collisions [15] suggested an axion-like particle of mass 1.8 MeV

that decays into e+e−, but extensive follow-up searches were

negative. “Variant axion models” were proposed which keep

fA ∼ vweak while relaxing the constraint of tree-level flavor

conservation [16], but these models are also excluded [17].

However, axions with fA ≫ vweak evade all current exper-

imental limits. One generic class of models invokes “hadronic

axions” where new heavy quarks carry U(1)PQ charges, leaving

ordinary quarks and leptons without tree-level axion couplings.

The archetype is the KSVZ model [18], where in addition the

heavy quarks are electrically neutral. Another generic class re-

quires at least two Higgs doublets and ordinary quarks and

leptons carry PQ charges, the archetype being the DFSZ

model [19]. All of these models contain at least one elec-

troweak singlet scalar that acquires a vacuum expectation value

and thereby breaks the PQ symmetry. The KSVZ and DFSZ

models are frequently used as benchmark examples, but other

models exist where both heavy quarks and Higgs doublets carry

PQ charges. In supersymmetric models, the axion is part of

a supermultiplet and thus inevitably accompanied by a spin-0

saxion and a spin-1 axino, which both also have couplings

suppressed by fA, and are expected to have large masses due to

supersymmetry breaking [20].

I.2 Model-dependent axion couplings

Although the generic axion interactions scale approximately

with fπ/fA from the corresponding π0 couplings, there are non-

negligible model-dependent factors and uncertainties. The ax-

ion’s two-photon interaction plays a key role for many searches,

LAγγ = −GAγγ

4FµνF

µνφA = GAγγE · BφA , (4)

where F is the electromagnetic field-strength tensor and F µν ≡ǫµνλρFλρ/2, with ε0123 = 1, its dual. The coupling constant is

GAγγ =α

2πfA

(E

N− 2

3

4 + z

1 + z

)

(E

N− 2

3

4 + z

1 + z

)1 + z

z1/2

mA

mπfπ,

(5)

where E and N are the electromagnetic and color anomalies of

the axial current associated with the axion. In grand unified

Page 78: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

688688688688Gauge&Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosonsmodels, and notably for DFSZ [19], E/N = 8/3, whereas for

KSVZ [18] E/N = 0 if the electric charge of the new heavy

quark is taken to vanish. In general, a broad range of E/N

values is possible [21], as indicated by the yellow band in

Figure 1. The two-photon decay width is

ΓA→γγ =G2

Aγγm3A

64 π= 1.1 × 10−24 s−1

(mA

eV

)5. (6)

The second expression uses Eq. (5) with z = 0.56 and E/N = 0.

Axions decay faster than the age of the universe if mA>∼ 20 eV.

Axi

on C

oupl

ing

|GA

γγ |

(GeV

-1)

Axion Mass mA (eV)

10-16

10-14

10-12

10-10

10-8

10-6

10-10 10-8 10-6 10-4 10-2 100

LSW(OSQAR)

Helioscopes(CAST)

Haloscopes(ADMX)

Tel

esco

pes

Horizontal Branch Stars

KSVZ

DFSZ

VMB(PVLAS)

SN 1987A HESS

Figure 1: Exclusion plot for axion-like parti-cles as described in the text.

The interaction with fermions f has derivative form and is

invariant under a shift φA → φA + φ0 as behooves a NG boson,

LAff =Cf

2fAΨfγµγ5Ψf∂µφA . (7)

Here, Ψf is the fermion field, mf its mass, and Cf a

model-dependent coefficient. The dimensionless combination

gAff ≡ Cfmf/fA plays the role of a Yukawa coupling and

αAff ≡ g2Aff/4π of a “fine-structure constant.” The often-

used pseudoscalar form LAff = −i (Cfmf/fA) Ψfγ5ΨfφA need

not be equivalent to the appropriate derivative structure, for

example when two NG bosons are attached to one fermion line

as in axion emission by nucleon bremsstrahlung [22].

In the DFSZ model [19], the tree-level coupling coefficient

to electrons is [23]

Ce =cos2 β′

3, (8)

where tan β′ = vd/vu is the ratio of the vacuum expectation

value vd of the Higgs field Hd giving masses to the down-type

quarks and the vacuum expectation value vu of the Higgs field

Hu giving masses to the up-type quarks. (The prime at the

angle indicates that the convention in the axion literature differs

from the one in the Higgs literature, which uses tan β = vu/vd =

cot β′ [24]. )

For nucleons, Cn,p are related to axial-vector current matrix

elements by generalized Goldberger-Treiman relations,

Cp = (Cu − η)∆u + (Cd − ηz)∆d + (Cs − ηw)∆s ,

Cn = (Cu − η)∆d + (Cd − ηz)∆u + (Cs − ηw)∆s .(9)

Here, η = (1+ z + w)−1 with z = mu/md and w = mu/ms ≪ z

and the ∆q are given by the axial vector current matrix element

∆q Sµ = 〈p|qγµγ5q|p〉 with Sµ the proton spin.

Neutron beta decay and strong isospin symmetry considera-

tions imply ∆u−∆d = F +D = 1.269±0.003, whereas hyperon

decays and flavor SU(3) symmetry imply ∆u + ∆d − 2∆s =

3F −D = 0.586± 0.031 [25]. The strange-quark contribution

is ∆s = −0.08 ± 0.01stat ± 0.05syst from the COMPASS experi-

ment [26], and ∆s = −0.085± 0.008exp ± 0.013theor ± 0.009evol

from HERMES [25], in agreement with each other and with

an early estimate of ∆s = −0.11 ± 0.03 [27]. We thus adopt

∆u = 0.84 ± 0.02, ∆d = −0.43 ± 0.02 and ∆s = −0.09 ± 0.02,

very similar to what was used in the axion literature.

The uncertainty of the axion-nucleon couplings is dominated

by the uncertainty z = mu/md = 0.38–0.58 that we mentioned

earlier. For hadronic axions Cu,d,s = 0, so that −0.51 < Cp <

−0.36 and 0.10 > Cn > −0.05. Therefore it is well possible that

Cn = 0 whereas Cp does not vanish within the plausible z range.

In the DFSZ model, Cu = 13 sin2 β′ and Cd = 1

3 cos2 β′ and Cn

and Cp as functions of β′ and z do not vanish simultaneously.

The axion-pion interaction is given by the Lagrangian [28]

LAπ =CAπ

fπfA

(π0π+∂µπ− + π0π−∂µπ+ − 2π+π−∂µπ0

)∂µφA ,

(10)

where CAπ = (1− z)/[3(1 + z)] in hadronic models. The chiral

symmetry-breaking Lagrangian provides an additional term

L′

Aπ ∝ (m2π/fπfA) (π0π0 + 2π−π+) π0φA. For hadronic axions

it vanishes identically, in contrast to the DFSZ model (Roberto

Peccei, private communication).

II. LABORATORY SEARCHES

II.1 Light shining through walls

Searching for “invisible axions” is extremely challenging due

to its extraordinarily feeble coupling to normal matter and ra-

diation. Currently, the most promising approaches rely on the

axion-two-photon vertex, allowing for axion-photon conversion

in external electric or magnetic fields [5]. For the Coulomb

field of a charged particle, the conversion is best viewed as a

scattering process, γ+Ze ↔ Ze+A, called Primakoff effect [29].

In the other extreme of a macroscopic field, usually a large-scale

B-field, the momentum transfer is small, the interaction coher-

ent over a large distance, and the conversion is best viewed as

an axion-photon oscillation phenomenon in analogy to neutrino

flavor oscillations [30].

Photons propagating through a transverse magnetic field,

with incident Eγ and magnet B parallel, may convert into

axions. For m2AL/2ω ≪ 2π, where L is the length of the

B field region and ω the photon energy, the resultant axion

beam is coherent with the incident photon beam and the

Page 79: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

689689689689See key on page 601 Gauge&Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosonsconversion probability is Π ∼ (1/4)(GAγγBL)2. A practical

realization uses a laser beam propagating down the bore of a

superconducting dipole magnet (like the bending magnets in

high-energy accelerators). If another magnet is in line with

the first, but shielded by an optical barrier, then photons may

be regenerated from the pure axion beam [31]. The overall

probability is P (γ → A → γ) = Π2.

The first such experiment utilized two magnets of length

L = 4.4 m and B = 3.7 T and found |GAγγ| < 6.7×10−7 GeV−1

at 95% CL for mA < 1 meV [32]. More recently, several

such experiments were performed (see Listings) [33,34]. The

current best limit, |GAγγ| < 3.5 × 10−8 GeV−1 at 95% CL for

mA<∼ 0.3 meV (see Figure 1), has been achieved by the OSQAR

(Optical Search for QED Vacuum Birefringence, Axions, and

Photon Regeneration) experiment, which exploited two 9 T

LHC dipole magnets and an 18.5 W continuous wave laser

emitting at the wavelength of 532 nm [34]. Some of these

experiments have also reported limits for scalar bosons where

the photon Eγ must be chosen perpendicular to the magnet B.

The concept of resonantly enhanced photon regeneration

may open unexplored regions of coupling strength [35]. In this

scheme, both the production and detection magnets are within

Fabry-Perot optical cavities and actively locked in frequency.

The γ → A → γ rate is enhanced by a factor 2FF ′/π2 relative

to a single-pass experiment, where F and F ′ are the finesses of

the two cavities. The resonant enhancement could be of order

10(10−12), improving the GAγγ sensitivity by 10(2.5−3). The

experiment ALPS II (Any Light Particle Search II) is based

on this concept and aims at an improvement of the current

laboratory bound on GAγγ by a factor ∼ 3 × 103 in the year

2018 [36].

Resonantly enhanced photon regeneration has already been

exploited in experiments searching for ”radiowaves shining

through a shielding” [37,38]. For mA<∼ 10−5 eV, the upper

bound on GAγγ established by the CROWS (CERN Resonant

Weakly Interacting sub-eV Particle Search) experiment [39] is

slightly less stringent than the one set by OSQAR.

II.2 Photon polarization

An alternative to regenerating the lost photons is to use

the beam itself to detect conversion: the polarization of light

propagating through a transverse B field suffers dichroism

and birefringence [40]. Dichroism: The E‖ component, but

not E⊥, is depleted by axion production, causing a small

rotation of linearly polarized light. For m2AL/2ω ≪ 2π, the

effect is independent of mA. For heavier axions, it oscillates

and diminishes as mA increases, and it vanishes for mA > ω.

Birefringence: This rotation occurs because there is mixing of

virtual axions in the E‖ state, but not for E⊥. Hence, linearly

polarized light will develop elliptical polarization. Higher-order

QED also induces vacuum magnetic birefringence (VMB). A

search for these effects was performed in the same dipole

magnets in the early experiment above [41]. The dichroic

rotation gave a stronger limit than the ellipticity rotation:

|GAγγ | < 3.6× 10−7 GeV−1 at 95% CL for mA < 5× 10−4 eV.

The ellipticity limits are better at higher masses, as they fall off

smoothly and do not terminate at mA.

In 2006 the PVLAS collaboration reported a signature of

magnetically induced vacuum dichroism that could be inter-

preted as the effect of a pseudoscalar with mA = 1–1.5 meV

and |GAγγ | = (1.6–5) × 10−6 GeV−1 [42]. Since then, these

findings are attributed to instrumental artifacts [43]. This

particle interpretation is also excluded by the above photon

regeneration searches that were inspired by the original PVLAS

result. Recently, the fourth generation setup of the PVLAS

experiment has published new results on searches for VMB

(see Figure 1) and dichroism [44]. The bounds from the non-

observation of the latter on GAγγ are slightly weaker than the

ones from OSQAR.

II.3 Long-range forces

New bosons would mediate long-range forces, which are

severely constrained by “fifth force” experiments [45]. Those

looking for new mass-spin couplings provide significant con-

straints on pseudoscalar bosons [46]. Presently, the most

restrictive limits are obtained from combining long-range force

measurements with stellar cooling arguments [47]. For the

moment, any of these limits are far from realistic values ex-

pected for axions. Still, these efforts provide constraints on

more general low-mass bosons.

Recently, a method was proposed that can extend the search

for axion-mediated spin-dependent forces by several orders of

magnitude [48]. By combining techniques used in nuclear

magnetic resonance and short-distance tests of gravity, this

method appears to be sensitive to axions in the µeV – meV

mass range, independent of the cosmic axion abundance.

III. AXIONS FROM ASTROPHYSICAL SOURCES

III.1 Stellar energy-loss limits:

Low-mass weakly-interacting particles (neutrinos, gravitons,

axions, baryonic or leptonic gauge bosons, etc.) are produced

in hot astrophysical plasmas, and can thus transport energy

out of stars. The coupling strength of these particles with

normal matter and radiation is bounded by the constraint

that stellar lifetimes or energy-loss rates not conflict with

observation [49–51].

We begin this discussion with our Sun and concentrate

on hadronic axions. They are produced predominantly by the

Primakoff process γ+Ze → Ze+A. Integrating over a standard

solar model yields the axion luminosity [52]

LA = G210 1.85 × 10−3 L⊙ , (11)

where G10 = |GAγγ| × 1010 GeV. The maximum of the spec-

trum is at 3.0 keV, the average at 4.2 keV, and the number

flux at Earth is G210 3.75 × 1011 cm−2 s−1. The solar photon

luminosity is fixed, so axion losses require enhanced nuclear

energy production and thus enhanced neutrino fluxes. The all-

flavor measurements by SNO together with a standard solar

Page 80: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

690690690690Gauge&Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosonsmodel imply LA

<∼ 0.10 L⊙, corresponding to G10 <∼ 7 [53],

mildly superseding a similar limit from helioseismology [54].

Recently, the limit was improved to G10 < 4.1 (at 3σ), exploit-

ing a new statistical analysis that combined helioseismology

(sound speed, surface helium and convective radius) and solar

neutrino observations, including theoretical and observational

errors, and accounting for tensions between input parameters of

solar models, in particular the solar element abundances [55].

A more restrictive limit derives from globular-cluster (GC)

stars that allow for detailed tests of stellar-evolution theory.

The stars on the horizontal branch (HB) in the color-magnitude

diagram have reached helium burning with a core-averaged en-

ergy release of about 80 erg g−1 s−1, compared to Primakoff

axion losses of G210 30 erg g−1 s−1. The accelerated consump-

tion of helium reduces the HB lifetime by about 80/(80+30 G210).

Number counts of HB stars in a large sample of 39 Galactic

GCs compared with the number of red giants (that are not

much affected by Primakoff losses) give a weak indication of

non-standard losses which may be accounted by Primakoff-

like axion emission, if the photon coupling is in the range

|GAγγ | = 4.5+1.2−1.6 × 10−11 GeV−1 [56]. Still, the upper bound

found in this analysis,

|GAγγ | < 6.6 × 10−11 GeV−1 (95% CL), (12)

represents the strongest limit on GAγγ for a wide mass range,

see Figure 1.

Axion Mass mA (eV)

fA (GeV)

10-1110-1010-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106

10010110210310410510610710810910101011101210131014101510161017

ADMX G2 ADMX IAXO CASPEr CAST

WDLF (gAee DFSZ) WDLF Hint

HB Stars in GCs (gAγγ DFSZ)

KS

VZ

HB Hint

RGs in GCs (gAee DFSZ) RG Hint

SN1987A (gApp KSVZ) Burst Duration Counts in SuperK

Telescope/EBL

Hot-DM / CMB / BBN

Beam Dump

XENON100 (gAee, DFSZ)

NS in Cas A Hint (gAnn DFSZ)

Dark Matter (post-inflation PQ phase transition)

Dark Matter (pre-inflation PQ phase transition)

Black Holes

Figure 2: Exclusion ranges as described inthe text. The intervals in the bottom row arethe approximate ADMX, CASPEr, CAST, andIAXO search ranges, with green regions indi-cating the projected reach. Limits on couplingstrengths are translated into limits on mA andfA using z = 0.56 and the KSVZ values for thecoupling strengths, if not indicated otherwise.The “Beam Dump” bar is a rough representa-tion of the exclusion range for standard or vari-ant axions. The limits for the axion-electroncoupling are determined for the DFSZ modelwith an axion-electron coupling correspondingto cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA<∼ 150meV

(0.21 eV <∼ mA<∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been

determined. The relevant temperature is around 10 keV and

the average photon energy is therefore around 30 keV. The

excluded mA range thus certainly extends beyond the shown

100 keV.

If axions couple directly to electrons, the dominant emission

processes are atomic axio-recombination and axio-deexcitation,

axio-bremsstrahlung in electron-ion or electron-electron colli-

sions, and Compton scattering [57]. Stars in the red giant

(RG) branch of the color-magnitude diagram of GCs are partic-

ularly sensitive to these processes. In fact, they would lead to

an extension of the latter to larger brightness. A recent analysis

provided high-precision photometry for the Galactic globular

cluster M5 (NGC 5904), allowing for a detailed comparison

between the observed tip of the RG branch with predictions

based on state-of-the-art stellar evolution theory [58]. It was

found that, within the uncertainties, the observed and predicted

tip of the RG branch brightness agree reasonably well within

uncertainties, leading to the bound

αAee < 1.5 × 10−26 (95% CL), (13)

implying an upper bound on the axion mass in the DFSZ model,

mA cos2 β′ < 15 meV (95% CL), (14)

see Figure 2. Intriguingly, the agreement would improve with a

small amount of extra cooling that slightly postpones helium ig-

nition, prefering an electron coupling around αAee ∼ 2.8×10−27,

corresponding to mA cos2 β′ ∼ 7 meV. Recently, it has been

pointed out that the best fit simultaneously explaining the extra

energy losses of HB stars reported above and the ones of RGs

prefers a photon coupling around GAγγ ∼ few × 10−12 GeV−1

and an electron coupling of order αAee ∼ 10−27 [59].

Bremsstrahlung is also efficient in white dwarfs (WDs),

where the Primakoff and Compton processes are suppressed

by the large plasma frequency. A comparison of the predicted

and observed luminosity function of WDs can be used to put

limits on αAee [60]. A recent analysis, based on detailed

WD cooling treatment and new data on the WD luminosity

function (WDLF) of the Galactic Disk, found that electron

couplings above αAee>∼ 6 × 10−27, corresponding to a DFSZ

axion mass mA cos2 β′ >∼ 10 meV, are disfavoured [61], see

Figure 2. Lower couplings can not be discarded from the

current knowledge of the WDLF of the Galactic Disk. On

the contrary, features in some WDLFs can be interpreted as

suggestions for electron couplings in the range 4.1 × 10−28 <∼

Page 81: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

691691691691See key on page 601 Gauge&Higgs Boson Parti le ListingsAxions (A0) and Other Very Light BosonsαAee

<∼ 3.7 × 10−27, corresponding to 2.5 meV <∼ mA cos2 β′ <∼7.5 meV [61,62], see Figure 2. For pulsationally unstable WDs

(ZZ Ceti stars), the period decrease P /P is a measure of the

cooling speed. The corresponding observations of the pulsating

WDs G117-B15A and R548 imply additional cooling that can

be interpreted also in terms of similar axion losses [63].

Similar constraints derive from the measured duration of

the neutrino signal of the supernova SN 1987A. Numerical simu-

lations for a variety of cases, including axions and Kaluza-Klein

gravitons, reveal that the energy-loss rate of a nuclear medium

at the density 3×1014 g cm−3 and temperature 30 MeV should

not exceed about 1 × 1019 erg g−1 s−1 [50]. The energy-loss

rate from nucleon bremsstrahlung, N + N → N + N + A, is

(CN/2fA)2(T 4/π2mN ) F . Here F is a numerical factor that

represents an integral over the dynamical spin-density structure

function because axions couple to the nucleon spin. For realis-

tic conditions, even after considerable effort, one is limited to a

heuristic estimate leading to F ≈ 1 [51].

The SN 1987A limits are of particular interest for hadronic

axions where the bounds on αAee are moot. Within uncer-

tainties of z = mu/md a reasonable choice for the coupling

constants is then Cp = −0.4 and Cn = 0. Using a proton

fraction of 0.3, F = 1, and T = 30 MeV one finds [51]

fA>∼ 4 × 108 GeV and mA

<∼ 16 meV , (15)

see Figure 2. If axions interact sufficiently strongly they are

trapped. Only about three orders of magnitude in gANN or

mA are excluded, a range shown somewhat schematically in

Figure 2. For even larger couplings, the axion flux would have

been negligible, yet it would have triggered additional events in

the detectors, excluding a further range [64]. A possible gap

between these two SN 1987A arguments was discussed as the

“hadronic axion window” under the assumption that GAγγ was

anomalously small [65]. This range is now excluded by hot

dark matter bounds (see below).

Intriguingly, there is another hint for excessive stellar energy

losses from the neutron star (NS) in the supernova remnant

Cassiopeia A (Cas A): its surface temperature measured over

10 years reveals an unusually fast cooling rate. This may

be interpreted as a hint for extra cooling by axion neutron

bremsstrahlung, requiring a coupling to the neutron of size [66]

gAnn = (3.8 ± 3) × 10−10 (16)

corresponding to an axion mass

mA = (2.4 ± 2) meV/Cn, (17)

see Figure 2. The hint is compatible with the state-of-the-art

upper limit on this coupling,

gAnn < 8 × 10−10, (18)

from NS cooling [67]. In fact, as recently pointed out, the

more rapid cooling of the superfluid core in the neutron star

may also arise from a phase transition of the neutron condensate

into a multicomponent state [68].

Finally, let us note that if the interpretation of the various

hints for additional cooling of stars reported in this section in

terms of emission of axions with mA ∼meV were correct, SNe

would lose a large fraction of their energy as axions. This would

lead to a diffuse SN axion background in the universe with an

energy density comparable to the extra-galactic background

light [69]. However, there is no apparent way of detecting it

or the axion burst from the next nearby SN.

III.2 Searches for solar axions and ALPs

Instead of using stellar energy losses to derive axion limits,

one can also search directly for these fluxes, notably from the

Sun. The main focus has been on axion-like particles with

a two-photon vertex. They are produced by the Primakoff

process with a flux given by Equation 11 and an average energy

of 4.2 keV, and can be detected at Earth with the reverse

process in a macroscopic B-field (“axion helioscope”) [5]. In

order to extend the sensitivity in mass towards larger values,

one can endow the photon with an effective mass in a gas,

mγ = ωplas, thus matching the axion and photon dispersion

relations [70].

An early implementation of these ideas used a conventional

dipole magnet, with a conversion volume of variable-pressure

gas with a xenon proportional chamber as x-ray detector [71].

The conversion magnet was fixed in orientation and collected

data for about 1000 s/day. Axions were excluded for |GAγγ| <

3.6 × 10−9 GeV−1 for mA < 0.03 eV, and |GAγγ | < 7.7 ×10−9 GeV−1 for 0.03 < mA < 0.11 eV at 95% CL.

Later, the Tokyo axion helioscope used a superconducting

magnet on a tracking mount, viewing the Sun continuously.

They reported |GAγγ | < 6×10−10 GeV−1 for mA < 0.3 eV [72].

This experiment was recommissioned and a similar limit for

masses around 1 eV was reported [73].

The most recent helioscope CAST (CERN Axion Solar

Telescope) uses a decommissioned LHC dipole magnet on a

tracking mount. The hardware includes grazing-incidence x-

ray optics with solid-state x-ray detectors, as well as a novel

x-ray Micromegas position-sensitive gaseous detector. CAST

has established a 95% CL limit |GAγγ| < 8.8 × 10−11 GeV−1

for mA < 0.02 eV [52]. To cover larger masses, the magnet

bores are filled with a gas at varying pressure. The runs with4He cover masses up to about 0.4 eV [74], providing the 4He

limits shown in Figure 1. To cover yet larger masses, 3He was

used to achieve a larger pressure at cryogenic temperatures.

Limits up to 1.17 eV allowed CAST to “cross the axion line”

for the KSVZ model [75], see Figure 1.

Recently, the XENON100 experiment has presented first

results of searches for solar axions and ALPs [76]. The axion-

electron coupling constant, gAee, has been probed by exploiting

the axio-electric effect in liquid xenon, resulting in an upper

bound

gAee < 7.7 × 10−12 (90% CL), (19)

Page 82: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

692692692692Gauge&Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosonsexcluding DFSZ models with mA cos2 β′ > 0.27 eV, cf. see

Figure 2.

Going to yet larger masses in a helioscope search is not well

motivated because of the cosmic hot dark matter bound of mA<∼

1 eV (see below). Sensitivity to significantly smaller values of

GAγγ can be achieved with a next-generation axion helioscope

with a much larger magnetic-field cross section. Realistic design

options for this “International Axion Observatory” (IAXO)

have been studied in some detail [77]. Such a next-generation

axion helioscope may also push the sensitivity in the product of

couplings to photons and to electrons, GAγγgAee, into a range

beyond stellar energy-loss limits and test the hypothesis that

WD cooling is dominated by axion emission [78].

Other Primakoff searches for solar axions and ALPs have

been carried out using crystal detectors, exploiting the coherent

conversion of axions into photons when the axion angle of

incidence satisfies a Bragg condition with a crystal plane [79].

However, none of these limits is more restrictive than the

one derived from the constraint on the solar axion luminosity

(LA<∼ 0.10 L⊙) discussed earlier.

Another idea is to look at the Sun with an x-ray satellite

when the Earth is in between. Solar axions and ALPs would

convert in the Earth magnetic field on the far side and could be

detected [80]. The sensitivity to GAγγ could be comparable

to CAST, but only for much smaller mA. Deep solar x-ray

measurements with existing satellites, using the solar magne-

tosphere as conversion region, have reported preliminary limits

on GAγγ [81].

III.3 Conversion of astrophysical photon fluxes

Large-scale B fields exist in astrophysics that can induce

axion-photon oscillations. In practical cases, B is much smaller

than in the laboratory, whereas the conversion region L is much

larger. Therefore, while the product BL can be large, realistic

sensitivities are usually restricted to very low-mass particles,

far away from the “axion band” in a plot like Figure 1.

One example is SN 1987A, which would have emitted a burst

of axion-like particles (ALPs) due to the Primakoff production

in its core. They would have partially converted into γ-rays

in the galactic B-field. The lack of a gamma-ray signal in the

GRS instrument of the SMM satellite in coincidence with the

observation of the neutrinos emitted from SN1987A therefore

provides a strong bound on their coupling to photons [82].

Recently, this bound has been revisited and the underlying

physics has been brought to the current state-of-the-art, as far

as modelling of the supernova and the Milky-Way magnetic

field are concerned, resulting in the limit [83]

|GAγγ | < 5.3 × 10−12 GeV−1, for mA<∼ 4.4 × 10−10 eV.

Magnetically induced oscillations between photons and

axion-like particles (ALPs) can modify the photon fluxes

from distant sources in various ways, featuring (i) frequency-

dependent dimming, (ii) modified polarization, and (iii) avoid-

ing absorption by propagation in the form of axions.

For example, dimming of SNe Ia could influence the inter-

pretation in terms of cosmic acceleration [84], although it has

become clear that photon-ALP conversion could only be a sub-

dominant effect [85]. Searches for linearly polarised emission

from magnetised white dwarfs [86] and changes of the linear

polarisation from radio galaxies (see, e.g., Ref. [87]) provide

limits close to GAγγ ∼ 10−11 GeV−1, for masses mA<∼ 10−7 eV

and mA<∼ 10−15 eV, respectively, albeit with uncertainties re-

lated to the underlying assumptions. Even stronger limits,

GAγγ<∼ 2 × 10−13 GeV−1, for mA

<∼ 10−14 eV, have been

obtained by exploiting high-precision measurements of quasar

polarisations [88].

Remarkably, it appears that the universe could be too

transparent to TeV γ-rays that should be absorbed by pair

production on the extra-galactic background light [89]. The

situation is not conclusive at present [90], but the possible

role of photon-ALP oscillations in TeV γ-ray astronomy is

tantalizing [91]. Fortunately, the region in ALP parameter

space, GAγγ ∼ 10−12 − 10−10 GeV−1 for mA<∼ 10−7 eV [92],

required to explain the anomalous TeV transparency of the

universe, could be conceivably probed by the next generation

of laboratory experiments (ALPS II) and helioscopes (IAXO)

mentioned above. This parameter region can also be probed by

searching for an irregular behavior of the gamma ray spectrum

of distant active galactic nuclei (AGN), expected to arise from

photon-ALP mixing in a limited energy range. The H.E.S.S.

collaboration has set a limit of |GAγγ| <∼ 2.1×10−11 GeV−1, for

1.5×10−8 eV <∼ mA<∼ 6.0×10−8 eV, from the non-observation

of an irregular behavior of the spectrum of the AGN PKS

2155 [93], see Figure 1.

Last but not least, it was found that observed soft X-ray

excesses in many galaxy clusters may be explained by the

conversion of a hypothetical cosmic ALP background (CAB)

radiation, corresponding to an effective number Neff of extra

neutrinos, into photons in the cluster magnetic fields [94].

This explanation requires that the CAB spectrum is peaked

in the soft X-ray region and that the ALP coupling and

mass satisfy |GAγγ | >∼ (1 − 2) × 10−13 GeV−1√

0.5/Neff , for

mA<∼ 10−12 eV.

III.4 Superradiance of black holes

Ultralight bosonic fields such as axions or ALPs can affect

the dynamics and gravitational wave emission of rapidly rotat-

ing astrophysical black holes through the Penrose superradiance

mechanism. When their Compton wavelength is of order of the

black hole size, they form bound states around the black hole

nucleus. Their occupation number grows exponentially by ex-

tracting rotational energy and angular momentum from the

ergosphere, thus forming a rotating Bose-Einstein condensate

emitting gravitational waves. For black holes lighter than 107

solar masses, accretion cannot replenish the spin of the black

hole. The existence of destabilizing ultralight bosonic fields

thus leads to gaps in the mass vs. spin plot of rapidly rotating

black holes. Stellar black hole spin measurements – exploiting

Page 83: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

693693693693See key on page 601 Gauge&Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosonswell-studied binaries and two independent techniques – exclude

a mass range 6 × 10−13 eV < mA < 2 × 10−11 eV at 2σ, which

for the axion excludes 3 × 1017 GeV < fA < 1 × 1019 GeV [95].

Long lasting, monochromatic gravitational wave signals, which

can be distinguished from ordinary astrophysical sources, are

expected to be produced by axions transitioning between the

levels of the gravitational atom and axions annihilating to gravi-

tons. Accordingly, the gravitational wave detector Advanced

LIGO should be sensitive to the axion in the mA ∼ 10−10 eV

region.

IV. COSMIC AXIONS

IV.1 Cosmic axion populations

In the early universe, axions are produced by processes in-

volving quarks and gluons [96]. After color confinement, the

dominant thermalization process is π + π ↔ π + A [28]. The

resulting axion population would contribute a hot dark mat-

ter component in analogy to massive neutrinos. Cosmological

precision data provide restrictive constraints on a possible hot

dark-matter fraction that translate into mA<∼ 1 eV [97], but

in detail depend on the used data set and assumed cosmological

model. In the future, data from a EUCLID-like survey com-

bined with Planck CMB data can detect hot dark matter axions

mass mA>∼ 0.15 eV at very high significance [98].

For mA>∼ 20 eV, axions decay fast on a cosmic time scale,

removing the axion population while injecting photons. This

excess radiation provides additional limits up to very large

axion masses [99]. An anomalously small GAγγ provides no

loophole because suppressing decays leads to thermal axions

overdominating the mass density of the universe.

The main cosmological interest in axions derives from their

possible role as cold dark matter (CDM). In addition to thermal

processes, axions are abundantly produced by the “re-alignment

mechanism” [100]. After the breakdown of the PQ symmetry,

the axion field relaxes somewhere in the “bottom of the wine

bottle” potential. Near the QCD epoch, topological fluctua-

tions of the gluon fields such as instantons explicitly break

the PQ symmetry, the very effect that causes dynamical PQ

symmetry restoration. This “tilting of the wine bottle” drives

the axion field toward the CP-conserving minimum, thereby

exciting coherent oscillations of the axion field that ultimately

represent a condensate of CDM. The fractional cosmic mass

density in this homogeneous field mode is [101,102],

ΩrealA h2 ≈ 0.11

(fA

5 × 1011 GeV

)1.19

F Θ2i

= 0.11

(12 µeV

mA

)1.19

F Θ2i ,

(20)

where h is the present-day Hubble expansion parameter in

units of 100 km s−1 Mpc−1, and −π ≤ Θi ≤ π is the initial

“misalignment angle” relative to the CP-conserving position

attained in the causally connected region which evolved into to-

day’s observable universe. F = F (Θi, fA) is a factor accounting

for anharmonicities in the axion potential.

For F Θ2i = O(1), mA should be above ∼ 10 µeV in order

that the cosmic axion density does not exceed the observed

CDM density, ΩCDMh2 = 0.11. However, much smaller axion

masses (much higher PQ scales) would still be possible if the PQ

symmetry is broken during inflation and not restored afterwards.

In this case, the initial value Θi may just happen to be

small enough in today’s observable universe (“anthropic axion

window” [103]) . However, since the axion field is then present

during inflation and thus subject to quantum fluctuations, the

non-observation of the associated isocurvature fluctuations in

the CMB puts severe constraints in the (fA, r) plane, where

r is the ratio of the power in tensor to the one in scalar

fluctuations [104]. In fact, isocurvature constraints, combined

with a future measurement of a sizeable r, would strongly

disfavor axions with [105]

fA>∼ 1.3 × 1013 GeV

( r

0.1

)1/2, mA

<∼ 0.4 µeV( r

0.1

)−1/2.

If the PQ symmetry breakdown takes place after inflation,

Θi will take on different values in different patches of the

universe. The average contribution is [101]

ΩrealA h2 ≈ 0.11

(41 µeV

mA

)1.19

. (21)

However, the additional contribution from the decay of topo-

logical defects suffers from significant uncertainties. According

to Sikivie and collaborators, these populations are comparable

to the re-alignment contribution [106]. Other groups find a

significantly enhanced axion density [102,107] or rather, a larger

mA value for axions providing CDM, namely

mA ≈ (0.8 − 1.3) × 10−4 eV, (22)

for models with short-lived (requiring unit color anomaly N =

1) domain walls, such as the KSVZ model, and

mA ≈ (6 × 10−4 − 4 × 10−3) eV, (23)

for models with long-lived (N > 1) domain walls, such as an

accidental DFSZ model [108], where the PQ symmetry is

broken by higher dimensional Planck suppressed operators, see

Figure 2. Moreover, the spatial axion density variations are

large at the QCD transition and they are not erased by free

streaming. When matter begins to dominate the universe, grav-

itationally bound “axion mini clusters” form promptly [109].

A significant fraction of CDM axions can reside in these bound

objects.

In the above predictions of the fractional cosmic mass

density in axions, the exponent, 1.19, arises from the non-

trivial temperature dependence of the axion mass mA(T ) =√χ(T )/fA, which has been obtained from the dilute instanton

gas/liquid approximation (DIGA). Lattice QCD provides a first

principle technique to determine the topological susceptibil-

ity χ(T ) in the relevant temperature range around the QCD

phase transition. A full result needs two ingredients: physical

quark masses and a controlled continuum extrapolation from

Page 84: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

694694694694Gauge&Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosonsnon-vanishing to zero lattice spacings. The latter has been

done recently in the quenched framework (neglecting the ef-

fects of light quarks) and compared with the prediction of the

DIGA [110,111]. Nice agreement was found for the temperature

dependence, whereas the overall normalization of the DIGA re-

sult turned out to differ from the non-perturbative continuum

extrapolated lattice results by a factor of order ten [111]. If

this finding can be extrapolated to full QCD, the prediction

of the axion mass relevant for dark matter will decrease by

about 20% compared to the DIGA prediction. Lattice simula-

tions with physical quark masses are about two-to-three orders

of magnitude more CPU intensive than quenched ones. In

addition one expects much smaller topological susceptibilities

and larger cutoff effects. Correspondingly, available pioneering

studies in full QCD [112] do not extend to the relevant temper-

ature range and may still suffer from strong cutoff effects. But

lattice campaigns dedicated to axion cosmology are ongoing.

In R-parity conserving supersymmetric models, more pos-

sibilities arise: cold dark matter might be a mixture of axions

along with the lightest SUSY particle (LSP) [20]. Candidates

for the LSP include the lightest neutralino, the gravitino, the

axino, or a sneutrino. In the case of a neutralino LSP, saxion

and axino production in the early universe have a strong impact

on the neutralino and axion abundance. The former almost al-

ways gets increased beyond its thermal-production-only value,

favoring then models with higgsino-like or wino-like neutrali-

nos [113]. For large values of fA, saxions from the vacuum

re-alignment mechanism may produce large relic dilution via

entropy dumping, thus allowing for much larger values of fA,

sometimes as high as approaching the GUT scale, ∼ 1016 GeV,

for natural values of the initial re-alignment angle. Then the

dark matter may be either neutralino- or axion-dominated, or

a comparable mixture. In such scenarios, one might expect

eventual direct detection of both relic neutralinos and relic

axions.

Finally, it is worth mentioning that the non-thermal pro-

duction mechanisms attributed to axions are indeed generic to

bosonic weakly interacting ultra-light particles such as ALPs:

a wide range in GAγγ – mA parameter space outside the ax-

ion band can generically contain models with adequate CDM

density [114].

IV.2 Telescope searches

The two-photon decay is extremely slow for axions with

masses in the CDM regime, but could be detectable for eV

masses. The signature would be a quasi-monochromatic emis-

sion line from galaxies and galaxy clusters. The expected

optical line intensity for DFSZ axions is similar to the contin-

uum night emission. An early search in three rich Abell clus-

ters [115], and a recent search in two rich Abell clusters [116],

exclude the “Telescope” range in Figure 1 and Figure 2 unless

the axion-photon coupling is strongly suppressed. Of course,

axions in this mass range would anyway provide an excessive

hot DM contribution.

Very low-mass axions in halos produce a weak quasi-

monochromatic radio line. Virial velocities in undisrupted

dwarf galaxies are very low, and the axion decay line

would therefore be extremely narrow. A search with the

Haystack radio telescope on three nearby dwarf galaxies pro-

vided a limit |GAγγ| < 1.0 × 10−9 GeV−1 at 96% CL for

298 < mA < 363 µeV [117]. However, this combination of

mA and GAγγ does not exclude plausible axion models.

IV.3 Microwave cavity experiments

The limits of Figure 2 suggest that axions, if they exist,

provide a significant fraction or even perhaps all of the cos-

mic CDM. In a broad range of the plausible mA range for

CDM, galactic halo axions may be detected by their resonant

conversion into a quasi-monochromatic microwave signal in a

high-Q electromagnetic cavity permeated by a strong static B

field [5,118]. The cavity frequency is tunable, and the signal

is maximized when the frequency is the total axion energy, rest

mass plus kinetic energy, of ν = (mA/2π) [1 + O(10−6)], the

width above the rest mass representing the virial distribution

in the galaxy. The frequency spectrum may also contain finer

structure from axions more recently fallen into the galactic

potential and not yet completely virialized [119].

Figure 3: Exclusion region reported fromthe microwave cavity experiments RBF andUF [120] and ADMX [121]. A local dark-matterdensity of 450 MeV cm−3 is assumed.

The feasibility of this technique was established in early

experiments of relatively small sensitive volume, O(1 liter),

with HFET-based amplifiers, setting limits in the range

4.5 < mA < 16.3 µeV [120], but lacking by 2–3 orders of

magnitude the sensitivity required to detect realistic axions.

Later, ADMX (B ∼ 8 T, V ∼ 200 liters) has achieved sen-

sitivity to KSVZ axions, assuming they saturate the local

dark matter density and are well virialized, over the mass

range 1.9–3.3 µeV [121]. Should halo axions have a signifi-

cant component not yet virialized, ADMX is sensitive to DFSZ

Page 85: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

695695695695See key on page 601 Gauge&Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosonsaxions [122]. The corresponding 90% CL exclusion regions

shown in Figure 3 are normalized to an assumed local CDM

density of 7.5 × 10−25 g cm−3 (450 MeV cm−3). More re-

cently the ADMX experiment commissioned an upgrade [123]

that replaces the microwave HFET amplifiers by near quan-

tum-limited low-noise dc SQUID microwave amplifiers [124],

allowing for a significantly improved sensitivity [125]. This

apparatus is also sensitive to other hypothetical light bosons,

such as hidden photons or chameleons, over a limited parameter

space [114,126]. Alternatively, a Rydberg atom single-photon

detector [127] can in principle evade the standard quantum

limit for coherent photon detection.

Other new concepts for searching for axion dark matter are

also being investigated. For instance, photons from dark matter

axions or ALPs could be focused in a manner similar to a dish

antenna instead of a resonant cavity [128], enabling broadband

searches at higher masses than the RF technique. Searches for

hidden photon dark matter exploiting this technique are already

underway [129]. Another alternative to the microwave cavity

technique is based on a novel detector architecture consisting of

an open, Fabry-Perot resonator and a series of current-carrying

wire planes [130]. The Orpheus detector has demonstrated

this new technique, excluding dark matter ALPs with masses

between 68.2 and 76.5µeV and axion-photon couplings greater

than 4 × 10−7 GeV−1. This technique may be able to probe

dark matter axions in the mass range from 40 to 700 µeV.

Another proposed axion dark matter search method sensitive

in the 100 µeV mass range is to cool a kilogram-sized sample

to millikelvin temperatures and count axion induced atomic

transitions using laser techniques [131].

IV.4 Magnetic resonance searches

The oscillating galactic dark matter axion field induces os-

cillating nuclear electric dipole moments (EDMs). These EDMs

cause the precession of nuclear spins in a nucleon spin polar-

ized sample in the presence of an electric field. The resulting

transverse magnetization can be searched for by exploiting

magnetic-resonance (MR) techniques, which are most sensitive

in the range of low oscillation frequencies corresponding to

sub-neV axion masses. The aim of the corresponding Cosmic

Axion Spin Precession Experiment (CASPEr) [132] is to probe

axion dark matter in the anthropic window, fA>∼ 1015 GeV,

corresponding to mA<∼ neV, complementary to the classic axion

window probed by the RF cavity technique.

In the intermediate mass region, neV<∼ mA<∼ 0.1 µeV, one

may exploit a cooled LC circuit and precision magnetometry

to search for the oscillating electric current induced by dark

matter axions in a strong magnetic field [133].

An eventually non-zero axion electron coupling gAee will

lead to a spin precession about the axion dark matter wind [134].

The QUAX (QUaerere AXions) experiment aims at exploiting

MR inside a magnetized material [135]. Because of the higher

Larmor frequency of the electron, it is sensitive in the classic

window.

Conclusions

There is a strengthening physics case for very weakly cou-

pled ultralight particles beyond the Standard Model. The el-

egant solution of the strong CP problem proposed by Peccei

and Quinn yields a particularly strong motivation for the axion.

In many theoretically appealing ultraviolet completions of the

Standard Model axions and axion-like particles occur automati-

cally. Moreover, they are natural cold dark matter candidates.

Perhaps the first hints of their existence have already been seen

in the anomalous excessive cooling of stars and the anomalous

transparency of the Universe for VHE gamma rays. Inter-

estingly, a significant portion of previously unexplored, but

phenomenologically very interesting and theoretically very well

motivated axion and ALP parameter space can be tackled in

the foreseeable future by a number of terrestrial experiments

searching for axion/ALP dark matter, for solar axions/ALPs,

and for light apparently shining through a wall.

References

1. R.D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440(1977); Phys. Rev. D16, 1791 (1977).

2. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978);F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

3. F. Wilczek, Phys. Rev. Lett. 49, 1549 (1982).

4. Y. Chikashige, R.N. Mohapatra, and R.D. Peccei, Phys.Lett. B98, 265 (1981);G.B. Gelmini and M. Roncadelli, Phys. Lett. B99, 411(1981).

5. P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983) and Erratumibid., 52, 695 (1984).

6. E. Witten, Phys. Lett. B149, 351 (1984);J.P. Conlon, JHEP 0605, 078 (2006);K.-S. Choi et al., Phys. Lett. B675, 381 (2009);A. Arvanitaki et al., Phys. Rev. D81, 123530 (2010);B.S. Acharya, K. Bobkov, and P. Kumar, JHEP 1011,105 (2010);M. Cicoli, M. Goodsell, and A. Ringwald, JHEP 1210,146 (2012).

7. J. Jaeckel and A. Ringwald, Ann. Rev. Nucl. and Part.Sci. 60, 405 (2010);A. Ringwald, Phys. Dark Univ. 1, 116 (2012);J. Jaeckel, Frascati Phys. Ser. 56, 172 (2013).

8. C.A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006).

9. H. Georgi, D.B. Kaplan, and L. Randall, Phys. Lett.B169, 73 (1986).

10. R.J. Crewther, Phys. Lett. B70, 349 (1977);P. Di Vecchia and G. Veneziano, Nucl. Phys. B171, 253(1980).

11. H. Leutwyler, Phys. Lett. B378, 313 (1996).

12. Mini review on Quark Masses in: K.A. Olive et al. (Par-ticle Data Group), Chin. Phys. C 38, 090001 (2014).

13. G.G. di Cortona et al., JHEP 1601, 034 (2016).

14. T.W. Donnelly et al., Phys. Rev. D18, 1607 (1978);S. Barshay et al., Phys. Rev. Lett. 46, 1361 (1981);A. Barroso and N.C. Mukhopadhyay, Phys. Lett. B106,91 (1981);R.D. Peccei, in Proceedings of Neutrino ’81, Honolulu,Hawaii, Vol. 1, p. 149 (1981);

Page 86: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

696696696696Gauge&Higgs Boson Parti le ListingsAxions (A0) and Other Very Light BosonsL.M. Krauss and F. Wilczek, Phys. Lett. B173, 189(1986).

15. J. Schweppe et al., Phys. Rev. Lett. 51, 2261 (1983);T. Cowan et al., Phys. Rev. Lett. 54, 1761 (1985).

16. R.D. Peccei, T.T. Wu, and T. Yanagida, Phys. Lett.B172, 435 (1986).

17. W.A. Bardeen, R.D. Peccei, and T. Yanagida, Nucl.Phys. B279, 401 (1987).

18. J.E. Kim, Phys. Rev. Lett. 43, 103 (1979);M.A. Shifman, A.I. Vainstein, and V.I. Zakharov, Nucl.Phys. B166, 493 (1980).

19. M. Dine, W. Fischler, and M. Srednicki, Phys. Lett.B104, 199 (1981);A.R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980).

20. J.E. Kim and G. Carosi, Rev. Mod. Phys. 82, 557 (2010).

21. J.E. Kim, Phys. Rev. D58, 055006 (1998).

22. G. Raffelt and D. Seckel, Phys. Rev. Lett. 60, 1793(1988);M. Carena and R.D. Peccei, Phys. Rev. D40, 652 (1989);K. Choi, K. Kang, and J.E. Kim, Phys. Rev. Lett. 62,849 (1989).

23. M. Srednicki, Nucl. Phys. B260, 689 (1985).

24. Status of Higgs boson physics in: K.A. Olive et al. (Par-ticle Data Group), Chin. Phys. C 38, 090001 (2014).

25. A. Airapetian et al. (HERMES Collab.), Phys. Rev. D75,012007 (2007) and Erratum ibid., D76, 039901 (2007).

26. V.Y. Alexakhin et al. (COMPASS Collab.), Phys. Lett.B647, 8 (2007).

27. J.R. Ellis and M. Karliner, in: The spin structure of the

nucleon: International school of nucleon structure (3–10August 1995, Erice, Italy), ed. by B. Frois, V.W. Hughes,and N. De Groot (World Scientific, Singapore, 1997)[hep-ph/9601280].

28. S. Chang and K. Choi, Phys. Lett. B316, 51 (1993).

29. D.A. Dicus et al., Phys. Rev. D18, 1829 (1978).

30. G. Raffelt and L. Stodolsky, Phys. Rev. D37, 1237(1988).

31. A.A. Anselm, Yad. Fiz. 42, 1480 (1985);K. van Bibber et al., Phys. Rev. Lett. 59, 759 (1987).

32. G. Ruoso et al., Z. Phys. C56, 505 (1992);R. Cameron et al., Phys. Rev. D47, 3707 (1993).

33. M. Fouche et al. (BMV Collab.), Phys. Rev. D78, 032013(2008);P. Pugnat et al. (OSQAR Collab.), Phys. Rev. D78,092003 (2008);A. Chou et al. (GammeV T-969 Collab), Phys. Rev. Lett.100, 080402 (2008);A. Afanasev et al. (LIPSS Collab.), Phys. Rev. Lett. 101,120401 (2008);K. Ehret et al. (ALPS Collab.), Phys. Lett. B689, 149(2010);P. Pugnat et al. (OSQAR Collab.), Eur. Phys. J. C74,3027 (2014).

34. R. Ballou et al. (OSQAR Collab.), Phys. Rev. D92,092002 (2015).

35. F. Hoogeveen and T. Ziegenhagen , Nucl. Phys. B358, 3(1991);P. Sikivie, D. Tanner, and K. van Bibber, Phys. Rev.Lett. 98, 172002 (2007);G. Mueller et al., Phys. Rev. D80, 072004 (2009).

36. R. Baehre et al. (ALPS Collab.), JINST 1308, T09001(2013).

37. F. Hoogeveen, Phys. Lett. B288, 195 (1992);J. Jaeckel and A. Ringwald, Phys. Lett. B659, 509(2008);F. Caspers, J. Jaeckel, and A. Ringwald, JINST 0904,P11013 (2009).

38. R. Povey, J. Hartnett, and M. Tobar, Phys. Rev. D82,052003 (2010);A. Wagner et al., Phys. Rev. Lett. 105, 171801 (2010).

39. M. Betz et al., Phys. Rev. D88, 075014 (2013).

40. L. Maiani et al., Phys. Lett. B175, 359 (1986).

41. Y. Semertzidis et al., Phys. Rev. Lett. 64, 2988 (1990).

42. E. Zavattini et al. (PVLAS Collab.), Phys. Rev. Lett. 96,110406 (2006).

43. E. Zavattini et al. (PVLAS Collab.), Phys. Rev. D77,032006 (2008).

44. F. Della Valle et al. (PVLAS Collab.), Eur. Phys. J. C76,24 (2016).

45. E. Fischbach and C. Talmadge, Nature 356, 207 (1992).

46. J.E. Moody and F. Wilczek, Phys. Rev. D30, 130 (1984);A.N. Youdin et al., Phys. Rev. Lett. 77, 2170 (1996);Wei-Tou Ni et al., Phys. Rev. Lett. 82, 2439 (1999);D.F. Phillips et al., Phys. Rev. D63, 111101 (2001);B.R. Heckel et al. (Eot-Wash Collab.), Phys. Rev. Lett.97, 021603 (2006);S.A. Hoedl et al., Phys. Rev. Lett. 106, 041801 (2011).

47. G. Raffelt, Phys. Rev. D86, 015001 (2012).

48. A. Arvanitaki and A.A. Geraci, Phys. Rev. Lett. 113,161801 (2014).

49. M.S. Turner, Phys. Reports 197, 67 (1990);G.G. Raffelt, Phys. Reports 198, 1 (1990).

50. G.G. Raffelt, Stars as Laboratories for Fundamental Phys-

ics, (Univ. of Chicago Press, Chicago, 1996).

51. G.G. Raffelt, Lect. Notes Phys. 741, 51 (2008).

52. S. Andriamonje et al. (CAST Collab.), JCAP 0704, 010(2007).

53. P. Gondolo and G. Raffelt, Phys. Rev. D79, 107301(2009).

54. H. Schlattl, A. Weiss, and G. Raffelt, Astropart. Phys.10, 353 (1999).

55. N. Vinyoles et al., JCAP 1510, 015 (2015).

56. A. Ayala et al., Phys. Rev. Lett. 113, 191302 (2014).

57. J. Redondo, JCAP 1312, 008 (2013).

58. N. Viaux et al., Phys. Rev. Lett. 111, 231301 (2013).

59. M. Giannotti et al., arXiv:1512.08108.

60. G.G. Raffelt, Phys. Lett. B166, 402 (1986);S.I. Blinnikov and N.V. Dunina-Barkovskaya, Mon. Not.R. Astron. Soc. 266, 289 (1994).

61. M.M. Miller Bertolami et al., JCAP 1410, 069 (2014).

62. J. Isern et al., Astrophys. J. Lett. 682, L109 (2008);J. Isern et al., J. Phys. Conf. Ser. 172, 012005 (2009).

63. J. Isern et al., Astron. & Astrophys. 512, A86 (2010);A.H. Corsico et al., Mon. Not. Roy. Astron. Soc.424, 2792 (2012);A.H. Corsico et al., JCAP 1212, 010 (2012).

64. J. Engel, D. Seckel, and A.C. Hayes, Phys. Rev. Lett. 65,960 (1990).

65. T. Moroi and H. Murayama, Phys. Lett. B440, 69 (1998).

Page 87: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

697697697697See key on page 601 Gauge&Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosons66. L.B. Leinson, JCAP 1408, 031 (2014).

67. J. Keller and A. Sedrakian, Nucl. Phys. A897, 62 (2013);A. Sedrakian, arXiv:1512.07828.

68. L.B. Leinson, Phys. Lett. B741, 87 (2015).

69. G.G. Raffelt, J. Redondo, and N. Viaux Maira, Phys.Rev. D84, 103008 (2011).

70. K. van Bibber et al., Phys. Rev. D39, 2089 (1989).

71. D. Lazarus et al., Phys. Rev. Lett. 69, 2333 (1992).

72. S. Moriyama et al., Phys. Lett. B434, 147 (1998);Y. Inoue et al., Phys. Lett. B536, 18 (2002).

73. M. Minowa et al., Phys. Lett. B668, 93 (2008).

74. E. Arik et al. (CAST Collab.), JCAP 0902, 008 (2009).

75. S. Aune et al. (CAST Collab.), Phys. Rev. Lett. 107,261302 (2011);M. Arik et al. (CAST Collab.), Phys. Rev. Lett. 112,091302 (2014);M. Arik et al. (CAST Collab.), Phys. Rev. D92, 021101(2015).

76. E. Aprile et al.(XENON100 Collab.), Phys. Rev. D90,062009 (2014).

77. E. Armengaud et al., JINST 9, T05002 (2014).

78. K. Barth et al., JCAP 1305, 010 (2013).

79. F.T. Avignone III et al., Phys. Rev. Lett. 81, 5068(1998);S. Cebrian et al., Astropart. Phys. 10, 397 (1999);A. Morales et al. (COSME Collab.), Astropart. Phys. 16,325 (2002);R. Bernabei et al., Phys. Lett. B515, 6 (2001);Z. Ahmed et al. (CDMS Collab.), Phys. Rev. Lett. 103,141802 (2009);E. Armengaud et al. (EDELWEISS Collab.), JCAP 1311,067 (2013).

80. H. Davoudiasl and P. Huber, Phys. Rev. Lett. 97, 141302(2006).

81. H.S. Hudson et al., ASP Conf. Ser. 455, 25 (2012).

82. J.W. Brockway, E.D. Carlson, and G.G. Raffelt, Phys.Lett. B383, 439 (1996);J.A. Grifols, E.Masso, and R. Toldra, Phys. Rev. Lett.77, 2372 (1996).

83. A. Payez et al., JCAP 1502, 006 (2015).

84. C. Csaki, N. Kaloper, and J. Terning, Phys. Rev. Lett.88, 161302 (2002).

85. A. Mirizzi, G.G. Raffelt, and P.D. Serpico, Lect. NotesPhys. 741, 115 (2008).

86. R. Gill and J. S. Heyl, Phys. Rev. D84, 085001 (2011).

87. D. Horns et al., Phys. Rev. D85, 085021 (2012).

88. A. Payez, J.R. Cudell, and D. Hutsemekers, JCAP 1207,041 (2012).

89. D. Horns and M. Meyer, JCAP 1202, 033 (2012).

90. J. Biteau and D.A. Williams, Astrophys. J. 812, 60(2015).

91. A. De Angelis, G. Galanti, and M. Roncadelli, Phys. Rev.D84, 105030 (2011);M. Simet, D. Hooper, and P.D. Serpico, Phys. Rev. D77,063001 (2008);M.A. Sanchez-Conde et al., Phys. Rev. D79, 123511(2009).

92. M. Meyer, D. Horns, and M. Raue, Phys. Rev. D87,035027 (2013).

93. A. Abramowski et al. (H.E.S.S. Collab.), Phys. Rev. D88,102003 (2013).

94. J.P. Conlon and M.C.D. Marsh, Phys. Rev. Lett. 111,151301 (2013);S. Angus et al., JCAP 1409, 026 (2014);D. Kraljic, M. Rummel, and J. P. Conlon, JCAP 1501,011 (2015).

95. A. Arvanitaki et al., Phys. Rev. D81, 123530 (2010);A. Arvanitaki and S. Dubovsky, Phys. Rev. D83, 044026(2011);A. Arvanitaki, M. Baryakhtar, and X. Huang, Phys. Rev.D91, 084011 (2015).

96. M.S. Turner, Phys. Rev. Lett. 59, 2489 (1987) andErratum ibid., 60, 1101 (1988);E. Masso, F. Rota, and G. Zsembinszki, Phys. Rev. D66,023004 (2002);P. Graf and F. D. Steffen, Phys. Rev. D83, 075011(2011).

97. S. Hannestad et al., JCAP 1008, 001 (2010);M. Archidiacono et al., JCAP 1310, 020 (2013);E. Di Valentino et al., Phys. Lett. B752, 182 (2016).

98. M. Archidiacono et al., JCAP 1505, 050 (2015).

99. E. Masso and R. Toldra, Phys. Rev. D55, 7967 (1997);D. Cadamuro and J. Redondo, JCAP 1202, 032 (2012).

100. J. Preskill, M.B. Wise, and F. Wilczek, Phys. Lett. B120,127 (1983);L.F. Abbott and P. Sikivie, Phys. Lett. B120, 133(1983);M. Dine and W. Fischler, Phys. Lett. B120, 137 (1983).

101. K.J. Bae, J.-H. Huh, and J.E. Kim, JCAP 0809, 005(2008).

102. O. Wantz and E.P.S. Shellard, Phys. Rev. D82, 123508(2010).

103. M. Tegmark et al., Phys. Rev. D73, 023505 (2006).

104. M. Beltran, J. Garcıa-Bellido, and J. Lesgourgues, Phys.Rev. D75, 103507 (2007);M.P. Hertzberg, M. Tegmark, and F. Wilczek, Phys. Rev.D78, 083507 (2008);J. Hamann et al., JCAP 0906, 022 (2009);P.A.R. Ade et al. [Planck Collab.], Astron. & Astrophys.571, A22 (2014);P.A.R. Ade et al. [Planck Collab.], Astrophys. SpaceSci. 361, 58 (2016).

105. P. Fox, A. Pierce, and S.D. Thomas, hep-th/0409059;D.J.E. Marsh et al., Phys. Rev. Lett. 113, 011801 (2014);L. Visinelli and P. Gondolo, Phys. Rev. Lett. 113, 011802(2014).

106. P. Sikivie, Lect. Notes Phys. 741, 19 (2008).

107. T. Hiramatsu et al., Phys. Rev. D83, 123531 (2011);T. Hiramatsu et al., Phys. Rev. D85, 105020 (2012) andErratum ibid., 86, 089902 (2012);M. Kawasaki, K. Saikawa, and T. Sekiguchi, Phys. Rev.D91, 065014 (2015).

108. A. Ringwald and K. Saikawa, arXiv:1512.06436.

109. E.W. Kolb and I.I. Tkachev, Phys. Rev. Lett. 71, 3051(1993), Astrophys. J. 460, L25 (1996);K.M. Zurek, C.J. Hogan, and T.R. Quinn, Phys. Rev.D75, 043511 (2007).

110. E. Berkowitz, M.I. Buchoff, and E. Rinaldi, Phys. Rev.D92, 034507 (2015).

111. S. Borsanyi et al., Phys. Lett. B752, 175 (2016);R. Kitano and N. Yamada, JHEP 1510, 136 (2015).

Page 88: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

698698698698Gauge & Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosons112. B. Alles, M. D’Elia, and A. Di Giacomo, Phys. Lett.

B483, 139 (2000);V. G. Bornyakov et al., Phys. Rev. D87, 114508 (2013);C. Bonati et al., arXiv:1512.06746 [hep-lat].

113. K.J. Bae, H. Baer, and A. Lessa, JCAP 1304, 041(2013);K.J. Bae, H. Baer, and E.J. Chun, Phys. Rev. D89,03170 (2014);K.J. Bae, H. Baer, and E.J. Chun, JCAP 1312, 028(2013).

114. P. Arias et al., JCAP 1206, 013 (2012).

115. M. Bershady et al., Phys. Rev. Lett. 66, 1398 (1991);M. Ressell, Phys. Rev. D44, 3001 (1991).

116. D. Grin et al., Phys. Rev. D75, 105018 (2007).

117. B.D. Blout et al., Astrophys. J. 546, 825 (2001).

118. P. Sikivie, Phys. Rev. D32, 2988 (1985);L. Krauss et al., Phys. Rev. Lett. 55, 1797 (1985);R. Bradley et al., Rev. Mod. Phys. 75, 777 (2003).

119. P. Sikivie and J. Ipser, Phys. Lett. B291, 288 (1992);P. Sikivie et al., Phys. Rev. Lett. 75, 2911 (1995).

120. S. DePanfilis et al., Phys. Rev. Lett. 59, 839 (1987);W. Wuensch et al., Phys. Rev. D40, 3153 (1989);C. Hagmann et al., Phys. Rev. D42, 1297 (1990).

121. S. Asztalos et al., Phys. Rev. D69, 011101 (2004).

122. L. Duffy et al., Phys. Rev. Lett. 95, 091304 (2005);J. Hoskins et al., Phys. Rev. D84, 121302 (2011).

123. S.J. Asztalos et al. (ADMX Collab.), Phys. Rev. Lett.104, 041301 (2010).

124. S.J. Asztalos et al., Nucl. Instrum. Methods A656, 39(2011).

125. S.J. Asztalos et al., Phys. Rev. Lett. 104, 041301 (2010).

126. G. Rybka et al., Phys. Rev. Lett. 105, 051801 (2010);A. Wagner et al., Phys. Rev. Lett. 105, 171801 (2010).

127. I. Ogawa, S. Matsuki, and K. Yamamoto, Phys. Rev.D53, 1740 (1996);Y. Kishimoto et al., Phys. Lett. A303, 279 (2002);M. Tada et al., Phys. Lett. A303, 285 (2002);T.Haseyama et al., J. Low Temp. Phys. 150, 549 (2008).

128. D. Horns et al., JCAP 1304, 016 (2013).

129. J. Suzuki et al., JCAP 1509, 042 (2015);B. Dobrich et al., arXiv:1510.05869 [physics.ins-det].

130. G. Rybka et al., Phys. Rev. D91, 011701 (2015).

131. P. Sikivie, Phys. Rev. Lett. 113, 201301 (2014).

132. D. Budker et al., Phys. Rev. X4, 021030 (2014).

133. P. Sikivie, N. Sullivan, and D. B. Tanner, Phys. Rev.Lett. 112, 131301 (2014).

134. L. Krauss et al., Phys. Rev. Lett. 55, 1797 (1985);R. Barbieri et al., Phys. Rev. B226, 357 (1989).

135. G. Ruoso et al., arXiv:1511.09461 [hep-ph].A0 (Axion) MASS LIMITS from Astrophysi s and CosmologyA0 (Axion) MASS LIMITS from Astrophysi s and CosmologyA0 (Axion) MASS LIMITS from Astrophysi s and CosmologyA0 (Axion) MASS LIMITS from Astrophysi s and CosmologyThese bounds depend on model-dependent assumptions (i.e. | on a ombination ofaxion parameters).VALUE (MeV) DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •>0.2 BARROSO 82 ASTR Standard Axion>0.25 1 RAFFELT 82 ASTR Standard Axion>0.2 2 DICUS 78C ASTR Standard AxionMIKAELIAN 78 ASTR Stellar emission>0.3 2 SATO 78 ASTR Standard Axion>0.2 VYSOTSKII 78 ASTR Standard Axion

1 Lower bound from 5.5 MeV γ-ray line from the sun.2 Lower bound from requiring the red giants' stellar evolution not be disrupted by axionemission.A0 (Axion) and Other Light Boson (X 0) Sear hes in Hadron De aysA0 (Axion) and Other Light Boson (X 0) Sear hes in Hadron De aysA0 (Axion) and Other Light Boson (X 0) Sear hes in Hadron De aysA0 (Axion) and Other Light Boson (X 0) Sear hes in Hadron De aysLimits are for bran hing ratios.VALUE CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •<1 × 10−9 95 1 AAIJ 15AZ LHCB B0 → K∗0X0 (X0 → µ+µ−)<1.5× 10−6 90 2 ADLARSON 13 WASA π0 → γX0 (X0 → e+ e−),mX 0 = 100 MeV<2 × 10−8 90 3 BABUSCI 13B KLOE φ → ηX0 (X0 → e+ e−)4 ARCHILLI 12 KLOE φ → ηX0, X0 → e+ e−<2 × 10−15 90 5 GNINENKO 12A BDMP π0 → γX0 (X0 → e+ e−)<3 × 10−14 90 6 GNINENKO 12B BDMP η(η′) → γX0 (X0 → e+ e−)<7 × 10−10 90 7 ADLER 04 B787 K+ → π+X0<7.3× 10−11 90 8 ANISIMOVSK...04 B949 K+ → π+X0<4.5× 10−11 90 9 ADLER 02C B787 K+ → π+X0<4 × 10−5 90 10 ADLER 01 B787 K+ → π+π0A0<4.9× 10−5 90 AMMAR 01B CLEO B± → π±(K±)X0<5.3× 10−5 90 AMMAR 01B CLEO B0 → K0S X0<3.3× 10−5 90 11 ALTEGOER 98 NOMD π0 → γX0, mX 0 < 120 MeV<5.0× 10−8 90 12 KITCHING 97 B787 K+ → π+X0 (X0 → γ γ)<5.2× 10−10 90 13 ADLER 96 B787 K+ → π+X0<2.8× 10−4 90 14 AMSLER 96B CBAR π0 → γX0, mX 0 < 65 MeV<3 × 10−4 90 14 AMSLER 96B CBAR η → γX0, mX 0= 50200 MeV<4 × 10−5 90 14 AMSLER 96B CBAR η′ → γX0, mX 0= 50925 MeV<6 × 10−5 90 14 AMSLER 94B CBAR π0 → γX0, mX 0=65125 MeV<6 × 10−5 90 14 AMSLER 94B CBAR η → γX0, mX 0=200525 MeV<7 × 10−3 90 15 MEIJERDREES94 CNTR π0 → γX0, mX 0=25 MeV<2 × 10−3 90 15 MEIJERDREES94 CNTR π0 → γX0, mX 0=100 MeV<2 × 10−7 90 16 ATIYA 93B B787 Sup. by ADLER 04<3 × 10−13 17 NG 93 COSM π0 → γX0<1.1× 10−8 90 18 ALLIEGRO 92 SPEC K+ → π+X0 (X0 → e+ e−)<5 × 10−4 90 19 ATIYA 92 B787 π0 → γX0<1 × 10−12 95 20 BARABASH 92 BDMP π± → e± νX0(X0 → e+ e−,

γ γ), mX 0 = 8 MeV<1 × 10−12 95 21 BARABASH 92 BDMP K± → π±X0(X0 → e+ e−,

γ γ), mX 0 = 10 MeV<1 × 10−11 95 22 BARABASH 92 BDMP K0L → π0X0(X0 → e+ e−,

γ γ), mX 0 = 10 MeV<1 × 10−14 95 23 BARABASH 92 BDMP η′ → ηX0(X0 → e+ e−, γ γ),mX 0 = 10 MeV<4 × 10−6 90 24 MEIJERDREES92 SPEC π0 → γX0 (X0 → e+ e−),mX 0= 100 MeV<1 × 10−7 90 25 ATIYA 90B B787 Sup. by KITCHING 97<1.3× 10−8 90 26 KORENCHE... 87 SPEC π+ → e+ νA0 (A0 → e+ e−)<1 × 10−9 90 27 EICHLER 86 SPEC Stopped π+ → e+ νA0<2 × 10−5 90 28 YAMAZAKI 84 SPEC For 160<m<260 MeV<(1.54)× 10−6 90 28 YAMAZAKI 84 SPEC K de ay, mX 0 ≪ 100 MeV29 ASANO 82 CNTR Stopped K+ → π+X030 ASANO 81B CNTR Stopped K+ → π+X031 ZHITNITSKII 79 Heavy axion1The limit is for τX 0 = 10 ps and mX 0 = 2144350 MeV. See their Fig. 4 for mass-and lifetime-dependent limits.2 Limits between 2.0× 10−5 and 1.5× 10−6 are obtained for mX 0 = 20100 MeV (seetheir Fig. 8). Angular momentum onservation requires that X0 has spin ≥ 1.3The limit is for B(φ → ηX0)·B(X0 → e+ e−) and applies to mX 0 = 410 MeV. Itis derived by analyzing η → π0π0π0 and π−π+π0. Limits between 1 × 10−6 and2× 10−8 are obtained for mX 0 ≤ 450 MeV (see their Fig. 6).4ARCHILLI 12 analyzed η → π+π−π0 de ays. Derived limits on α′/α < 2 × 10−5for mX 0 = 50420 MeV at 90% CL. See their Fig. 8 for mass-dependent limits.5This limit is for B(π0 → γX0)·B(X0 → e+ e−) and applies for mX 0 = 90 MeV and

τX 0 ≃ 1× 10−8 se . Limits between 10−8 and 2 × 10−15 are obtained for mX 0 =3120 MeV and τX 0 = 1× 10−111 se . See their Fig. 3 for limits at dierent massesand lifetimes.6This limit is for B(η → γX0)·B(X0 → e+ e−) and applies for mX 0 = 100 MeV andτX 0 ≃ 6× 10−9 se . Limits between 10−5 and 3× 10−14 are obtained for mX 0 .550 MeV and τX 0 = 10−1010 se . See their Fig. 5 for limits at dierent mass andlifetime and for η′ de ays.7This limit applies for a mass near 180 MeV. For other masses in the range mX 0 =150250 MeV the limit is less restri tive, but still improves ADLER 02C and ATIYA 93B.8ANISIMOVSKY 04 bound is for mX 0=0.9ADLER 02C bound is for mX 0 <60 MeV. See Fig. 2 for limits at higher masses.10The quoted limit is for mX 0 = 080 MeV. See their Fig. 5 for the limit at higher mass.The bran hing fra tion limit assumes pure phase spa e de ay distributions.11ALTEGOER 98 looked for X0 from π0 de ay whi h penetrate the shielding and onvertto π0 in the external Coulomb eld of a nu leus.

Page 89: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

699699699699See key on page 601 Gauge & Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosons12KITCHING 97 limit is for B(K+ → π+X0)·B(X0 → γ γ) and applies for mX 0 ≃ 50MeV, τX 0 < 10−10 s. Limits are provided for 0<mX 0 < 100 MeV, τX 0 < 10−8 s.13ADLER 96 looked for a peak in missing-mass distribution. This work is an update ofATIYA 93. The limit is for massless stable X0 parti les and extends to mX 0=80 MeVat the same level. See paper for dependen e on nite lifetime.14AMSLER 94B and AMSLER 96B looked for a peak in missing-mass distribution.15The MEIJERDREES 94 limit is based on in lusive photon spe trum and is independentof X0 de ay modes. It applies to τ(X0)> 10−23 se .16ATIYA 93B looked for a peak in missing mass distribution. The bound applies for stableX0 of mX 0=150250 MeV, and the limit be omes stronger (10−8) for mX 0=180240MeV.17NG 93 studied the produ tion of X0 via γ γ → π0 → γX0 in the early universe at T≃ 1MeV. The bound on extra neutrinos from nu leosynthesis Nν < 0.3 (WALKER 91) isemployed. It applies to mX 0 ≪ 1 MeV in order to be relativisti down to nu leosynthesistemperature. See paper for heavier X0.18ALLIEGRO 92 limit applies for mX 0=150340 MeV and is the bran hing ratio times thede ay probability. Limit is < 1.5× 10−8 at 99%CL.19ATIYA 92 looked for a peak in missing mass distribution. The limit applies tomX 0=0130 MeV in the narrow resonan e limit. See paper for the dependen e onlifetime. Covarian e requires X0 to be a ve tor parti le.20BARABASH 92 is a beam dump experiment that sear hed for a light Higgs. Limitsbetween 1× 10−12 and 1× 10−7 are obtained for 3 < mX 0 < 40 MeV.21 Limits between 1× 10−12 and 1 are obtained for 4 < mX 0 < 69 MeV.22 Limits between 1× 10−11 and 5× 10−3 are obtained for 4 < mX 0 < 63 MeV.23 Limits between 1× 10−14 and 1 are obtained for 3 < mX 0 < 82 MeV.24MEIJERDREES 92 limit applies for τX 0 = 10−2310−11 se . Limits between 2×10−4and 4 × 10−6 are obtained for mX 0 = 25120 MeV. Angular momentum onservationrequires that X0 has spin ≥ 1.25ATIYA 90B limit is for B(K+ → π+X0)·B(X0 → γ γ) and applies for mX 0 = 50 MeV,τX 0 < 10−10 s. Limits are also provided for 0 < mX 0 < 100 MeV, τX 0 < 10−8 s.26KORENCHENKO 87 limit assumes mA0 = 1.7 MeV, τA0 . 10−12 s, and B(A0 →e+ e−) = 1.27EICHLER 86 looked for π+ → e+ νA0 followed by A0 → e+ e−. Limits on thebran hing fra tion depend on the mass and and lifetime of A0. The quoted limits arevalid when τ(A0)& 3. × 10−10s if the de ays are kinemati ally allowed.28YAMAZAKI 84 looked for a dis rete line in K+ → π+X. Sensitive to wide mass range(5300 MeV), independent of whether X de ays promptly or not.29ASANO 82 at KEK set limits for B(K+ → π+X0) for mX 0 <100 MeV as BR< 4.× 10−8 for τ(X0 → nγ 's) > 1.× 10−9 s, BR < 1.4× 10−6 for τ < 1.× 10−9s.30ASANO 81B is KEK experiment. Set B(K+ → π+X0) < 3.8× 10−8 at CL = 90%.31ZHITNITSKII 79 argue that a heavy axion predi ted by YANG 78 (3 <m <40 MeV) ontradi ts experimental muon anomalous magneti moments.A0 (Axion) Sear hes in Quarkonium De aysA0 (Axion) Sear hes in Quarkonium De aysA0 (Axion) Sear hes in Quarkonium De aysA0 (Axion) Sear hes in Quarkonium De aysDe ay or transition of quarkonium. Limits are for bran hing ratio.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •<4.0× 10−5 90 1 ANTREASYAN 90C CBAL (1S) → A0 γ

<5 × 10−5 90 2 DRUZHININ 87 ND φ → A0 γ (A0 → e+ e−)<2 × 10−3 90 3 DRUZHININ 87 ND φ → A0 γ (A0 → γ γ)<7 × 10−6 90 4 DRUZHININ 87 ND φ → A0 γ (A0 → missing)<1.4× 10−5 90 5 EDWARDS 82 CBAL J/ψ → A0 γ1ANTREASYAN 90C assume that A0 does not de ay in the dete tor.2The rst DRUZHININ 87 limit is valid when τA0/mA0 < 3 × 10−13 s/MeV andmA0 < 20 MeV.3The se ond DRUZHININ 87 limit is valid when τA0/mA0 < 5 × 10−13 s/MeV andmA0 < 20 MeV.4The third DRUZHININ 87 limit is valid when τA0/mA0 > 7 × 10−12 s/MeV andmA0 < 200 MeV.5EDWARDS 82 looked for J/ψ → γA0 de ays by looking for events with a single

γ[of energy ∼ 1/2 the J/ψ(1S) mass], plus nothing else in the dete tor. The limit isin onsistent with the axion interpretation of the FAISSNER 81B result.A0 (Axion) Sear hes in Positronium De aysA0 (Axion) Sear hes in Positronium De aysA0 (Axion) Sear hes in Positronium De aysA0 (Axion) Sear hes in Positronium De aysDe ay or transition of positronium. Limits are for bran hing ratio.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •<4.4× 10−5 90 1 BADERT... 02 CNTR o-Ps → γX1X2, mX1+mX2 ≤900 keV<2 × 10−4 90 MAENO 95 CNTR o-Ps → A0 γ mA0=8501013 keV<3.0× 10−4 90 2 ASAI 94 CNTR o-Ps → A0 γ mA0=30500 keV<2.8× 10−5 90 3 AKOPYAN 91 CNTR o-Ps → A0 γ (A0 → γ γ),mA0 < 30 keV<1.1× 10−6 90 4 ASAI 91 CNTR o-Ps → A0 γ, mA0 < 800 keV<3.8× 10−4 90 GNINENKO 90 CNTR o-Ps → A0 γ, mA0 < 30 keV<(15)× 10−4 95 5 TSUCHIAKI 90 CNTR o-Ps → A0 γ, mA0 = 300900 keV<6.4× 10−5 90 6 ORITO 89 CNTR o-Ps → A0 γ, mA0 < 30 keV7 AMALDI 85 CNTR Ortho-positronium8 CARBONI 83 CNTR Ortho-positronium

1BADERTSCHER 02 looked for a three-body de ay of ortho-positronium into a photonand two penetrating (neutral or milli- harged) parti les.2The ASAI 94 limit is based on in lusive photon spe trum and is independent of A0 de aymodes.3The AKOPYAN 91 limit applies for a short-lived A0 with τA0 < 10−13 mA0 [keV s.4ASAI 91 limit translates to g2A0 e+ e−/4π < 1.1 × 10−11 (90% CL) for mA0 < 800keV.5The TSUCHIAKI 90 limit is based on in lusive photon spe trum and is independent ofA0 de ay modes.6ORITO 89 limit translates to g2A0 e e/4π < 6.2 × 10−10. Somewhat more sensitivelimits are obtained for larger mA0 : B < 7.6× 10−6 at 100 keV.7AMALDI 85 set limits B(A0 γ) / B(γ γ γ) < (15) × 10−6 for mA0 = 900100 keVwhi h are about 1/10 of the CARBONI 83 limits.8CARBONI 83 looked for orthopositronium → A0 γ. Set limit for A0 ele tron ouplingsquared, g(e e A0)2/(4π) < 6. × 10−107. × 10−9 for mA0 from 150900 keV (CL =99.7%). This is about 1/10 of the bound from g−2 experiments.A0 (Axion) Sear h in Photoprodu tionA0 (Axion) Sear h in Photoprodu tionA0 (Axion) Sear h in Photoprodu tionA0 (Axion) Sear h in Photoprodu tionVALUE DOCUMENT ID COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •1 BASSOMPIE... 95 mA0 = 1.8 ± 0.2 MeV1BASSOMPIERRE 95 is an extension of BASSOMPIERRE 93. They looked for a peakin the invariant mass of e+ e− pairs in the region me+ e− = 1.8 ± 0.2 MeV. Theyobtained bounds on the produ tion rate A0 for τ(A0) = 10−1810−9 se . They alsofound an ex ess of events in the range me+ e− = 2.13.5 MeV.A0 (Axion) Produ tion in Hadron CollisionsA0 (Axion) Produ tion in Hadron CollisionsA0 (Axion) Produ tion in Hadron CollisionsA0 (Axion) Produ tion in Hadron CollisionsLimits are for σ(A0) / σ(π0).VALUE CL% EVTS DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •1 JAIN 07 CNTR A0 → e+ e−2 AHMAD 97 SPEC e+ produ tion3 LEINBERGER 97 SPEC A0 → e+ e−4 GANZ 96 SPEC A0 → e+ e−5 KAMEL 96 EMUL 32S emulsion, A0 →e+ e−6 BLUEMLEIN 92 BDMP A0NZ → ℓ+ ℓ−NZ7 MEIJERDREES92 SPEC π− p → nA0, A0 →e+ e−8 BLUEMLEIN 91 BDMP A0 → e+ e−, 2γ9 FAISSNER 89 OSPK Beam dump,A0 → e+ e−10 DEBOER 88 RVUE A0 → e+ e−11 EL-NADI 88 EMUL A0 → e+ e−12 FAISSNER 88 OSPK Beam dump, A0 → 2γ13 BADIER 86 BDMP A0 → e+ e−<2. × 10−11 90 0 14 BERGSMA 85 CHRM CERN beam dump<1. × 10−13 90 0 14 BERGSMA 85 CHRM CERN beam dump24 15 FAISSNER 83 OSPK Beam dump, A0 → 2γ16 FAISSNER 83B RVUE LAMPF beam dump17 FRANK 83B RVUE LAMPF beam dump18 HOFFMAN 83 CNTR πp → nA0(A0 → e+ e−)19 FETSCHER 82 RVUE See FAISSNER 81B12 20 FAISSNER 81 OSPK CERN PS ν wideband15 21 FAISSNER 81B OSPK Beam dump, A0 → 2γ8 22 KIM 81 OSPK 26 GeV pN → A0X0 23 FAISSNER 80 OSPK Beam dump,A0 → e+ e−<1. × 10−8 90 24 JACQUES 80 HLBC 28 GeV protons<1. × 10−14 90 24 JACQUES 80 HLBC Beam dump25 SOUKAS 80 CALO 28 GeV p beam dump26 BECHIS 79 CNTR<1. × 10−8 90 27 COTEUS 79 OSPK Beam dump<1. × 10−3 95 28 DISHAW 79 CALO 400 GeV pp<1. × 10−8 90 ALIBRAN 78 HYBR Beam dump<6. × 10−9 95 ASRATYAN 78B CALO Beam dump<1.5× 10−8 90 29 BELLOTTI 78 HLBC Beam dump<5.4× 10−14 90 29 BELLOTTI 78 HLBC mA0=1.5 MeV<4.1× 10−9 90 29 BELLOTTI 78 HLBC mA0=1 MeV<1. × 10−8 90 30 BOSETTI 78B HYBR Beam dump31 DONNELLY 78<0.5× 10−8 90 HANSL 78D WIRE Beam dump32 MICELMAC... 7833 VYSOTSKII 781 JAIN 07 laims eviden e for A0 → e+ e− produ ed in 207Pb ollision on nu learemulsion (Ag/Br) for m(A0) = 7 ± 1 or 19 ± 1 MeV and τ(A0) ≤ 10−13 s.2AHMAD 97 reports a result of APEX Collaboration whi h studied positron produ tion in238U+232Ta and 238U+181Ta ollisions, without requiring a oin ident ele tron. Nonarrow lines were found for 250 <Ee+ < 750 keV.

Page 90: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

700700700700Gauge & Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosons3 LEINBERGER 97 (ORANGE Collaboration) at GSI looked for a narrow sum-energye+ e−-line at ∼ 635 keV in 238U+181Ta ollision. Limits on the produ tion proba-bility for a narrow sum-energy e+ e− line are set. See their Table 2.4GANZ 96 (EPos II Collaboration) has pla ed upper bounds on the produ tion ross se -tion of e+ e− pairs from 238U+181Ta and 238U+232Th ollisions at GSI. See Table 2for limits both for ba k-to-ba k and isotropi ongurations of e+ e− pairs. These lim-its rule out the existen e of peaks in the e+ e− sum-energy distribution, reported by anearlier version of this experiment.5KAMEL 96 looked for e+ e− pairs from the ollision of 32S (200 GeV/nu leon) andemulsion. No eviden e of mass peaks is found in the region of sensitivity mee >2 MeV.6BLUEMLEIN 92 is a proton beam dump experiment at Serpukhov with a se ondarytarget to indu e Bethe-Heitler produ tion of e+ e− or µ+µ− from the produ e A0.See Fig. 5 for the ex luded region in mA0-x plane. For the standard axion, 0.3 <x<25is ex luded at 95% CL. If ombined with BLUEMLEIN 91, 0.008 <x<32 is ex luded.7MEIJERDREES 92 give (π− p → nA0)·B(A0 → e+ e−)/(π− p → all) < 10−5(90% CL) for mA0 = 100 MeV, τA0 = 10−1110−23 se . Limits ranging from 2.5 ×10−3 to 10−7 are given for mA0 = 25136 MeV.8BLUEMLEIN 91 is a proton beam dump experiment at Serpukhov. No andidate eventfor A0 → e+ e−, 2γ are found. Fig. 6 gives the ex luded region in mA0-x plane (x=tanβ = v2/v1). Standard axion is ex luded for 0.2 < mA0 < 3.2 MeV for mostx > 1, 0.211 MeV for most x < 1.9 FAISSNER 89 sear hed for A0 → e+ e− in a proton beam dump experiment at SIN. Noex ess of events was observed over the ba kground. A standard axion with mass 2me20MeV is ex luded. Lower limit on fA0 of ≃ 104 GeV is given for mA0 = 2me20 MeV.10DEBOER 88 reanalyze EL-NADI 88 data and laim eviden e for three distin t stateswith mass ∼ 1.1, ∼ 2.1, and ∼ 9 MeV, lifetimes 10−1610−15 s de aying to e+ e−and note the similarity of the data with those of a osmi -ray experiment by Bristol group(B.M. Anand, Pro . of the Royal So iety of London, Se tion A A22A22A22A22 183 (1953)). For a riti ism see PERKINS 89, who suggests that the events are ompatible with π0 Dalitzde ay. DEBOER 89B is a reply whi h ontests the riti ism.11EL-NADI 88 laim the existen e of a neutral parti le de aying into e+ e− with mass1.60 ± 0.59 MeV, lifetime (0.15 ± 0.01) × 10−14 s, whi h is produ ed in heavy ionintera tions with emulsion nu lei at ∼ 4 GeV/ /nu leon.12 FAISSNER 88 is a proton beam dump experiment at SIN. They found no andidate eventfor A0 → γ γ. A standard axion de aying to 2γ is ex luded ex ept for a region x≃ 1.Lower limit on fA0 of 102103 GeV is given for mA0 = 0.11 MeV.13BADIER 86 did not nd long-lived A0 in 300 GeV π− Beam Dump Experiment thatde ays into e+ e− in the mass rangemA0 = (20200) MeV, whi h ex ludes the A0 de ay onstant f (A0) in the interval (60600) GeV. See their gure 6 for ex luded region onf (A0)-mA0 plane.14BERGSMA 85 look for A0 → 2γ, e+ e−, µ+µ−. First limit above is for mA0 = 1MeV; se ond is for 200 MeV. See their gure 4 for ex luded region on fA0−mA0 plane,where fA0 is A0 de ay onstant. For Pe ei-Quinn PECCEI 77 A0, mA0 <180 keV andτ >0.037 s. (CL = 90%). For the axion of FAISSNER 81B at 250 keV, BERGSMA 85expe t 15 events but observe zero.15 FAISSNER 83 observed 19 1-γ and 12 2-γ events where a ba kground of 4.8 and 2.3respe tively is expe ted. A small-angle peak is observed even if iron wall is set in frontof the de ay region.16 FAISSNER 83B extrapolate SIN γ signal to LAMPF ν experimental ondition. Resulting370 γ's are not at varian e with LAMPF upper limit of 450 γ's. Derived from LAMPFlimit that [dσ(A0)/dω at 90]mA0/τA0 < 14 × 10−35 m2 sr−1 MeV ms−1. See omment on FRANK 83B.17 FRANK 83B stress the importan e of LAMPF data bins with negative net signal. Bystatisti al analysis say that LAMPF and SIN-A0 are at varian e when extrapolation byphase-spa e model is done. They nd LAMPF upper limit is 248 not 450 γ's. See omment on FAISSNER 83B.18HOFFMAN 83 set CL = 90% limit dσ/dt B(e+ e−) < 3.5× 10−32 m2/GeV2 for 140<mA0 <160 MeV. Limit assumes τ(A0) < 10−9 s.19 FETSCHER 82 reanalyzes SIN beam-dump data of FAISSNER 81. Claims no eviden efor axion sin e 2-γ peak rate remarkably de reases if iron wall is set in front of the de ayregion.20 FAISSNER 81 see ex ess µe events. Suggest axion intera tions.21 FAISSNER 81B is SIN 590 MeV proton beam dump. Observed 14.5 ± 5.0 events of 2γde ay of long-lived neutral penetrating parti le with m2γ . 1 MeV. Axion interpreta-tion with η-A0 mixing gives mA0 = 250 ± 25 keV, τ(2γ) = (7.3 ± 3.7)× 10−3 s fromabove rate. See riti al remarks below in omments of FETSCHER 82, FAISSNER 83,FAISSNER 83B, FRANK 83B, and BERGSMA 85. Also see in the next subse tion ALEK-SEEV 82B, CAVAIGNAC 83, and ANANEV 85.22KIM 81 analyzed 8 andidates for A0 → 2γ obtained by Aa hen-Padova experiment atCERN with 26 GeV protons on Be. Estimated axion mass is about 300 keV and lifetimeis (0.86∼ 5.6) × 10−3 s depending on models. Faissner (private ommuni ation), saysaxion produ tion underestimated and mass overestimated. Corre t value around 200keV.23FAISSNER 80 is SIN beam dump experiment with 590 MeV protons looking for A0 →e+ e− de ay. Assuming A0/π0 = 5.5× 10−7, obtained de ay rate limit 20/(A0 mass)MeV/s (CL = 90%), whi h is about 10−7 below theory and interpreted as upper limitto mA0 <2me− .24 JACQUES 80 is a BNL beam dump experiment. First limit above omes from nonobser-vation of ex ess neutral- urrent-type events [

σ(produ tion)σ(intera tion) < 7.× 10−68 m4, CL = 90%]. Se ond limit is from nonobservation of axion de ays into 2γ's ore+ e−, and for axion mass a few MeV.25 SOUKAS 80 at BNL observed no ex ess of neutral- urrent-type events in beam dump.26BECHIS 79 looked for the axion produ tion in low energy ele tron Bremsstrahlung andthe subsequent de ay into either 2γ or e+ e−. No signal found. CL = 90% limits formodel parameter(s) are given.27COTEUS 79 is a beam dump experiment at BNL.

28DISHAW 79 is a alorimetri experiment and looks for low energy tail of energy distri-butions due to energy lost to weakly intera ting parti les.29BELLOTTI 78 rst value omes from sear h for A0 → e+ e−. Se ond value omesfrom sear h for A0 → 2γ, assuming mass <2me− . For any mass satisfying this,limit is above value×(mass−4). Third value uses data of PL 60B 401 and quotesσ(produ tion)σ(intera tion) < 10−67 m4.30BOSETTI 78B quotes σ(produ tion)σ(intera tion) < 2. × 10−67 m4.31DONNELLY 78 examines data from rea tor neutrino experiments of REINES 76 andGURR 74 as well as SLAC beam dump experiment. Eviden e is negative.32MICELMACHER 78 nds no eviden e of axion existen e in rea tor experiments ofREINES 76 and GURR 74. (See referen e under DONNELLY 78 below).33VYSOTSKII 78 derived lower limit for the axion mass 25 keV from luminosity of the sunand 200 keV from red supergiants.A0 (Axion) Sear hes in Rea tor ExperimentsA0 (Axion) Sear hes in Rea tor ExperimentsA0 (Axion) Sear hes in Rea tor ExperimentsA0 (Axion) Sear hes in Rea tor ExperimentsVALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •1 CHANG 07 Primako or Compton2 ALTMANN 95 CNTR Rea tor; A0 → e+ e−3 KETOV 86 SPEC Rea tor, A0 → γ γ4 KOCH 86 SPEC Rea tor; A0 → γ γ5 DATAR 82 CNTR Light water rea tor6 VUILLEUMIER 81 CNTR Rea tor, A0 → 2γ1CHANG 07 looked for mono hromati photons from Primako or Compton onversionof axions from the Kuo-Sheng rea tor due to axion oupling to photon or ele tron,respe tively. The sear h pla es model-independent limits on the produ ts GAγ γGANNand GAe eGANN for m(A0) less than the MeV range.2ALTMANN 95 looked for A0 de aying into e+ e− from the Bugey 5 nu lear rea -tor. They obtain an upper limit on the A0 produ tion rate of ω(A0)/ω(γ) ×B(A0 →e+ e−)< 10−16 for mA0 = 1.5 MeV at 90% CL. The limit is weaker for heavier A0. Inthe ase of a standard axion, this limit ex ludes a mass in the range 2me <mA0 < 4.8MeV at 90% CL. See Fig. 5 of their paper for ex lusion limits of axion-like resonan esZ0 in the (mX 0 ,fX 0) plane.3KETOV 86 sear hed for A0 at the Rovno nu lear power plant. They found an upperlimit on the A0 produ tion probability of 0.8 [100 keV/mA0]6 × 10−6 per ssion. Inthe standard axion model, this orresponds to mA0 >150 keV. Not valid for mA0 &1 MeV.4KOCH 86 sear hed for A0 → γ γ at nu lear power rea tor Biblis A. They found anupper limit on the A0 produ tion rate of ω(A0)/ω(γ(M1)) < 1.5× 10−10 (CL=95%).Standard axion with mA0 = 250 keV gives 10−5 for the ratio. Not valid for mA0 >1022keV.5DATAR 82 looked for A0 → 2γ in neutron apture (np → d A0) at Tarapur 500 MWrea tor. Sensitive to sum of I = 0 and I = 1 amplitudes. With ZEHNDER 81 [(I = 0)− (I = 1)] result, assert nonexisten e of standard A0.6VUILLEUMIER 81 is at Grenoble rea tor. Set limit mA0 <280 keV.A0 (Axion) and Other Light Boson (X 0) Sear hes in Nu lear TransitionsA0 (Axion) and Other Light Boson (X 0) Sear hes in Nu lear TransitionsA0 (Axion) and Other Light Boson (X 0) Sear hes in Nu lear TransitionsA0 (Axion) and Other Light Boson (X 0) Sear hes in Nu lear TransitionsLimits are for bran hing ratio.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •< 8.5× 10−6 90 1 DERBIN 02 CNTR 125mTe de ay2 DEBOER 97C RVUE M1 transitions< 5.5× 10−10 95 3 TSUNODA 95 CNTR 252Cf ssion, A0 → e e< 1.2× 10−6 95 4 MINOWA 93 CNTR 139La∗ → 139LaA0< 2 × 10−4 90 5 HICKS 92 CNTR 35S de ay, A0 → γ γ

< 1.5× 10−9 95 6 ASANUMA 90 CNTR 241Am de ay<(0.410)× 10−3 95 7 DEBOER 90 CNTR 8Be∗ → 8BeA0,A0 → e+ e−<(0.21)× 10−3 90 8 BINI 89 CNTR 16O∗ → 16OX0,X0 → e+ e−9 AVIGNONE 88 CNTR Cu∗ → CuA0 (A0 → 2γ,A0 e → γ e, A0Z → γZ)< 1.5× 10−4 90 10 DATAR 88 CNTR 12C∗ → 12CA0,A0 → e+ e−< 5 × 10−3 90 11 DEBOER 88C CNTR 16O∗ → 16OX0,X0 → e+ e−< 3.4× 10−5 95 12 DOEHNER 88 SPEC 2H∗, A0 → e+ e−< 4 × 10−4 95 13 SAVAGE 88 CNTR Nu lear de ay (isove tor)< 3 × 10−3 95 13 SAVAGE 88 CNTR Nu lear de ay (isos alar)<10.6× 10−2 90 14 HALLIN 86 SPEC 6Li isove tor de ay<10.8 90 14 HALLIN 86 SPEC 10B isos alar de ays< 2.2 90 14 HALLIN 86 SPEC 14N isos alar de ays< 4 × 10−4 90 15 SAVAGE 86B CNTR 14N∗16 ANANEV 85 CNTR Li∗, deut∗ A0 → 2γ17 CAVAIGNAC 83 CNTR 97Nb∗, deut∗ transitionA0 → 2γ18 ALEKSEEV 82B CNTR Li∗, deut∗ transitionA0 → 2γ19 LEHMANN 82 CNTR Cu∗ → CuA0 (A0 → 2γ)20 ZEHNDER 82 CNTR Li∗, Nb∗ de ay, n- apt.21 ZEHNDER 81 CNTR Ba∗ → BaA0 (A0 → 2γ)22 CALAPRICE 79 Carbon

Page 91: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

701701701701See key on page 601 Gauge&HiggsBosonParti leListingsAxions (A0) andOther Very Light Bosons1DERBIN 02 looked for the axion emission in an M1 transition in 125mTe de ay. Theylooked for a possible presen e of a shifted energy spe trum in gamma rays due to theundete ted axion.2DEBOER 97C reanalyzed the existent data on Nu lear M1 transitions and nd that a9 MeV boson de aying into e+ e− would explain the ex ess of events with large openingangles. See also DEBOER 01 for follow-up experiments.3TSUNODA 95 looked for axion emission when 252Cf undergoes a spontaneous ssion,with the axion de aying into e+ e−. The bound is for mA0=40 MeV. It improves to2.5× 10−5 for mA0=200 MeV.4MINOWA 93 studied hain pro ess, 139Ce → 139La∗ by ele tron apture and M1transition of 139La∗ to the ground state. It does not assume de ay modes of A0. Thebound applies for mA0 < 166 keV.5HICKS 92 bound is appli able for τX 0 < 4× 10−11 se .6The ASANUMA 90 limit is for the bran hing fra tion of X0 emission per 241Amα de ayand valid for τX 0 < 3× 10−11 s.7The DEBOER 90 limit is for the bran hing ratio 8Be∗ (18.15 MeV, 1+) → 8BeA0,A0 → e+ e− for the mass range mA0 = 415 MeV.8The BINI 89 limit is for the bran hing fra tion of 16O∗ (6.05 MeV, 0+) → 16OX0,X0 → e+ e− for mX = 1.53.1 MeV. τX 0 . 10−11 s is assumed. The spin-parityof X is restri ted to 0+ or 1−.9AVIGNONE 88 looked for the 1115 keV transition C∗ → CuA0, either from A0 →2γ in- ight de ay or from the se ondary A0 intera tions by Compton and by Primakopro esses. Limits for axion parameters are obtained for mA0 < 1.1 MeV.10DATAR 88 rule out light pseudos alar parti le emission through its de ay A0 → e+ e−in the mass range 1.022.5 MeV and lifetime range 10−1310−8 s. The above limit isfor τ = 5 × 10−13 s and m = 1.7 MeV; see the paper for the τ -m dependen e of thelimit.11The limit is for the bran hing fra tion of 16O∗ (6.05 MeV, 0+) → 16OX0, X0 →e+ e− against internal pair onversion for mX 0 = 1.7 MeV and τX 0 < 10−11 s.Similar limits are obtained for mX 0 = 1.33.2 MeV. The spin parity of X0 must beeither 0+ or 1−. The limit at 1.7 MeV is translated into a limit for the X0-nu leon oupling onstant: g2X 0NN/4π < 2.3× 10−9.12The DOEHNER 88 limit is for mA0 = 1.7 MeV, τ(A0) < 10−10 s. Limits less than10−4 are obtained for mA0 = 1.22.2 MeV.13 SAVAGE 88 looked for A0 that de ays into e+ e− in the de ay of the 9.17 MeV JP =2+ state in 14N, 17.64 MeV state JP = 1+ in 8Be, and the 18.15 MeV state JP =1+ in 8Be. This experiment onstrains the isove tor oupling of A0 to hadrons, if mA0= (1.1 → 2.2) MeV and the isos alar oupling of A0 to hadrons, if mA0 = (1.1 →2.6) MeV. Both limits are valid only if τ(A0) . 1× 10−11 s.14 Limits are for (A0(1.8 MeV))/(πM1); i.e., for 1.8 MeV axion emission normalizedto the rate for internal emission of e+ e− pairs. Valid for τA0 < 2 × 10−11s. 6Liisove tor de ay data strongly disfavor PECCEI 86 model I, whereas the 10B and 14Nisos alar de ay data strongly reje t PECCEI 86 model II and III.15 SAVAGE 86B looked for A0 that de ays into e+ e− in the de ay of the 9.17 MeV JP =2+ state in 14N. Limit on the bran hing fra tion is valid if τA0 . 1.× 10−11s for mA0= (1.11.7) MeV. This experiment onstrains the iso-ve tor oupling of A0 to hadrons.16ANANEV 85 with IBR-2 pulsed rea tor ex lude standard A0 at CL = 95% masses below470 keV (Li∗ de ay) and below 2me for deuteron* de ay.17CAVAIGNAC 83 at Bugey rea tor ex lude axion at any m97Nb∗de ay and axion withmA0 between 275 and 288 keV (deuteron* de ay).18ALEKSEEV 82 with IBR-2 pulsed rea tor ex lude standard A0 at CL = 95% mass-rangesmA0 <400 keV (Li∗ de ay) and 330 keV <mA0 <2.2 MeV. (deuteron* de ay).19 LEHMANN 82 obtained A0 → 2γ rate < 6.2 × 10−5/s (CL = 95%) ex luding mA0between 100 and 1000 keV.20ZEHNDER 82 used Gosgen 2.8GW light-water rea tor to he k A0 produ tion. No2γ peak in Li∗, Nb∗ de ay (both single p transition) nor in n apture ( ombined withprevious Ba∗ negative result) rules out standard A0. Set limit mA0 <60 keV for anyA0.21ZEHNDER 81 looked for Ba∗ → A0Ba transition with A0 → 2γ. Obtained 2γ oin iden e rate < 2.2 × 10−5/s (CL = 95%) ex luding mA0 >160 keV (or 200 keVdepending on Higgs mixing). However, see BARROSO 81.22CALAPRICE 79 saw no axion emission from ex ited states of arbon. Sensitive to axionmass between 1 and 15 MeV.A0 (Axion) Limits from Its Ele tron CouplingA0 (Axion) Limits from Its Ele tron CouplingA0 (Axion) Limits from Its Ele tron CouplingA0 (Axion) Limits from Its Ele tron CouplingLimits are for τ(A0 → e+ e−).VALUE (s) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •none 4× 10−164.5× 10−12 90 1 BROSS 91 BDMP e N → e A0N(A0 → e e)2 GUO 90 BDMP e N → e A0N(A0 → e e)3 BJORKEN 88 CALO A → e+ e− or2γ4 BLINOV 88 MD1 e e → e e A0(A0 → e e)none 1× 10−141× 10−10 90 5 RIORDAN 87 BDMP e N → e A0N(A0 → e e)none 1× 10−141× 10−11 90 6 BROWN 86 BDMP e N → e A0N(A0 → e e)none 6× 10−149× 10−11 95 7 DAVIER 86 BDMP e N → e A0N(A0 → e e)none 3× 10−131× 10−7 90 8 KONAKA 86 BDMP e N → e A0N(A0 → e e)

1The listed BROSS 91 limit is for mA0 = 1.14MeV. B(A0 → e+ e−) = 1 assumed.Ex luded domain in the τA0mA0 plane extends up to mA0 ≈ 7 MeV (see Fig. 5).Combining with ele tron g 2 onstraint, axions oupling only to e+ e− ruled out formA0 < 4.8 MeV (90% CL).2GUO 90 use the same apparatus as BROWN 86 and improve the previous limit in theshorter lifetime region. Combined with g 2 onstraint, axions oupling only to e+ e−are ruled out for mA0 < 2.7 MeV (90% CL).3BJORKEN 88 reports limits on axion parameters (fA, mA, τA) for mA0 < 200 MeVfrom ele tron beam-dump experiment with produ tion via Primako photoprodu tion,bremsstrahlung from ele trons, and resonant annihilation of positrons on atomi ele -trons.4BLINOV 88 assume zero spin, m = 1.8 MeV and lifetime < 5 × 10−12 s and nd(A0 → γ γ)B(A0 → e+ e−) < 2 eV (CL=90%).5Assumes A0 γ γ oupling is small and hen e Primako produ tion is small. Their gure2 shows limits on axions for mA0 < 15 MeV.6Uses ele trons in hadroni showers from an in ident 800 GeV proton beam. Limits formA0 < 15 MeV are shown in their gure 3.7mA0 = 1.8 MeV assumed. The ex luded domain in the τA0−mA0 plane extends up tomA0 ≈ 14 MeV, see their gure 4.8The limits are obtained from their gure 3. Also given is the limit on theA0 γ γ−A0 e+ e− oupling plane by assuming Primako produ tion.Sear h for A0 (Axion) Resonan e in Bhabha S atteringSear h for A0 (Axion) Resonan e in Bhabha S atteringSear h for A0 (Axion) Resonan e in Bhabha S atteringSear h for A0 (Axion) Resonan e in Bhabha S atteringThe limit is for (A0)[B(A0 → e+ e−)2.VALUE (10−3 eV) CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •< 1.3 97 1 HALLIN 92 CNTR mA0 = 1.751.88 MeVnone 0.00160.47 90 2 HENDERSON 92C CNTR mA0= 1.51.86 MeV< 2.0 90 3 WU 92 CNTR mA0= 1.561.86 MeV< 0.013 95 TSERTOS 91 CNTR mA0 = 1.832 MeVnone 0.193.3 95 4 WIDMANN 91 CNTR mA0= 1.781.92 MeV< 5 97 BAUER 90 CNTR mA0 = 1.832 MeVnone 0.091.5 95 5 JUDGE 90 CNTR mA0 = 1.832 MeV,elasti < 1.9 97 6 TSERTOS 89 CNTR mA0 = 1.82 MeV<(1040) 97 6 TSERTOS 89 CNTR mA0 = 1.511.65 MeV<(12.5) 97 6 TSERTOS 89 CNTR mA0 = 1.801.86 MeV< 31 95 LORENZ 88 CNTR mA0 = 1.646 MeV< 94 95 LORENZ 88 CNTR mA0 = 1.726 MeV< 23 95 LORENZ 88 CNTR mA0 = 1.782 MeV< 19 95 LORENZ 88 CNTR mA0 = 1.837 MeV< 3.8 97 7 TSERTOS 88 CNTR mA0 = 1.832 MeV8 VANKLINKEN 88 CNTR9 MAIER 87 CNTR<2500 90 MILLS 87 CNTR mA0 = 1.8 MeV10 VONWIMMER...87 CNTR1HALLIN 92 quote limits on lifetime, 8 × 10−14 5 × 10−13 se depending on mass,assuming B(A0 → e+ e−) = 100%. They say that TSERTOS 91 overstated theirsensitivity by a fa tor of 3.2HENDERSON 92C ex lude axion with lifetime τA0=1.4 × 10−12 4.0 × 10−10 s, as-suming B(A0 → e+ e−)=100%. HENDERSON 92C also ex lude a ve tor boson with

τ=1.4× 10−12 6.0× 10−10 s.3WU 92 quote limits on lifetime > 3.3 × 10−13 s assuming B(A0 → e+ e−)=100%.They say that TSERTOS 89 overestimate the limit by a fa tor of π/2. WU 92 also quotea bound for ve tor boson, τ > 8.2× 10−13 s.4WIDMANN 91 bound applies ex lusively to the ase B(A0 → e+ e−)=1, sin e thedete tion eÆ ien y varies substantially as (A0)total hanges. See their Fig. 6.5 JUDGE 90 ex ludes an elasti pseudos alar e+ e− resonan e for 4.5×10−13 s < τ(A0)< 7.5 × 10−12 s (95% CL) at mA0 = 1.832 MeV. Comparable limits an be set formA0 = 1.7761.856 MeV.6 See also TSERTOS 88B in referen es.7The upper limit listed in TSERTOS 88 is too large by a fa tor of 4. See TSERTOS 88B,footnote 3.8VANKLINKEN 88 looked for relatively long-lived resonan e (τ = 10−1010−12 s). Thesensitivity is not suÆ ient to ex lude su h a narrow resonan e.9MAIER 87 obtained limits R . 60 eV (100 eV) at mA0 ≃ 1.64 MeV (1.83 MeV) forenergy resolution E m ≃ 3 keV, where R is the resonan e ross se tion normalizedto that of Bhabha s attering, and = 2e e/total. For a dis ussion implying thatE m ≃ 10 keV, see TSERTOS 89.10VONWIMMERSPERG 87 measured Bhabha s attering for E m = 1.371.86 MeV andfound a possible peak at 1.73 with ∫

σdE m = 14.5 ± 6.8 keV·b. For a omment anda reply, see VANKLINKEN 88B and VONWIMMERSPERG 88. Also see CONNELL 88.Sear h for A0 (Axion) Resonan e in e+ e− → γ γSear h for A0 (Axion) Resonan e in e+ e− → γ γSear h for A0 (Axion) Resonan e in e+ e− → γ γSear h for A0 (Axion) Resonan e in e+ e− → γ γThe limit is for (A0 → e+ e−)·(A0 → γ γ)/totalVALUE (10−3 eV) CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •

Page 92: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

702702702702Gauge&HiggsBosonParti leListingsAxions (A0) andOther Very Light Bosons< 0.18 95 VO 94 CNTR mA0=1.1 MeV< 1.5 95 VO 94 CNTR mA0=1.4 MeV<12 95 VO 94 CNTR mA0=1.7 MeV< 6.6 95 1 TRZASKA 91 CNTR mA0 = 1.8 MeV< 4.4 95 WIDMANN 91 CNTR mA0= 1.781.92 MeV2 FOX 89 CNTR< 0.11 95 3 MINOWA 89 CNTR mA0 = 1.062 MeV<33 97 CONNELL 88 CNTR mA0 = 1.580 MeV<42 97 CONNELL 88 CNTR mA0 = 1.642 MeV<73 97 CONNELL 88 CNTR mA0 = 1.782 MeV<79 97 CONNELL 88 CNTR mA0 = 1.832 MeV1TRZASKA 91 also give limits in the range (6.630) × 10−3 eV (95%CL) for mA0 =1.62.0MeV.2 FOX 89 measured positron annihilation with an ele tron in the sour e material into twophotons and found no signal at 1.062 MeV (< 9× 10−5 of two-photon annihilation atrest).3 Similar limits are obtained for mA0 = 1.0451.085 MeV.Sear h for X 0 (Light Boson) Resonan e in e+ e− → γ γ γSear h for X 0 (Light Boson) Resonan e in e+ e− → γ γ γSear h for X 0 (Light Boson) Resonan e in e+ e− → γ γ γSear h for X 0 (Light Boson) Resonan e in e+ e− → γ γ γThe limit is for (X0 → e+ e−)·(X0 → γ γ γ)/total . C invarian e forbids spin-0X0 oupling to both e+ e− and γ γ γ.VALUE (10−3 eV) CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •< 0.2 95 1 VO 94 CNTR mX 0=1.11.9 MeV< 1.0 95 2 VO 94 CNTR mX 0=1.1 MeV< 2.5 95 2 VO 94 CNTR mX 0=1.4 MeV<120 95 2 VO 94 CNTR mX 0=1.7 MeV< 3.8 95 3 SKALSEY 92 CNTR mX 0= 1.5 MeV1VO 94 looked for X0 → γ γ γ de aying at rest. The pre ise limits depend on mX 0 . SeeFig. 2(b) in paper.2VO 94 looked for X0 → γ γ γ de aying in ight.3 SKALSEY 92 also give limits 4.3 for mX 0 = 1.54 and 7.5 for 1.64 MeV. The spin of X0is assumed to be one.Light Boson (X 0) Sear h in Nonresonant e+ e− Annihilation at RestLight Boson (X 0) Sear h in Nonresonant e+ e− Annihilation at RestLight Boson (X 0) Sear h in Nonresonant e+ e− Annihilation at RestLight Boson (X 0) Sear h in Nonresonant e+ e− Annihilation at RestLimits are for the ratio of nγ + X0 produ tion relative to γ γ.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •< 4.2 90 1 MITSUI 96 CNTR γX0< 4 68 2 SKALSEY 95 CNTR γX0<40 68 3 SKALSEY 95 RVUE γX0< 0.18 90 4 ADACHI 94 CNTR γ γX0, X0 → γ γ

< 0.26 90 5 ADACHI 94 CNTR γ γX0, X0 → γ γ

< 0.33 90 6 ADACHI 94 CNTR γX0, X0 → γ γ γ1MITSUI 96 looked for a mono hromati γ. The bound applies for a ve tor X0 withC=−1 and mX 0 <200 keV. They derive an upper bound on e e X0 oupling and hen eon the bran hing ratio B(o-Ps → γ γX0)< 6.2×10−6. The bounds weaken for heavierX0.2 SKALSEY 95 looked for a mono hromati γ without an a ompanying γ in e+ e−annihilation. The bound applies for s alar and ve tor X0 with C = −1 and mX 0 =1001000 keV.3 SKALSEY 95 reinterpreted the bound on γA0 de ay of o-Ps by ASAI 91 where 3% ofdelayed annihilations are not from 3S1 states. The bound applies for s alar and ve torX0 with C = −1 and mX 0 = 0800 keV.4ADACHI 94 looked for a peak in the γ γ invariant mass distribution in γ γ γ γ produ tionfrom e+ e− annihilation. The bound applies for mX 0 = 70800 keV.5ADACHI 94 looked for a peak in the missing-mass mass distribution in γ γ hannel, usingγ γ γ γ produ tion from e+ e− annihilation. The bound applies for mX 0 <800 keV.6ADACHI 94 looked for a peak in the missing mass distribution in γ γ γ hannel, usingγ γ γ γ produ tion from e+ e− annihilation. The bound applies for mX 0 = 200900keV.Sear hes for Goldstone Bosons (X 0)Sear hes for Goldstone Bosons (X 0)Sear hes for Goldstone Bosons (X 0)Sear hes for Goldstone Bosons (X 0)(In luding Horizontal Bosons and Majorons.) Limits are for bran hing ratios.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •<9 × 10−6 90 1 BAYES 15 TWST µ+ → e+X0, Familon2 LATTANZI 13 COSM Majoron dark matter de ay3 LESSA 07 RVUE Meson, ℓ de ays to Majoron4 DIAZ 98 THEO H0 → X0X0, A0 →X0X0X0, Majoron5 BOBRAKOV 91 Ele tron quasi-magneti in-tera tion<3.3× 10−2 95 6 ALBRECHT 90E ARG τ → µX0. Familon<1.8× 10−2 95 6 ALBRECHT 90E ARG τ → e X0. Familon<6.4× 10−9 90 7 ATIYA 90 B787 K+ → π+X0. Familon<1.1× 10−9 90 8 BOLTON 88 CBOX µ+ → e+ γX0. Familon

9 CHANDA 88 ASTR Sun, Majoron10 CHOI 88 ASTR Majoron, SN 1987A<5 × 10−6 90 11 PICCIOTTO 88 CNTR π → e νX0, Majoron<1.3× 10−9 90 12 GOLDMAN 87 CNTR µ → e γX0. Familon<3 × 10−4 90 13 BRYMAN 86B RVUE µ → e X0. Familon<1 × 10−10 90 14 EICHLER 86 SPEC µ+ → e+X0. Familon<2.6× 10−6 90 15 JODIDIO 86 SPEC µ+ → e+X0. Familon16 BALTRUSAIT...85 MRK3 τ → ℓX0. Familon17 DICUS 83 COSM ν (hvy) → ν (light)X01BAYES 15 limits are the average over mX 0 = 1380 MeV for the isotropi de ay distri-bution of positrons. See their Fig. 4 and Table II for the mass-dependent limits as wellas the dependen e on the de ay anisotropy. In parti ular, they nd a limit < 58× 10−6at 90% CL for massless familons and for the same asymmetry as normal muon de ay, a ase not overed by JODIDIO 86.2 LATTANZI 13 use WMAP 9 year data as well as X-ray and γ-ray observations to derivelimits on de aying majoron dark matter. A limit on the de ay width (X0 → ν ν)

< 6.4× 10−19 s−1 at 95% CL is found if majorons make up all of the dark matter.3 LESSA 07 onsider de ays of the form Meson → ℓνMajoron and ℓ → ℓ′ ν νMajoronand use existing data to derive limits on the neutrino-Majoron Yukawa ouplings gαβ(α,β=e,µ,τ). Their best limits are ∣∣geα∣∣2 < 5.5 × 10−6, ∣∣gµα

∣∣2 < 4.5 × 10−5,∣∣gτ α

∣∣2 < 5.5× 10−2 at CL = 90%.4DIAZ 98 studied models of spontaneously broken lepton number with both singlet andtriplet Higgses. They obtain limits on the parameter spa e from invisible de ay Z →H0A0 → X0X0X0X0X0 and e+ e− → Z H0 with H0 → X0X0.5BOBRAKOV 91 sear hed for anomalous magneti intera tions between polarized ele -trons expe ted from the ex hange of a massless pseudos alar boson (arion). A limitx2e < 2× 10−4 (95%CL) is found for the ee tive anomalous magneton parametrizedas xe (GF /8π√2)1/2.6ALBRECHT 90E limits are for B(τ → ℓX0)/B(τ → ℓν ν). Valid for mX 0 < 100MeV. The limits rise to 7.1% (for µ), 5.0% (for e) for mX 0 = 500 MeV.7ATIYA 90 limit is for mX 0 = 0. The limit B < 1 × 10−8 holds for mX 0 < 95 MeV.For the redu tion of the limit due to nite lifetime of X0, see their Fig. 3.8BOLTON 88 limit orresponds to F > 3.1 × 109 GeV, whi h does not depend on the hirality property of the oupling.9CHANDA 88 nd vT < 10 MeV for the weak-triplet Higgs va uum expe tation valuein Gelmini-Ron adelli model, and vS > 5.8× 106 GeV in the singlet Majoron model.10CHOI 88 used the observed neutrino ux from the supernova SN 1987A to ex lude theneutrino Majoron Yukawa oupling h in the range 2 × 10−5 < h < 3 × 10−4 for theintera tion Lint = 12 ihψ νγ5ψνφX. For several families of neutrinos, the limit applies for(h4i )1/4.11PICCIOTTO 88 limit applies when mX 0 < 55 MeV and τX 0 > 2ns, and it de reasesto 4× 10−7 at mX 0 = 125 MeV, beyond whi h no limit is obtained.12GOLDMAN 87 limit orresponds to F > 2.9×109 GeV for the family symmetry breakings ale from the Lagrangian Lint = (1/F)ψµγµ (a+bγ5) ψe∂µφX 0 with a2+b2 = 1.This is not as sensitive as the limit F > 9.9×109 GeV derived from the sear h for µ+ →e+X0 by JODIDIO 86, but does not depend on the hirality property of the oupling.13 Limits are for (µ → e X0)/(µ → e ν ν). Valid when mX 0 = 093.4, 98.1103.5MeV.14EICHLER 86 looked for µ+ → e+X0 followed by X0 → e+ e−. Limits on thebran hing fra tion depend on the mass and and lifetime of X0. The quoted limits arevalid when τX 0 . 3. × 10−10 s if the de ays are kinemati ally allowed.15 JODIDIO 86 orresponds to F > 9.9× 109 GeV for the family symmetry breaking s alewith the parity- onserving ee tive Lagrangian Lint = (1/F) ψµγµψe∂µφX 0 .16BALTRUSAITIS 85 sear h for light Goldstone boson(X0) of broken U(1). CL = 95%limits are B(τ → µ+X0)/B(τ → µ+ ν ν) <0.125 and B(τ → e+X0)/B(τ → e+ ν ν)<0.04. Inferred limit for the symmetry breaking s ale is m >3000 TeV.17The primordial heavy neutrino must de ay into ν and familon, fA, early so that thered-shifted de ay produ ts are below riti al density, see their table. In addition, K →π fA and µ → e fA are unseen. Combining these ex ludes mheavyν between 5× 10−5and 5× 10−4 MeV (µ de ay) and mheavyν between 5× 10−5 and 0.1 MeV (K -de ay).Majoron Sear hes in Neutrinoless Double β De ayMajoron Sear hes in Neutrinoless Double β De ayMajoron Sear hes in Neutrinoless Double β De ayMajoron Sear hes in Neutrinoless Double β De ayLimits are for the half-life of neutrinoless ββ de ay with a Majoron emission.No experiment urrently laims any su h eviden e. Only the best or omparable limitsfor ea h isotope are reported. Also see the reviews ZUBER 98 and FAESSLER 98B.t1/2(1021 yr) CL% ISOTOPE TRANSITION METHOD DOCUMENT ID

>7200>7200>7200>7200 90909090 128Te128Te128Te128Te CNTRCNTRCNTRCNTR 1 BERNATOW... 92• • • We do not use the following data for averages, ts, limits, et . • • •> 420 90 76Ge 0ν1χ GERDA 2 AGOSTINI 15A> 400 90 100Mo 0ν1χ NEMO-3 3 ARNOLD 15>1200 90 136Xe 0ν1χ EXO-200 4 ALBERT 14A>2600 90 136Xe 0ν1χ KamLAND-Zen 5 GANDO 12> 16 90 130Te 0ν1χ NEMO-3 6 ARNOLD 11> 1.9 90 96Zr 2ν1χ NEMO-3 7 ARGYRIADES 10> 1.52 90 150Nd 0ν1χ NEMO-3 8 ARGYRIADES 09> 27 90 100Mo 0ν1χ NEMO-3 9 ARNOLD 06> 15 90 82Se 0ν1χ NEMO-3 10 ARNOLD 06> 14 90 100Mo 0ν1χ NEMO-3 11 ARNOLD 04> 12 90 82Se 0ν1χ NEMO-3 12 ARNOLD 04> 2.2 90 130Te 0ν1χ Cryog. det. 13 ARNABOLDI 03> 0.9 90 130Te 0ν2χ Cryog. det. 14 ARNABOLDI 03

Page 93: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

703703703703See key on page 601 Gauge & Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosons> 8 90 116Cd 0ν1χ CdWO4 s int. 15 DANEVICH 03> 0.8 90 116Cd 0ν2χ CdWO4 s int. 16 DANEVICH 03> 500 90 136Xe 0ν1χ Liquid Xe S int. 17 BERNABEI 02D> 5.8 90 100Mo 0ν1χ ELEGANT V 18 FUSHIMI 02> 0.32 90 100Mo 0ν1χ Liq. Ar ioniz. 19 ASHITKOV 01> 0.0035 90 160Gd 0ν1χ 160Gd2SiO5:Ce 20 DANEVICH 01> 0.013 90 160Gd 0ν 2χ 160Gd2SiO5:Ce 21 DANEVICH 01> 2.3 90 82Se 0ν1χ NEMO 2 22 ARNOLD 00> 0.31 90 96Zr 0ν1χ NEMO 2 23 ARNOLD 00> 0.63 90 82Se 0ν 2χ NEMO 2 24 ARNOLD 00> 0.063 90 96Zr 0ν 2χ NEMO 2 24 ARNOLD 00> 0.16 90 100Mo 0ν 2χ NEMO 2 24 ARNOLD 00> 2.4 90 82Se 0ν1χ NEMO 2 25 ARNOLD 98> 7.2 90 136Xe 0ν 2χ TPC 26 LUESCHER 98> 7.91 90 76Ge SPEC 27 GUENTHER 96> 17 90 76Ge CNTR BECK 931BERNATOWICZ 92 studied double-β de ays of 128Te and 130Te, and found the ratio

τ(130Te)/τ(128Te) = (3.52 ± 0.11) × 10−4 in agreement with relatively stable theo-reti al predi tions. The bound is based on the requirement that Majoron-emitting de ay annot be larger than the observed double-beta rate of 128Te of (7.7± 0.4)×1024 year.We al ulated 90% CL limit as (7.71.28× 0.4=7.2)× 1024.2AGOSTINI 15A analyze a 20.3 kg yr of data set of the GERDA alorimeter to determinegν χ < 3.48.7× 10−5 on the Majoron-neutrino oupling onstant. The range re e tsthe spread of the nu lear matrix elements.3ARNOLD 15 use the NEMO-3 tra king alorimeter with 3.43 kg yr exposure to determinethe limit on Majoron emission. The limit orresponds to gν χ < 1.63.0× 10−4. Thespread re e ts dierent nu lear matrix elements. Supersedes ARNOLD 06.4ALBERT 14A utilize 100 kg yr of exposure of the EXO-200 tra king alorimeter to pla ea limit on the gνχ < 0.81.7× 10−5 on the Majoron-neutrino oupling onstant. Therange re e ts the spread of the nu lear matrix elements.5GANDO 12 use the KamLAND-Zen dete tor to obtain the limit on the 0νχ de ay withMajoron emission. It implies that the oupling onstant gνχ < 0.81.6 × 10−5 de-pending on the nu lear matrix elements used.6ARNOLD 11 use the NEMO-3 dete tor to obtain the reported limit on Majoron emission.It implies that the oupling onstant gνχ < 0.61.6× 10−4 depending on the nu learmatrix element used. Super edes ARNABOLDI 03.7ARGYRIADES 10 use the NEMO-3 tra king dete tor and 96Zr to derive the reportedlimit. No limit for the Majoron ele tron oupling is given.8ARGYRIADES 09 use 150Nd data taken with the NEMO-3 tra king dete tor. Thereported limit orresponds to ⟨ gνχ⟩

< 1.73.0× 10−4 using a range of nu lear matrixelements that in lude the ee t of nu lear deformation.9ARNOLD 06 use 100Mo data taken with the NEMO-3 tra king dete tor. The reportedlimit orresponds to ⟨gν χ⟩

< (0.41.8)× 10−4 using a range of matrix element al u-lations. Superseded by ARNOLD 15.10NEMO-3 tra king alorimeter is used in ARNOLD 06 . Reported half-life limit for 82Se orresponds to ⟨gνχ⟩

< (0.661.9)×10−4 using a range of matrix element al ulations.Supersedes ARNOLD 04.11ARNOLD 04 use the NEMO-3 tra king dete tor. The limit orresponds to ⟨gν χ⟩

<(0.50.9)10−4 using the matrix elements of SIMKOVIC 99, STOICA 01 and CIV-ITARESE 03. Superseded by ARNOLD 06.12ARNOLD 04 use the NEMO-3 tra king dete tor. The limit orresponds to ⟨gν χ⟩

<(0.71.6)10−4 using the matrix elements of SIMKOVIC 99, STOICA 01 and CIV-ITARESE 03.13 Supersedes ALESSANDRELLO 00. Array of TeO2 rystals in high resolution ryogeni alorimeter. Some enri hed in 130Te. Derive ⟨gνχ⟩

< 1733 × 10−5 depending onmatrix element.14 Supersedes ALESSANDRELLO 00. Cryogeni alorimeter sear h.15 Limit for the 0ν χ de ay with Majoron emission of 116Cd using enri hed CdWO4 s in-tillators. ⟨gν χ⟩

< 4.68.1 × 10−5 depending on the matrix element. SupersedesDANEVICH 00.16 Limit for the 0ν2χ de ay of 116Cd. Supersedes DANEVICH 00.17BERNABEI 02D obtain limit for 0ν χ de ay with Majoron emission of 136Xe using liquidXe s intillation dete tor. They derive ⟨gνχ⟩

< 2.03.0 × 10−5 with several nu learmatrix elements.18Repla es TANAKA 93. FUSHIMI 02 derive half-life limit for the 0νχ de ay by meansof tra king alorimeter ELEGANT V. Considering various matrix element al ulations, arange of limits for the Majoron-neutrino oupling is given: ⟨gνχ⟩

<(6.3360) × 10−5.19ASHITKOV 01 result for 0ν χ of 100Mo is less stringent than ARNOLD 00.20DANEVICH 01 obtain limit for the 0ν χ de ay with Majoron emission of 160Gd usingGd2SiO5:Ce rystal s intillators.21DANEVICH 01 obtain limit for the 0ν 2χ de ay with 2 Majoron emission of 160Gd.22ARNOLD 00 reports limit for the 0νχ de ay with Majoron emission derived from tra king alorimeter NEMO 2. Using 82Se sour e: ⟨gνχ⟩

< 1.6 × 10−4. Matrix element fromGUENTHER 96.23Using 96Zr sour e: ⟨gν χ⟩

< 2.6× 10−4. Matrix element from ARNOLD 99.24ARNOLD 00 reports limit for the 0ν 2χ de ay with two Majoron emission derived fromtra king alorimeter NEMO 2.25ARNOLD 98 determine the limit for 0νχ de ay with Majoron emission of 82Se using theNEMO-2 tra king dete tor. They derive ⟨gνχ

⟩< 2.34.3 × 10−4 with several nu learmatrix elements.26 LUESCHER 98 report a limit for the 0ν de ay with Majoron emission of 136Xe using XeTPC. This result is more stringent than BARABASH 89. Using the matrix elements ofENGEL 88, they obtain a limit on ⟨gν χ

⟩ of 2.0× 10−4.27 See Table 1 in GUENTHER 96 for limits on the Majoron oupling in dierent models.

Invisible A0 (Axion) MASS LIMITS from Astrophysi s and CosmologyInvisible A0 (Axion) MASS LIMITS from Astrophysi s and CosmologyInvisible A0 (Axion) MASS LIMITS from Astrophysi s and CosmologyInvisible A0 (Axion) MASS LIMITS from Astrophysi s and Cosmologyv1 = v2 is usually assumed (vi = va uum expe tation values). For a review of theselimits, see RAFFELT 91 and TURNER 90. In the omment lines below, D and K referto DFSZ and KSVZ axion types, dis ussed in the above minireview.VALUE (eV) CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •< 0.67 95 1 ARCHIDIACO...13A COSM K, hot dark matternone 0.73× 105 2 CADAMURO 11 COSM D abundan e<105 90 3 DERBIN 11A CNTR D, solar axion4 ANDRIAMON...10 CAST K, solar axions< 0.72 95 5 HANNESTAD 10 COSM K, hot dark matter6 ANDRIAMON...09 CAST K, solar axions<191 90 7 DERBIN 09A CNTR K, solar axions<334 95 8 KEKEZ 09 HPGE K, solar axions< 1.02 95 9 HANNESTAD 08 COSM K, hot dark matter< 1.2 95 10 HANNESTAD 07 COSM K, hot dark matter< 0.42 95 11 MELCHIORRI 07A COSM K, hot dark matter< 1.05 95 12 HANNESTAD 05A COSM K, hot dark matter3 to 20 13 MOROI 98 COSM K, hot dark matter< 0.007 14 BORISOV 97 ASTR D, neutron star< 4 15 KACHELRIESS 97 ASTR D, neutron star ooling<(0.56)× 10−3 16 KEIL 97 ASTR SN 1987A< 0.018 17 RAFFELT 95 ASTR D, red giant< 0.010 18 ALTHERR 94 ASTR D, red giants, whitedwarfs19 CHANG 93 ASTR K, SN 1987A< 0.01 WANG 92 ASTR D, white dwarf< 0.03 WANG 92C ASTR D, C-O burningnone 38 20 BERSHADY 91 ASTR D, K,intergala ti light< 10 21 KIM 91C COSM D, K, mass density ofthe universe, super-symmetry22 RAFFELT 91B ASTR D,K, SN 1987A< 1 × 10−3 23 RESSELL 91 ASTR K, intergala ti lightnone 10−33 BURROWS 90 ASTR D,K, SN 1987A24 ENGEL 90 ASTR D,K, SN 1987A< 0.02 25 RAFFELT 90D ASTR D, red giant< 1 × 10−3 26 BURROWS 89 ASTR D,K, SN 1987A<(1.410)× 10−3 27 ERICSON 89 ASTR D,K, SN 1987A< 3.6 × 10−4 28 MAYLE 89 ASTR D,K, SN 1987A< 12 CHANDA 88 ASTR D, Sun< 1 × 10−3 RAFFELT 88 ASTR D,K, SN 1987A29 RAFFELT 88B ASTR red giant< 0.07 FRIEMAN 87 ASTR D, red giant< 0.7 30 RAFFELT 87 ASTR K, red giant< 25 TURNER 87 COSM K, thermal produ tion< 0.01 31 DEARBORN 86 ASTR D, red giant< 0.06 RAFFELT 86 ASTR D, red giant< 0.7 32 RAFFELT 86 ASTR K, red giant< 0.03 RAFFELT 86B ASTR D, white dwarf< 1 33 KAPLAN 85 ASTR K, red giant< 0.0030.02 IWAMOTO 84 ASTR D, K, neutron star> 1 × 10−5 ABBOTT 83 COSM D,K, mass density ofthe universe> 1 × 10−5 DINE 83 COSM D,K, mass density ofthe universe< 0.04 ELLIS 83B ASTR D, red giant> 1 × 10−5 PRESKILL 83 COSM D,K, mass density ofthe universe< 0.1 BARROSO 82 ASTR D, red giant< 1 34 FUKUGITA 82 ASTR D, stellar ooling< 0.07 FUKUGITA 82B ASTR D, red giant1ARCHIDIACONO 13A is analogous to HANNESTAD 05A. The limit is based on the CMBtemperature power spe trum of the Plan k data, the CMB polarization from the WMAP9-yr data, the matter power spe trum from SDSS-DR7, and the lo al Hubble parametermeasurement by the Carnegie Hubble program.2CADAMURO 11 use the deuterium abundan e to show that the mA0 range 0.7 eV 300 keV is ex luded for axions, omplementing HANNESTAD 10.3DERBIN 11A look for solar axions produ ed by Compton and bremsstrahlung pro esses,in the resonant ex itation of 169Tm, onstraining the axion-ele tron × axion nu leon ouplings.4ANDRIAMONJE 10 sear h for solar axions produ ed from 7Li (478 keV) and D(p,γ)3He(5.5 MeV) nu lear transitions. They show limits on the axion-photon oupling for tworeferen e values of the axion-nu leon oupling for mA < 100 eV.5This is an update of HANNESTAD 08 in luding 7 years of WMAP data.6ANDRIAMONJE 09 look for solar axions produ ed from the thermally ex ited 14.4 keVlevel of 57Fe. They show limits on the axion-nu leon × axion-photon oupling assumingmA < 0.03 eV.7DERBIN 09A look for Primako-produ ed solar axions in the resonant ex itation of169Tm, onstraining the axion-photon × axion-nu leon ouplings.8KEKEZ 09 look at axio-ele tri ee t of solar axions in HPGe dete tors. The one-loopaxion-ele tron oupling for hadroni axions is used.9This is an update of HANNESTAD 07 in luding 5 years of WMAP data.10This is an update of HANNESTAD 05A with new osmologi al data, notably WMAP (3years) and baryon a ousti os illations (BAO). Lyman-α data are left out, in ontrast toHANNESTAD 05A and MELCHIORRI 07A, be ause it is argued that systemati errorsare large. It uses Bayesian statisti s and marginalizes over a possible neutrino hot darkmatter omponent.11MELCHIORRI 07A is analogous to HANNESTAD 05A, with updated osmologi al data,notably WMAP (3 years). Uses Bayesian statisti s and marginalizes over a possible

Page 94: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

704704704704Gauge & Higgs Boson Parti le ListingsAxions (A0) and Other Very Light Bosonsneutrino hot dark matter omponent. Leaving out Lyman-α data, a onservative limit is1.4 eV.12HANNESTAD 05A puts an upper limit on the mass of hadroni axion be ause in this massrange it would have been thermalized and ontribute to the hot dark matter omponentof the universe. The limit is based on the CMB anisotropy from WMAP, SDSS larges ale stru ture, Lyman α, and the prior Hubble parameter from HST Key Proje t. A χ2statisti is used. Neutrinos are assumed not to ontribute to hot dark matter.13MOROI 98 points out that a KSVZ axion of this mass range (see CHANG 93) an be aviable hot dark matter of Universe, as long as the model-dependent gAγ is a identallysmall enough as originally emphasized by KAPLAN 85; see Fig. 1.14BORISOV 97 bound is on the axion-ele tron oupling gae < 1×10−13 from the photo-produ tion of axions o of magneti elds in the outer layers of neutron stars.15KACHELRIESS 97 bound is on the axion-ele tron oupling gae < 1 × 10−10 from theprodu tion of axions in strongly magnetized neutron stars. The authors also quote astronger limit, gae < 9 × 10−13 whi h is strongly dependent on the strength of themagneti eld in white dwarfs.16KEIL 97 uses new measurements of the axial-ve tor oupling strength of nu leons, aswell as a reanalysis of many-body ee ts and pion-emission pro esses in the ore of theneutron star, to update limits on the invisible-axion mass.17RAFFELT 95 reexamined the onstraints on axion emission from red giants due to theaxion-ele tron oupling. They improve on DEARBORN 86 by taking into proper a ountdegenera y ee ts in the bremsstrahlung rate. The limit omes from requiring the redgiant ore mass at helium ignition not to ex eed its standard value by more than 5%(0.025 solar masses).18ALTHERR 94 bound is on the axion-ele tron oupling gae < 1.5× 10−13, from energyloss via axion emission.19CHANG 93 updates ENGEL 90 bound with the Kaplan-Manohar ambiguity in z=mu/md(see the Note on the Quark Masses in the Quark Parti le Listings). It leaves the windowfA=3×1053×106 GeV open. The onstraint from Big-Bang Nu leosynthesis is satisedin this window as well.20BERSHADY 91 sear hed for a line at wave length from 31008300 A expe ted from 2γde ays of reli thermal axions in intergala ti light of three ri h lusters of galaxies.21KIM 91C argues that the bound from the mass density of the universe will hange dras-ti ally for the supersymmetri models due to the entropy produ tion of saxion (s alar omponent in the axioni hiral multiplet) de ay. Note that it is an upperbound ratherthan a lowerbound.22RAFFELT 91B argue that previous SN 1987A bounds must be relaxed due to orre tionsto nu leon bremsstrahlung pro esses.23RESSELL 91 uses absen e of any intra luster line emission to set limit.24ENGEL 90 rule out 10−10 . gAN . 10−3, whi h for a hadroni axion with EMCmotivated axion-nu leon ouplings orresponds to 2.5 × 10−3 eV . mA0 . 2.5 ×104 eV. The onstraint is loose in the middle of the range, i.e. for gAN ∼ 10−6.25RAFFELT 90D is a re-analysis of DEARBORN 86.26The region mA0 & 2 eV is also allowed.27ERICSON 89 onsidered various nu lear orre tions to axion emission in a supernova ore, and found a redu tion of the previous limit (MAYLE 88) by a large fa tor.28MAYLE 89 limit based on naive quark model ouplings of axion to nu leons. Limit basedon ouplings motivated by EMC measurements is 24 times weaker. The limit fromaxion-ele tron oupling is weak: see HATSUDA 88B.29RAFFELT 88B derives a limit for the energy generation rate by exoti pro esses in helium-burning stars ǫ < 100 erg g−1 s−1, whi h gives a rmer basis for the axion limits basedon red giant ooling.30RAFFELT 87 also gives a limit gAγ < 1× 10−10 GeV−1.31DEARBORN 86 also gives a limit gAγ < 1.4× 10−11 GeV−1.32RAFFELT 86 gives a limit gAγ < 1.1×10−10 GeV−1 from red giants and < 2.4×10−9GeV−1 from the sun.33KAPLAN 85 says mA0 < 23 eV is allowed for a spe ial hoi e of model parameters.34 FUKUGITA 82 gives a limit gAγ < 2.3× 10−10 GeV−1.Sear h for Reli Invisible AxionsSear h for Reli Invisible AxionsSear h for Reli Invisible AxionsSear h for Reli Invisible AxionsLimits are for [GAγ γ/mA0 2ρA where GAγ γ denotes the axion two-photon oupling,Lint = −GAγ γ4 φAFµν Fµν = GAγ γφAEEEE·BBBB, and ρA is the axion energy densitynear the earth.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •1 BECK 13 mA0 = 0.11 meV<3.5× 10−43 2 HOSKINS 11 ADMX mA0 = 3.33.69× 10−6 eV<2.9× 10−43 90 3 ASZTALOS 10 ADMX mA0 = 3.343.53× 10−6 eV<1.9× 10−43 97.7 4 DUFFY 06 ADMX mA0 = 1.982.17× 10−6 eV<5.5× 10−43 90 5 ASZTALOS 04 ADMX mA0 = 1.93.3× 10−6 eV6 KIM 98 THEO<2 × 10−41 7 HAGMANN 90 CNTR mA0 = (5.45.9)10−6 eV<1.3× 10−42 95 8 WUENSCH 89 CNTR mA0 = (4.510.2)10−6 eV<2 × 10−41 95 8 WUENSCH 89 CNTR mA0 = (11.316.3)10−6 eV1BECK 13 argues that dark-matter axions passing through Earth may generate a smallobservable signal in resonant S/N/S Josephson jun tions. A measurement by HOFF-MANN 04 [Physi al Review B70B70B70B70 180503 (2004) is interpreted in terms of subdominantdark matter axions with mA0 = 0.11 meV.2HOSKINS 11 is analogous to DUFFY 06. See Fig. 4 for the mass-dependent limit interms of the lo al density.3ASZTALOS 10 used the upgraded dete tor of ASZTALOS 04 to sear h for halo axions.See their Fig. 5 for the mA0 dependen e of the limit.4DUFFY 06 used the upgraded dete tor of ASZTALOS 04, while assuming a smallervelo ity dispersion than the isothermal model as in Eq. (8) of their paper. See Fig. 10of their paper on the axion mass dependen e of the limit.5ASZTALOS 04 looked for a onversion of halo axions to mi rowave photons in mag-neti eld. At 90% CL, the KSVZ axion annot have a lo al halo density more than

0.45 GeV/ m3 in the quoted mass range. See Fig. 7 of their paper on the axion massdependen e of the limit.6KIM 98 al ulated the axion-to-photon ouplings for various axion models and om-pared them to the HAGMANN 90 bounds. This analysis demonstrates a strong modeldependen e of GAγ γ and hen e the bound from reli axion sear h.7HAGMANN 90 experiment is based on the proposal of SIKIVIE 83.8WUENSCH 89 looks for ondensed axions near the earth that ould be onverted tophotons in the presen e of an intense ele tromagneti eld via the Primako ee t,following the proposal of SIKIVIE 83. The theoreti al predi tion with [GAγ γ/mA0 2 =2 × 10−14 MeV−4 (the three generation DFSZ model) and ρA = 300 MeV/ m3 thatmakes up gala ti halos gives (GAγ γ/mA0)2 ρA = 4×10−44. Note that our denitionof GAγ γ is (1/4π) smaller than that of WUENSCH 89.Invisible A0 (Axion) Limits from Photon CouplingInvisible A0 (Axion) Limits from Photon CouplingInvisible A0 (Axion) Limits from Photon CouplingInvisible A0 (Axion) Limits from Photon CouplingLimits are for the modulus of the axion-two-photon oupling GAγ γ dened byL=−GAγ γφAEEEE····BBBB. For s alars S0 the limit is on the oupling onstant inL=GS γ γφS(EEEE2−BBBB2). The relation between GAγ γ and mA0 is not used unlessstated otherwise, i.e., many of these bounds apply to low-mass axion-like parti les(ALPs), not to QCD axions.VALUE (GeV−1) CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •1 ANASTASSO... 15 CAST Chameleons<1.47× 10−10 95 2 ARIK 15 CAST mA0 = 0.390.42 eV<3.5 × 10−8 95 3 BALLOU 15 LSW mA0 < 2× 10−4 eV4 BRAX 15 ASTR mS0 < 4× 10−12 eV<5.42× 10−4 95 5 HASEBE 15 LASR mA0 = 0.15 eV6 MILLEA 15 COSM Axion-like parti les7 VANTILBURG 15 Dilaton-like dark matter<4.1 × 10−10 99.7 8 VINYOLES 15 ASTR mA0 = 0.6185 eV<3.3 × 10−10 95 9 ARIK 14 CAST mA0 = 0.641.17 eV<6.6 × 10−11 95 10 AYALA 14 ASTR Globular lusters<1.4 × 10−7 95 11 DELLA-VALLE 14 mA0 = 1 meV12 EJLLI 14 COSM mA0 = 2.6648.8 µeV<8 × 10−8 95 13 PUGNAT 14 LSW mA0 < 0.3 meV<1 × 10−11 14 REESMAN 14 ASTR mA0 < 1× 10−10 eV<2.1 × 10−11 95 15 ABRAMOWSKI13A IACT mA0 = 1560 neV<2.15× 10−9 95 16 ARMENGAUD 13 EDEL mA0 < 200 eV<4.5 × 10−8 95 17 BETZ 13 LSW mA0 = 7.2× 10−6 eV<8 × 10−11 18 FRIEDLAND 13 ASTR Red giants>2 × 10−11 19 MEYER 13 ASTR mA0 < 1× 10−7 eV20 CADAMURO 12 COSM Axion-like parti les<2.5 × 10−13 95 21 PAYEZ 12 ASTR mA0 < 4.2× 10−14 eV<2.3 × 10−10 95 22 ARIK 11 CAST mA0 = 0.390.64 eV<6.5 × 10−8 95 23 EHRET 10 ALPS mA0 < 0.7 meV<2.4 × 10−9 95 24 AHMED 09A CDMS mA0 < 100 eV< 1.22.8× 10−10 95 25 ARIK 09 CAST mA0 = 0.020.39 eV26 CHOU 09 Chameleons<7 × 10−10 27 GONDOLO 09 ASTR mA0 < few keV<1.3 × 10−6 95 28 AFANASEV 08 mS0 < 1 meV<3.5 × 10−7 99.7 29 CHOU 08 mA0 < 0.5 meV<1.1 × 10−6 99.7 30 FOUCHE 08 mA0 < 1 meV< 5.613.4× 10−10 95 31 INOUE 08 mA0 = 0.841.00 eV<5 × 10−7 32 ZAVATTINI 08 mA0 < 1 meV<8.8 × 10−11 95 33 ANDRIAMON...07 CAST mA0 < 0.02 eV<1.25× 10−6 95 34 ROBILLIARD 07 mA0 < 1 meV25× 10−6 35 ZAVATTINI 06 mA0 = 11.5 meV<1.1 × 10−9 95 36 INOUE 02 mA0= 0.050.27 eV<2.78× 10−9 95 37 MORALES 02B mA0 <1 keV<1.7 × 10−9 90 38 BERNABEI 01B mA0 <100 eV<1.5 × 10−4 90 39 ASTIER 00B NOMD mA0 <40 eV40 MASSO 00 THEO indu ed γ oupling<2.7 × 10−9 95 41 AVIGNONE 98 SLAX mA0 < 1 keV<6.0 × 10−10 95 42 MORIYAMA 98 mA0 < 0.03 eV<3.6 × 10−7 95 43 CAMERON 93 mA0 < 10−3 eV,opti al rotation<6.7 × 10−7 95 44 CAMERON 93 mA0 < 10−3 eV,photon regeneration<3.6 × 10−9 99.7 45 LAZARUS 92 mA0 < 0.03 eV<7.7 × 10−9 99.7 45 LAZARUS 92 mA0= 0.030.11 eV<7.7 × 10−7 99 46 RUOSO 92 mA0 < 10−3 eV<2.5 × 10−6 47 SEMERTZIDIS 90 mA0 < 7× 10−4 eV1ANASTASSOPOULOS 15 sear h for solar hameleons with CAST and derived limits onthe hameleon oupling to photons and matter. See their Fig. 12 for the ex lusionregion.2ARIK 15 is analogous to ARIK 09, and sear h for solar axions for mA0 around 0.2 and0.4 eV. See their Figs. 1 and 3 for the mass-dependent limits.

Page 95: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

705705705705See key on page 601 Gauge&HiggsBosonParti leListingsAxions (A0) andOther Very Light Bosons3Based on OSQAR photon regeneration experiment. See their Fig. 6 for mass-dependentlimits on s alar and pseudos alar bosons.4BRAX 15 derived limits on onformal and disformal ouplings of a s alar to photons bysear hing for a haoti absorption pattern in the X-ray and UV bands of the Hydra Agalaxy luster and a BL la obje t, respe tively. See their Fig. 8.5HASEBE 15 look for an axion via a four-wave mixing pro ess at quasi-parallel ollidinglaser beams. They also derived limits on a s alar oupling to photons GS γ γ < 2.62×10−4 GeV−1 at mS0 = 0.15 eV. See their Figs. 11 and 12 for mass-dependent limits.6MILLEA 15 is similar to CADAMURO 12, in luding the Plan k data and the latestinferen es of primordial deuterium abundan e. See their Fig. 3 for mass-dependentlimits.7VANTILBURG 15 look for harmoni variations in the dyprosium transition frequen ydata, indu ed by oherent os illations of the ne-stru ture onstant due to dilaton-likedark matter, and set the limits, GS γ γ < 6× 10−27 GeV−1 at mS0 = 6× 10−23 eV.See their Fig. 4 for mass-dependent limits between 1× 10−24 < mS0 < 1× 10−15 eV.8VINYOLES 15 performed a global t analysis based on helioseismology and solar neutrinoobservations. See their Fig. 9.9ARIK 14 is similar to ARIK 11. See their Fig. 2 for mass-dependent limits.10AYALA 14 derived the limit from the helium-burning lifetime of horizontal-bran h starsbased on number ounts in globular lusters.11DELLA-VALLE 14 use the new PVLAS apparatus to set a limit on va uum magneti birefringen e indu ed by axion-like parti les. See their Fig. 6 for the mass-dependentlimits.12EJLLI 14 set limits on a produ t of primordial magneti eld and the axion mass usingCMB distortion indu ed by resonant axion produ tion from CMB photons. See theirFig. 1 for limits applying spe i ally to the DFSZ and KSVZ axion models.13PUGNAT 14 is analogous to EHRET 10. See their Fig. 5 for mass-dependent limits ons alar and pseudos alar bosons.14REESMAN 14 derive limits by requiring ee ts of axion-photon inter onversion ongamma-ray spe tra from distant blazars to be no larger than errors in the best-t opti aldepth based on a ertain extragala ti ba kground light model. See their Fig. 5 formass-dependent limits.15ABRAMOWSKI 13A look for irregularities in the energy spe trum of the BL La obje tPKS 2155304 measured by H.E.S.S. The limits depend on assumed magneti eldaround the sour e. See their Fig. 7 for mass-dependent limits.16ARMENGAUD 13 is analogous to AVIGNONE 98. See Fig. 6 for the limit.17BETZ 13 performed a mi rowave-based light shining through the wall experiment. Seetheir Fig. 13 for mass-dependent limits.18 FRIEDLAND 13 derived the limit by onsidering blue-loop suppression of the evolutionof red giants with 712 solar masses.19MEYER 13 attributed to axion-photon os illations the observed ex ess of very high-energyγ-rays with respe t to predi tions based on extragala ti ba kground light models. Seetheir Fig.4 for mass-dependent lower limits for various magneti eld ongurations.20CADAMURO 12 derived osmologi al limits on GAγγ for axion-like parti les. See theirFig. 1 for mass-dependent limits.21PAYEZ 12 derive limits from polarization measurements of quasar light (see their Fig. 3).The limits depend on assumed magneti eld strength in galaxy lusters. The limitsdepend on assumed magneti eld and ele tron density in the lo al galaxy super luster.22ARIK 11 sear h for solar axions using 3He buer gas in CAST, ontinuing from the 4Heversion of ARIK 09. See Fig. 2 for the exa t mass-dependent limits.23ALPS is a photon regeneration experiment. See their Fig. 4 for mass-dependent limitson s alar and pseudos alar bosons.24AHMED 09A is analogous to AVIGNONE 98.25ARIK 09 is the 4He lling version of the CAST axion helios ope in analogy to INOUE 02and INOUE 08. See their Fig. 7 for mass-dependent limits.26CHOU 09 use the GammeV apparatus in the afterglow mode to sear h for hameleons,(pseudo)s alar bosons with a mass depending on the environment. For pseudos alarsthey ex lude at 3σ the range 2.6 × 10−7 GeV−1 < GAγγ < 4.2× 10−6 GeV−1 forva uum mA0 roughly below 6 meV for density s aling index ex eeding 0.8.27GONDOLO 09 use the all- avor measured solar neutrino ux to onstrain solar interiortemperature and thus energy losses.28 LIPSS photon regeneration experiment, assuming s alar parti le S0. See Fig. 4 for mass-dependent limits.29CHOU 08 perform a variable-baseline photon regeneration experiment. See their Fig. 3for mass-dependent limits. Ex ludes the PVLAS result of ZAVATTINI 06.30 FOUCHE 08 is an update of ROBILLIARD 07. See their Fig. 12 for mass-dependentlimits.31 INOUE 08 is an extension of INOUE 02 to larger axion masses, using the Tokyo axionhelios ope. See their Fig. 4 for mass-dependent limits.32ZAVATTINI 08 is an upgrade of ZAVATTINI 06, see their Fig. 8 for mass-dependentlimits. They now ex lude the parameter range where ZAVATTINI 06 had seen a positivesignature.33ANDRIAMONJE 07 looked for Primako onversion of solar axions in 9T super ondu t-ing magnet into X-rays. Supersedes ZIOUTAS 05.34ROBILLIARD 07 perform a photon regeneration experiment with a pulsed laser andpulsed magneti eld. See their Fig. 4 for mass-dependent limits. Ex ludes the PVLASresult of ZAVATTINI 06 with a CL ex eeding 99.9%.35ZAVATTINI 06 propagate a laser beam in a magneti eld and observe di hroism andbirefringen e ee ts that ould be attributed to an axion-like parti le. This result is nowex luded by ROBILLIARD 07, ZAVATTINI 08, and CHOU 08.36 INOUE 02 looked for Primako onversion of solar axions in 4T super ondu ting magnetinto X ray.37MORALES 02B looked for the oherent onversion of solar axions to photons via thePrimako ee t in Germanium dete tor.38BERNABEI 01B looked for Primako oherent onversion of solar axions into photonsvia Bragg s attering in NaI rystal in DAMA dark matter dete tor.39ASTIER 00B looked for produ tion of axions from the intera tion of high-energy photonswith the horn magneti eld and their subsequent re- onversion to photons via theintera tion with the NOMAD dipole magneti eld.40MASSO 00 studied limits on axion-proton oupling using the indu ed axion-photon ou-pling through the proton loop and CAMERON 93 bound on the axion-photon ouplingusing opti al rotation. They obtained the bound g2p/4π < 1.7 × 10−9 for the ouplinggppγ5pφA.

41AVIGNONE 98 result is based on the oherent onversion of solar axions to photons viathe Primako ee t in a single rystal germanium dete tor.42Based on the onversion of solar axions to X-rays in a strong laboratory magneti eld.43Experiment based on proposal by MAIANI 86.44Experiment based on proposal by VANBIBBER 87.45 LAZARUS 92 experiment is based on proposal found in VANBIBBER 89.46RUOSO 92 experiment is based on the proposal by VANBIBBER 87.47 SEMERTZIDIS 90 experiment is based on the proposal of MAIANI 86. The limit isobtained by taking the noise amplitude as the upper limit. Limits extend to mA0 =4× 10−3 where GAγ γ < 1× 10−4 GeV−1.Limit on Invisible A0 (Axion) Ele tron CouplingLimit on Invisible A0 (Axion) Ele tron CouplingLimit on Invisible A0 (Axion) Ele tron CouplingLimit on Invisible A0 (Axion) Ele tron CouplingThe limit is for GAe e∂µφAeγµγ5e in GeV−1, or equivalently, the dipole-dipolepotential G2Ae e4π ((σσσσ1 · σσσσ2) −3(σσσσ1 · nnnn) (σσσσ2 · nnnn))/r3 where nnnn=rrrr/r.VALUE (GeV−1) CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •<7.8 × 10−10 90 1 ABE 14F XMAS mA0 = 60 keV<7.5 × 10−9 90 2 APRILE 14B X100 Solar axions<1 × 10−9 90 3 APRILE 14B X100 mA0 = 57 keV< 0.948.0× 10−5 90 4 DERBIN 14 CNTR mA0 = 0.11 MeV<3 × 10−10 99 5 MILLER-BER...14 ASTR White dwarf ooling<5.3 × 10−8 90 6 ABE 13D XMAS Solar axions<1.05× 10−9 90 7 ARMENGAUD 13 EDEL mA0 = 12.5 keV<2.53× 10−8 90 8 ARMENGAUD 13 EDEL Solar axions9 BARTH 13 CAST Solar axions< 1.49.5× 10−4 90 10 DERBIN 13 CNTR mA0 = 0.11 MeV<2.9 × 10−5 68 11 HECKEL 13 mA0 ≤ 0.1 µeV<4.2 × 10−10 95 12 VIAUX 13A ASTR Low-mass red giants<7 × 10−10 95 13 CORSICO 12 ASTR White dwarf ooling<2.2 × 10−7 90 14 DERBIN 12 CNTR Solar axions< 0.021× 10−7 90 15 AALSETH 11 CNTR mA0 = 0.38 keV<1.4 × 10−9 90 16 AHMED 09A CDMS mA0 = 2.5 keV<3 × 10−6 17 DAVOUDIASL 09 ASTR Earth ooling<5.3 × 10−5 66 18 NI 94 Indu ed magnetism<6.7 × 10−5 66 18 CHUI 93 Indu ed magnetism<3.6 × 10−4 66 19 PAN 92 Torsion pendulum<2.7 × 10−5 95 18 BOBRAKOV 91 Indu ed magnetism<1.9 × 10−3 66 20 WINELAND 91 NMR<8.9 × 10−4 66 19 RITTER 90 Torsion pendulum<6.6 × 10−5 95 18 VOROBYOV 88 Indu ed magnetism1ABE 14F set limits on the axioele tri ee t in the XMASS dete tor assuming the pseu-dos alar onstitutes all the lo al dark matter. See their Fig. 3 for limits between mA0= 40120 keV.2APRILE 14B look for solar axions using the XENON100 dete tor.3APRILE 14B is analogous to AHMED 09A. See their Fig. 7 for limits between 1 keV <mA0 < 35 keV.4DERBIN 14 is an update of DERBIN 13 with a BGO s intillating bolometer. See theirFig. 3 for mass-dependent limits.5MILLER-BERTOLAMI 14 studied the impa t of axion emission on white dwarf oolingin a self- onsistent way.6ABE 13D is analogous to DERBIN 12, using the XMASS dete tor.7ARMENGAUD 13 is similar to AALSETH 11. See their Fig. 10 for limits between 3 keV

< mA0 < 100 keV.8ARMENGAUD 13 is similar to DERBIN 12, and take a ount of axio-re ombination andaxio-deex itation ee ts. See their Fig. 12 for mass-dependent limits.9BARTH 13 sear h for solar axions produ ed by axion-ele tron oupling, and obtained thelimit, GAe e · GAγ γ < 7.9× 10−20 GeV−2 at 95%CL.10DERBIN 13 looked for 5.5 MeV solar axions produ ed in pd → 3He A0 in a BGOdete tor through the axioele tri ee t. See their Fig. 4 for mass-dependent limits.11HECKEL 13 studied the in uen e of 2 or 4 stationary sour es ea h ontaining 6.0×1024polarized ele trons, on a rotating torsion pendulum ontaining 9.8 × 1024 polarizedele trons. See their Fig. 4 for mass-dependent limits.12VIAUX 13A onstrain axion emission using the observed brightness of the tip of thered-giant bran h in the globular luster M5.13CORSICO 12 attributed the ex essive ooling rate of the pulsating white dwarf R548 toemission of axions with GAee ≃ 5× 10−10.14DERBIN 12 look for solar axions with the axio-ele tri ee t in a Si(Li) dete tor. Thesolar produ tion is based on Compton and bremsstrahlung pro esses.15AALSETH 11 is analogous to AHMED 09A. See their Fig. 4 for mass-dependent limits.16AHMED 09A assume keV-mass pseudos alars are the lo al dark matter and onstrain theaxio-ele tri ee t in the CDMS dete tor. See their Fig. 5 for mass-dependent limits.17DAVOUDIASL 09 use geophysi al onstraints on Earth ooling by axion emission.18These experiments measured indu ed magnetization of a bulk material by the spin-dependent potential generated from other bulk material with aligned ele tron spins,where the magneti eld is shielded with super ondu tor.19These experiments used a torsion pendulum to measure the potential between two bulkmatter obje ts where the spins are polarized but without a net magneti eld in eitherof them.20WINELAND 91 looked for an ee t of bulk matter with aligned ele tron spins on atomi hyperne splitting using nu lear magneti resonan e.

Page 96: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

706706706706Gauge&HiggsBosonParti leListingsAxions (A0) andOther Very Light BosonsInvisible A0 (Axion) Limits from Nu leon CouplingInvisible A0 (Axion) Limits from Nu leon CouplingInvisible A0 (Axion) Limits from Nu leon CouplingInvisible A0 (Axion) Limits from Nu leon CouplingLimits are for the axion mass in eV.VALUE (eV) CL% DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •<1 × 102 95 1 GAVRILYUK 15 CNTR Solar axion2 KLIMCHITSK...15 Casimir-less3 BEZERRA 14 Casimir ee t4 BEZERRA 14A Casimir ee t5 BEZERRA 14B Casimir ee t6 BEZERRA 14C Casimir ee t7 BLUM 14 COSM 4He abundan e8 LEINSON 14 ASTR Neutron star ooling<2.50× 102 95 9 ALESSANDRIA13 CNTR Solar axion<1.55× 102 90 10 ARMENGAUD 13 EDEL Solar axion<8.6 × 103 90 11 BELLI 12 CNTR Solar axion<1.41× 102 90 12 BELLINI 12B BORX Solar axion<1.45× 102 95 13 DERBIN 11 CNTR Solar axion14 BELLINI 08 CNTR Solar axion15 ADELBERGER 07 Test of Newton's law1GAVRILYUK 15 look for solar axions emitted by the M1 transition of 83Kr (9.4 keV).The mass bound assumes mu/md = 0.56 and S = 0.5.2KLIMCHITSKAYA 15 use the measurement of dierential for es between a test mass androtating sour e masses of Au and Si to onstrain the for e due to two-axion ex hangefor 1.7× 10−3 < mA0 < 0.9 eV. See their Figs. 1 and 2 for mass dependent limits.3BEZERRA 14 use the measurement of the thermal Casimir-Polder for e between a Bose-Einstein ondensate of 87Rb atoms and a SiO2 plate to onstrain the for e mediated byex hange of two pseudos alars for 0.1 meV < mA0 < 0.3 eV. See their Fig. 2 for themass-dependent limit on pseudos alar oupling to nu leons.4BEZERRA 14A is analogous to BEZERRA 14. They use the measurement of the Casimirpressure between two Au- oated plates to onstrain pseudos alar oupling to nu leonsfor 1× 10−3 eV < mA0 < 15 eV. See their Figs. 1 and 2 for the mass-dependent limit.5BEZERRA 14B is analogous to BEZERRA 14. BEZERRA 14B use the measurementof the normal and lateral Casimir for es between sinusoidally orrugated surfa es of asphere and a plate to onstrain pseudos alar oupling to nu leons for 1 eV < mA0 <20 eV. See their Figs. 13 for mass-dependent limits.6BEZERRA 14C is analogous to BEZERRA 14. They use the measurement of the gradientof the Casimir for e between Au- and Ni- oated surfa es of a sphere and a plate to onstrain pseudos alar oupling to nu leons for 3× 10−5 eV < mA0 < 1 eV. See theirFigs. 1, 3, and 4 for the mass-dependent limits.7BLUM 14 studied ee ts of an os illating strong CP phase indu ed by axion dark matteron the primordial 4He abundan e. See their Fig. 1 for mass-dependent limits.8 LEINSON 14 attributes the ex essive ooling rate of the neutron star in Cassiopeia A toaxion emission from the super uid ore, and found C2

nm2A0 ≃ 5.7× 10−6 eV2, whereCn is the ee tive Pe ei-Quinn harge of the neutron.9ALESSANDRIA 13 used the CUORE experiment to look for 14.4 keV solar axions pro-du ed from the M1 transition of thermally ex ited 57Fe nu lei in the solar ore, usingthe axio-ele tri ee t. The limit assumes the hadroni axion model. See their Fig. 4for the limit on produ t of axion ouplings to ele trons and nu leons.10ARMENGAUD 13 is analogous to ALESSANDRIA 13. The limit assumes the hadroni axion model. See their Fig. 8 for the limit on produ t of axion ouplings to ele tronsand nu leons.11BELLI 12 looked for solar axions emitted by the M1 transition of 7Li∗ (478 keV) after theele tron apture of 7Be, using the resonant ex itation 7Li in the LiF rystal. The massbound assumes mu/md = 0.55, mu/ms = 0.029, and the avor-singlet axial ve tormatrix element S = 0.4.12BELLINI 12B looked for 5.5 MeV solar axions produ ed in the pd → 3He A0. The limitassumes the hadroni axion model. See their Figs. 4 and 5 for mass-dependent limits onprodu ts of axion ouplings to photons, ele trons, and nu leons.13DERBIN 11 looked for solar axions emitted by the M1 transition of thermally ex ited57Fe nu lei in the Sun, using their possible resonant apture on 57Fe in the laboratory.The mass bound assumes mu/md = 0.56 and the avor-singlet axial ve tor matrixelement S = 3F − D ≃ 0.5.14BELLINI 08 onsider solar axions emitted in the M1 transition of 7Li∗ (478 keV) andlook for a peak at 478 keV in the energy spe tra of the Counting Test Fa ility (CTF), aBorexino prototype. For mA0 < 450 keV they nd mass-dependent limits on produ tsof axion ouplings to photons, ele trons, and nu leons.15ADELBERGER 07 use pre ision tests of Newton's law to onstrain a for e ontributionfrom the ex hange of two pseudos alars. See their Fig. 5 for limits on the pseudos alar oupling to nu leons, relevant for mA0 below about 1 meV.Axion Limits from T-violating Medium-Range For esAxion Limits from T-violating Medium-Range For esAxion Limits from T-violating Medium-Range For esAxion Limits from T-violating Medium-Range For esThe limit is for the oupling g = gp gs in a T-violating potential between nu leons ornu leon and ele tron of the form V = gh28πmp (σσσσ·rrrr) ( 1r2 + 1

λr ) e−r/λ, where gp andgs are dimensionless s alar and pseudos alar oupling onstants and λ = h/(mA ) isthe range of the for e.VALUE DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, ts, limits, et . • • •1 AFACH 15 ultra old neutrons2 STADNIK 15 THEO nu leon spin ontributions for nu lei3 BULATOWICZ 13 NMR polarized 129Xe and 131Xe4 CHU 13 polarized 3He

5 TULLNEY 13 SQID polarized 3He and 129Xe6 RAFFELT 12 stellar energy loss7 HOEDL 11 torsion pendulum8 PETUKHOV 10 polarized 3He9 SEREBROV 10 ultra old neutrons10 IGNATOVICH 09 RVUE ultra old neutrons11 SEREBROV 09 RVUE ultra old neutrons12 BAESSLER 07 ultra old neutrons13 HECKEL 06 torsion pendulum14 NI 99 paramagneti Tb F315 POSPELOV 98 THEO neutron EDM16 YOUDIN 9617 RITTER 93 torsion pendulum18 VENEMA 92 nu lear spin-pre ession frequen ies19 WINELAND 91 NMR1AFACH 15 look for a hange of spin pre ession frequen y of ultra old neutrons when amagneti eld with opposite dire tions is applied, and nd g < 2.2 × 10−27 (m/λ)2at 95% CL for 1 µm < λ < 5 mm. See their Fig. 3 for their limits.2 STADNIK 15 studied proton and neutron spin ontributions for nu lei and derive thelimits g < 10−2810−23 for λ > 3× 10−4 m using the data of TULLNEY 13. Seetheir Figs. 1 and 2 for λ-dependent limits.3BULATOWICZ 13 looked for NMR frequen y shifts in polarized 129Xe and 131Xe whena zir onia rod is positioned near the NMR ell, and nd g < 1× 10−191× 10−24 forλ = 0.011 m. See their Fig. 4 for their limits.4CHU 13 look for a shift of the spin pre ession frequen y of polarized 3He in the presen eof an unpolarized mass, in analogy to YOUDIN 96. See Fig. 3 for limits on g in theapproximate mA0 range 0.022 meV.5TULLNEY 13 look for a shift of the pre ession frequen y dieren e between the olo ated3He and 129Xe in the presen e an unpolarized mass, and derive limits g < 3×10−292×10−22 for λ > 3× 10−4 m. See their Fig. 3 for λ-dependent limits.6RAFFELT 12 show that the pseudos alar ouplings to ele tron and nu leon and thes alar oupling to nu leon are individually onstrained by stellar energy-loss argumentsand sear hes for anomalous monopole-monopole for es, together providing restri tive onstraints on g. See their Figs. 2 and 3 for results.7HOEDL 11 use a novel torsion pendulum to study the for e by the polarized ele trons ofan external magnet. In their Fig. 3 they show restri tive limits on g in the approximatemA0 range 0.0310 meV.8PETUKHOV 10 use spin relaxation of polarized 3He and nd g < 3× 10−23 ( m/λ)2at 95% CL for the for e range λ = 10−41 m.9 SEREBROV 10 use spin pre ession of ultra old neutrons lose to bulk matter and ndg < 2× 10−21 ( m/λ)2 at 95% CL for the for e range λ = 10−41 m.10 IGNATOVICH 09 use data on depolarization of ultra old neutrons in material traps.They show λ-dependent limits in their Fig. 1.11 SEREBROV 09 uses data on depolarization of ultra old neutrons stored in materialtraps and nds g < 2.96 × 10−21 ( m/λ)2 for the for e range λ = 10−31 m andg < 3.9× 10−22 ( m/λ)2 for λ = 10−410−3 m, ea h time at 95% CL, signi antlyimproving on BAESSLER 07.12BAESSLER 07 use the observation of quantum states of ultra old neutrons in the Earth'sgravitational eld to onstrain g for an intera tion range 1 µma few mm. See their Fig. 3for results.13HECKEL 06 studied the in uen e of unpolarized bulk matter, in luding the laboratory'ssurroundings or the Sun, on a torsion pendulum ontaining about 9 × 1022 polarizedele trons. See their Fig. 4 for limits on g as a fun tion of intera tion range.14NI 99 sear hed for a T-violating medium-range for e a ting on paramagneti Tb F3 salt.See their Fig. 1 for the result.15POSPELOV 98 studied the possible ontribution of T-violating Medium-Range For e tothe neutron ele tri dipole moment, whi h is possible when axion intera tions violateCP. The size of the for e among nu leons must be smaller than gravity by a fa tor of2× 10−10 (1 m/λA), where λA=h/mA .16YOUDIN 96 ompared the pre ession frequen ies of atomi 199Hg and Cs when a largemass is positioned near the ells, relative to an applied magneti eld. See Fig. 3 fortheir limits.17RITTER 93 studied the in uen e of bulk mass with polarized ele trons on an unpolarizedtorsion pendulum, providing limits in the intera tion range from 1 to 100 m.18VENEMA 92 looked for an ee t of Earth's gravity on nu lear spin-pre ession frequen iesof 199Hg and 201Hg atoms.19WINELAND 91 looked for an ee t of bulk matter with aligned ele tron spins on atomi hyperne resonan es in stored 9Be+ ions using nu lear magneti resonan e.Hidden Photons: Kineti Mixing Parameter LimitsHidden Photons: Kineti Mixing Parameter LimitsHidden Photons: Kineti Mixing Parameter LimitsHidden Photons: Kineti Mixing Parameter LimitsHidden photons limits are listed for the rst time, in luding only the most re entpapers. Suggestions for previous important results are wel ome. Limits are on thekineti mixing parameter χ whi h is dened by the LagrangianL = − 14 FµνFµν −14 F ′µνF ′µν − χ2 FµνF ′µν + m2

γ′2 A′µA′µ,where Aµ and A′µare the photon and hidden-photon elds with eld strengths Fµνand F ′µν , respe tively, and mγ′ is the hidden-photon mass.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, ts, limits, et . • • •<1.7 × 10−6 95 1 KHACHATRY...16 CMS m

γ′ = 2 GeV<4 × 10−2 95 2 AAD 15CD ATLS m

γ′ = 1555 GeV<1.4 × 10−3 90 3 ADARE 15 m

γ′ = 3090 MeV4 AN 15A mγ′ = 12 eV - 40 keV5 ANASTASI 15 KLOE mγ′ = 2mµ - 1 GeV

<1.7 × 10−3 90 6 ANASTASI 15A KLOE mγ′ = 5320 MeV

Page 97: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

707707707707See key on page 601 Gauge&HiggsBosonParti le ListingsAxions (A0) and Other Very Light Bosons<4.2 × 10−4 90 7 BATLEY 15A NA48 m

γ′ = 36 MeV8 JAEGLE 15 BELL mγ′ = 0.13.5 GeV

<3 × 10−13 9 KAZANAS 15 ASTR mγ′ = 2me 100 MeV10 SUZUKI 15 mγ′ = 1.94.3 eV

<2.3 × 10−13 99.7 11 VINYOLES 15 ASTR mγ′ = 8 eV12 ABE 14F XMAS mγ′ = 40120 keV

<1.8 × 10−3 90 13 AGAKISHIEV 14 HDES mγ′ = 63 MeV

<9.0 × 10−4 90 14 BABUSCI 14 KLOE mγ′ = 969 MeV15 BATELL 14 BDMP mγ′ = 10−31 GeV

<1.3 × 10−7 95 16 BLUEMLEIN 14 BDMP mγ′ = 0.6 GeV

<3 × 10−18 17 FRADETTE 14 COSM mγ′ = 50300 MeV

<3.5 × 10−4 90 18 LEES 14J BABR mγ′ = 0.2 GeV

<9 × 10−4 95 19 MERKEL 14 A1 mγ′ = 40300 MeV

<3 × 10−15 20 AN 13B ASTR mγ′ = 2 keV

<7 × 10−14 21 AN 13C XE10 mγ′ = 100 eV

<2.2 × 10−13 22 HORVAT 13 HPGE mγ′ = 230 eV

<8.06× 10−5 95 23 INADA 13 LSW mγ′ = 0.04 eV−26 keV

<2 × 10−10 95 24 MIZUMOTO 13 mγ′ = 1 eV

<1.7 × 10−7 25 PARKER 13 LSW mγ′ = 53 µeV

<5.32× 10−15 26 PARKER 13 mγ′ = 53 µeV

<1 × 10−15 27 REDONDO 13 ASTR mγ′ = 2 keV

<9 × 10−8 95 28 BLUEMLEIN 11 BDMP mγ′ = 70 MeV1KHACHATRYAN 16 look for γ′ → µ+µ− in a dark SUSY s enario where the SM-likeHiggs boson de ays into a pair of the visible lightest neutralinos with mass 10 GeV, bothof whi h de ay into γ′ and a hidden neutralino with mass 1 GeV. See the right panel intheir Fig. 2.2AAD 15CD look for H → Z γ′ → 4ℓ with the ATLAS dete tor at LHC and nd

χ < 417× 10−2 for mγ′ = 1555 GeV. See their Fig. 6.3ADARE 15 look for a hidden photon in π0, η0 → γ e+ e− at the PHENIX experiment.See their Fig. 4 for mass-dependent limits.4AN 15A derived limits from the absen e of ionization signals in the XENON10 andXENON100 experiments, assuming hidden photons onstitute all the lo al dark matter.Their best limit is χ < 1.3×10−15 at m

γ′ = 18 eV. See their Fig. 1 for mass-dependentlimits.5ANASTASI 15 look for a produ tion of a hidden photon and a hidden Higgs boson withthe KLOE dete tor at DANE, where the hidden photon de ays into a pair of muonsand the hidden Higgs boson lighter than mγ′ es ape dete tion. See their Figs. 6 and7 for mass-dependent limits on a produ t of the hidden ne stru ture onstant and thekineti mixing.6ANASTASI 15A look for the de ay γ′ → e+ e− in the rea tion e+ e− → e+ e− γ.Limits between 1.7× 10−3 and 1× 10−2 are obtained for m

γ′ = 5320 MeV (see theirFig. 7).7BATLEY 15A look for π0 → γ γ′ (γ′ → e+ e−) at the NA48/2 experiment. Limitsbetween 4.2× 10−4 and 8.8× 10−3 are obtained for mγ′ = 9120 MeV (see their Fig.4).8 JAEGLE 15 look for the de ay γ′ → e+ e−, µ+µ−, or π+π− in the dark Higgstrahlung hannel, e+ e− → γ′H′ (H′ → γ′γ′) at the BELLE experiment. They set limits on aprodu t of the bran hing fra tion and the Born ross se tion as well as a produ t of thehidden ne stru ture onstant and the kineti mixing. See their Figs. 3 and 4.9KAZANAS 15 set limits by studying the de ay of hidden photons γ′ → e+ e− insideand near the progenitor star of SN1987A. See their Fig. 6 for mass-dependent limits.10 SUZUKI 15 looked for hidden-photon dark matter with a dish antenna and derived limitsassuming they onstitute all the lo al dark matter. Their limits are χ < 6× 10−12 form

γ′ = 1.94.3 eV. See their Fig. 7 for mass-dependent limits.11VINYOLES 15 performed a global t analysis based on helioseismology and solar neutrinoobservations, and set the limits χmγ′ < 1.8 × 10−12 eV for m

γ′ = 3 × 10−58 eV.See their Fig. 11.12ABE 14F look for the photoele tri -like intera tion in the XMASS dete tor assuming thehidden photon onstitutes all the lo al dark matter. Limits between 2 × 10−13 and1× 10−12 are obtained. See their Fig. 3 for mass-dependent limits.13AGAKISHIEV 14 look for hidden photons γ′ → e+ e− at the HADES experiment, andset limits on χ for mγ′ = 0.020.6 GeV. See their Fig. 5 for mass-dependent limits.14BABUSCI 14 look for the de ay γ′ → µ+µ− in the rea tion e+ e− → µ+µ− γ.Limits between 4× 10−3 and 9.0× 10−4 are obtained for 520 MeV < m

γ′ < 980 MeV(see their Fig. 7).15BATELL 14 derived limits from the ele tron beam dump experiment at SLAC (E-137)by sear hing for events with re oil ele trons by sub-GeV dark matter produ ed from thede ay of the hidden photon. Limits at the level of 10−410−1 are obtained for mγ′ =10−31 GeV, depending on the dark matter mass and the hidden gauge oupling (seetheir Fig. 2).16BLUEMLEIN 14 analyzed the beam dump data taken at the U-70 a elerator to lookfor γ′-bremsstrahlung and the subsequent de ay into muon pairs and hadrons. See theirFig. 4 for mass-dependent ex luded region.17 FRADETTE 14 studied ee ts of de ay of reli hidden photons on BBN and CMB toset onstraints on very small values of the kineti mixing. See their Figs. 4 and 7 formass-dependent ex luded regions.

18 LEES 14J look for hidden photons in the rea tion e+ e− → γ γ′ (γ′ → e+ e−, µ+µ−).Limits at the level of 10−410−3 are obtained for 0.02 GeV < mγ′ < 10.2 GeV. Seetheir Fig. 4 for mass-dependent limits.19MERKEL 14 look for γ′ → e+ e− at the A1 experiment at the Mainz Mi rotron(MAMI). See their Fig. 3 for mass-dependent limits.20AN 13B examined the stellar produ tion of hidden photons, orre ting an important errorof the produ tion rate of the longitudinal mode whi h now dominates. See their Fig. 2for mass-dependent limits based on solar energy loss.21AN 13C use the solar ux of hidden photons to set a limit on the atomi ionization ratein the XENON10 experiment. They nd χ m

γ′ < 3× 10−12 eV for mγ′ < 1 eV. Seetheir Fig. 2 for mass-dependent limits.22HORVAT 13 look for hidden-photo-ele tri ee t in HPGe dete tors indu ed by solarhidden photons. See their Fig. 3 for mass-dependent limits.23 INADA 13 sear h for hidden photons using an intense X-ray beamline at SPring-8. Seetheir Fig. 4 for mass-dependent limits.24MIZUMOTO 13 look for solar hidden photons. See their Fig. 5 for mass-dependentlimits.25PARKER 13 look for hidden photons using a ryogeni resonant mi rowave avity. Seetheir Fig.5 for mass-dependent limits.26PARKER 13 derived a limit for the hidden photon CDM with a randomly oriented hiddenphoton eld.27REDONDO 13 examined the solar emission of hidden photons in luding the enhan ementfa tor for the longitudinal mode pointed out by AN 13B, and also updated stellar-energyloss arguments. See their Fig.3 for mass-dependent limits, in luding a review of the urrently best limits from other arguments.28BLUEMLEIN 11 analyzed the beam dump data taken at the U-70 a elerator to look for

π0 → γ γ′ (γ′ → e+ e−). See their Fig. 5 for mass-dependent limits.REFERENCES FOR Sear hes for Axions (A0) and Other Very Light BosonsREFERENCES FOR Sear hes for Axions (A0) and Other Very Light BosonsREFERENCES FOR Sear hes for Axions (A0) and Other Very Light BosonsREFERENCES FOR Sear hes for Axions (A0) and Other Very Light BosonsKHACHATRY... 16 PL B752 146 V. Kha hatryan et al. (CMS Collab.)AAD 15CD PR D92 092001 G. Aad et al. (ATLAS Collab.)AAIJ 15AZ PRL 115 161802 R. Aaij et al. (LHCb Collab.)ADARE 15 PR C91 031901 A. Adare et al. (PHENIX Collab.)AFACH 15 PL B745 58 S. Afa h et al. (ETH, PSI, CAEN, +)AGOSTINI 15A EPJ C75 416 M. Agostini et al. (GERDA Collab.)AN 15A PL B747 331 H. An et al. (CIT, VICT, VIEN)ANASTASI 15 PL B747 365 A. Anastasi et al. (KLOE-2 Collab.)ANASTASI 15A PL B750 633 A. Anastasi et al. (KLOE-2 Collab.)ANASTASSO... 15 PL B749 172 V. Anastassopoulos et al. (CAST Collab.)ARIK 15 PR D92 021101 M. Arik et al. (CAST Collab.)ARNOLD 15 PR D92 072011 R. Arnold et al. (NEMO-3 Collab.)BALLOU 15 PR D92 092002 R. Ballou et al. (OSQAR Collab.)BATLEY 15A PL B746 178 J.R. Batley et al. (NA48/2 Collab.)BAYES 15 PR D91 052020 R. Bayes et al. (TWIST Collab.)BRAX 15 PR D92 083501 P. Brax, P. Brun, D. Wouters (SACL, SACL5)GAVRILYUK 15 JETPL 101 664 Yu.M. Gavrilyuk et al.Translated from ZETFP 101 739.HASEBE 15 PTEP 2015 073C01 T. Hasebe et al.JAEGLE 15 PRL 114 211801 I. Jaegle et al. (BELLE Collab.)KAZANAS 15 NP B890 17 D. Kazanas et al.KLIMCHITSK... 15 EPJ C75 164 G.L. Klim hitskaya, V.M. MostepanenkoMILLEA 15 PR D92 023010 M. Millea, L. Knox, B. Fields (UCD, ILL)STADNIK 15 EPJ C75 110 Y.V. Stadnik, V.V. Flambaum (SYDN)SUZUKI 15 JCAP 1509 042 J. Suzuki et al.VANTILBURG 15 PRL 115 011802 K. Van Tilburg et al.VINYOLES 15 JCAP 1510 015 N. Vinyoles et al.ABE 14F PRL 113 121301 K. Abe et al. (XMASS Collab.)AGAKISHIEV 14 PL B731 265 G. Agakishiev et al. (HADES Collab.)ALBERT 14A PR D90 092004 J.B. Albert et al. (EXO-200 Collab.)APRILE 14B PR D90 062009 E. Aprile et al. (XENON100 Collab.)ARIK 14 PRL 112 091302 M. Arik et al. (CAST Collab.)AYALA 14 PRL 113 191302 A. Ayala et al.BABUSCI 14 PL B736 459 D. Babus i et al. (KLOE-2 Collab.)BATELL 14 PRL 113 171802 B. Batell, R. Essig, Z. Surujon (EFI, STON)BEZERRA 14 PR D89 035010 V.B. Bezerra et al.BEZERRA 14A EPJ C74 2859 V.B. Bezerra et al.BEZERRA 14B PR D90 055013 V.B. Bezerra et al.BEZERRA 14C PR D89 075002 V.B. Bezerra et al.BLUEMLEIN 14 PL B731 320 J. Bluemlein, J. Brunner (CPPM, DESY)BLUM 14 PL B737 30 K. Blum et al. (IAS, PRIN)DELLA-VALLE 14 PR D90 092003 F. Della Valle et al. (PVLAS Collab.)DERBIN 14 EPJ C74 3035 A.V. Derbin et al.EJLLI 14 PR D90 123527 D. EjlliFRADETTE 14 PR D90 035022 A. Fradette et al.LEES 14J PRL 113 201801 J.P. Lees et al. (BABAR Collab.)LEINSON 14 JCAP 1408 031 L. LeinsonMERKEL 14 PRL 112 221802 H. Merkel et al. (A1 at MAMI)MILLER-BER... 14 JCAP 1410 069 M.M. Miller Bertolami et al.PUGNAT 14 EPJ C74 3027 P. Pugnat et al. (OSQAR Collab.)REESMAN 14 JCAP 1408 021 R. Reesman et al. (OSU)ABE 13D PL B724 46 K. Abe et al. (XMASS Collab.)ABRAMOWSKI 13A PR D88 102003 A. Abramowski et al. (H.E.S.S. Collab.)ADLARSON 13 PL B726 187 P. Adlarson et al. (WASA-at-COSY Collab.)ALESSANDRIA 13 JCAP 1305 007 F. Alessandria et al. (CUORE Collab.)AN 13B PL B725 190 H. An, M. Pospelov, J. PradlerAN 13C PRL 111 041302 H. An, M. Pospelov, J. PradlerARCHIDIACO... 13A JCAP 1310 020 M. Ar hidia ono et al.ARMENGAUD 13 JCAP 1311 067 E. Armengaud et al. (EDELWEISS-II Collab.)BABUSCI 13B PL B720 111 D. Babus i et al. (KLOE-2 Collab.)BARTH 13 JCAP 1305 010 K. Barth et al. (CAST Collab.)BECK 13 PRL 111 231801 C. Be kBETZ 13 PR D88 075014 M. Betz et al. (CROWS Collab.)BULATOWICZ 13 PRL 111 102001 M. Bulatowi z et al.CHU 13 PR D87 011105 P.-H. Chu et al. (DUKE, IND, SJTU)DERBIN 13 EPJ C73 2490 A. V. Derbin et al.FRIEDLAND 13 PRL 110 061101 A. Friedland, M. Giannotti, M. WiseHECKEL 13 PRL 111 151802 B. R. He kel et al.HORVAT 13 PL B721 220 R. Horvat et al.INADA 13 PL B722 301 T. Inada et al.LATTANZI 13 PR D88 063528 M. Lattanzi et al.MEYER 13 PR D87 035027 M. Meyer, D. Horns, M. RaueMIZUMOTO 13 JCAP 1307 013 T. Mizumoto et al.PARKER 13 PR D88 112004 S. Parker et al.REDONDO 13 JCAP 1308 034 J. Redondo, G. RaeltTULLNEY 13 PRL 111 100801 K. Tullney et al.VIAUX 13A PRL 111 231301 N. Viaux et al.ARCHILLI 12 PL B706 251 F. Ar hilli et al. (KLOE-2 Collab.)BELLI 12 PL B711 41 P. Belli et al. (DAMA-KIEV)BELLINI 12B PR D85 092003 G. Bellini et al. (Borexino Collab.)CADAMURO 12 JCAP 1202 032 D. Cadamuro et al. (MPIM)CORSICO 12 JCAP 1212 010 A.H. Corsi o et al. (LAPL, RGSUL, WASH+)

Page 98: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

708708708708Gauge&HiggsBosonParti le ListingsAxions (A0) and Other Very Light BosonsDERBIN 12 JETPL 95 339 A.V. Derbin et al. (PNPI)Translated from ZETFP 95 379.GANDO 12 PR C86 021601 A. Gando et al. (KamLAND-Zen Collab.)GNINENKO 12A PR D85 055027 S.N. Gninenko (INRM)GNINENKO 12B PL B713 244 S.N. Gninenko (INRM)PAYEZ 12 JCAP 1207 041 A. Payez et al. (LIEG)RAFFELT 12 PR D86 015001 G. Raelt (MPIM)AALSETH 11 PRL 106 131301 C.E. Aalseth et al. (CoGeNT Collab.)ARIK 11 PRL 107 261302 M. Arik et al. (CAST Collab.)ARNOLD 11 PRL 107 062504 R. Arnold et al. (NEMO-3 Collab.)BLUEMLEIN 11 PL B701 155 J. Bluemlein, J. Brunner (DESY)CADAMURO 11 JCAP 1102 003 D. Cadamuro et al. (MPIM, AARHUS)DERBIN 11 PAN 74 596 A.V. Derbin et al. (PNPI)Translated from YAF 74 620.DERBIN 11A PR D83 023505 A.V. Derbin et al. (PNPI)HOEDL 11 PRL 106 041801 S.A. Hoedl et al. (WASH)HOSKINS 11 PR D84 121302 J. Hoskins et al. (ADMX Collab.)ANDRIAMON... 10 JCAP 1003 032 S. Andriamonje et al. (CAST Collab.)ARGYRIADES 10 NP A847 168 J. Argyriades et al. (NEMO-3 Collab.)ASZTALOS 10 PRL 104 041301 S.J. Asztalos et al. (ADMX Collab.)EHRET 10 PL B689 149 K. Ehret et al. (ALPS Collab.)HANNESTAD 10 JCAP 1008 001 S. Hannestad et al.PETUKHOV 10 PRL 105 170401 A.K. Petukhov et al.SEREBROV 10 JETPL 91 6 A. Serebrov et al.Translated from ZETFP 91 8.AHMED 09A PRL 103 141802 Z. Ahmed et al. (CDMS Collab.)ANDRIAMON... 09 JCAP 0912 002 S. Andriamonje et al.ARGYRIADES 09 PR C80 032501 J. Argyriades et al. (NEMO-3 Collab.)ARIK 09 JCAP 0902 008 E. Arik et al. (CAST Collab.)CHOU 09 PRL 102 030402 A.S. Chou et al. (GammeV Collab.)DAVOUDIASL 09 PR D79 095024 H. Davoudiasl, P. HuberDERBIN 09A PL B678 181 A.V. Derbin et al.GONDOLO 09 PR D79 107301 P. Gondolo, G. Raelt (UTAH, MPIM)IGNATOVICH 09 EPJ C64 19 V.K. Ignatovi h, Y.N. Pokotilovski (JINR)KEKEZ 09 PL B671 345 D. Kekez et al.SEREBROV 09 PL B680 423 A. Serebrov (PNPI)AFANASEV 08 PRL 101 120401 A. Afanasev et al.BELLINI 08 EPJ C54 61 G. Bellini et al. (Borexino Collab.)CHOU 08 PRL 100 080402 A.S. Chou et al. (GammeV Collab.)FOUCHE 08 PR D78 032013 M. Fou he et al.HANNESTAD 08 JCAP 0804 019 S. Hannestad et al.INOUE 08 PL B668 93 Y. Inoue et al.ZAVATTINI 08 PR D77 032006 E. Zavattini et al. (PVLAS Collab.)ADELBERGER 07 PRL 98 131104 E.G. Adelberger et al.ANDRIAMON... 07 JCAP 0704 010 S. Andriamonje et al. (CAST Collab.)BAESSLER 07 PR D75 075006 S. Baessler et al.CHANG 07 PR D75 052004 H.M. Chang et al. (TEXONO Collab.)HANNESTAD 07 JCAP 0708 015 S. Hannestad et al.JAIN 07 JP G34 129 P.L. Jain, G. SinghLESSA 07 PR D75 094001 A.P. Lessa, O.L.G. PeresMELCHIORRI 07A PR D76 041303 A. Mel hiorri, O. Mena, A. SlosarROBILLIARD 07 PRL 99 190403 C. Robilliard et al.ARNOLD 06 NP A765 483 R. Arnold et al. (NEMO-3 Collab.)DUFFY 06 PR D74 012006 L.D. Duy et al.HECKEL 06 PRL 97 021603 B.R. He kel et al.ZAVATTINI 06 PRL 96 110406 E. Zavattini et al. (PVLAS Collab.)HANNESTAD 05A JCAP 0507 002 S. Hannestad, A. Mirizzi, G. RaeltZIOUTAS 05 PRL 94 121301 K. Zioutas et al. (CAST Collab.)ADLER 04 PR D70 037102 S. Adler et al. (BNL E787 Collab.)ANISIMOVSK... 04 PRL 93 031801 V.V. Anisimovsky et al. (BNL E949 Collab.)ARNOLD 04 JETPL 80 377 R. Arnold et al. (NEMO-3 Collab.)Translated from ZETFP 80 429.ASZTALOS 04 PR D69 011101 S.J. Asztalos et al.HOFFMANN 04 PR B70 180503 C. Homann et al.ARNABOLDI 03 PL B557 167 C. Arnaboldi et al.CIVITARESE 03 NP A729 867 O. Civitarese, J. SuhonenDANEVICH 03 PR C68 035501 F.A. Danevi h et al.ADLER 02C PL B537 211 S. Adler et al. (BNL E787 Collab.)BADERT... 02 PL B542 29 A. Baderts her et al.BERNABEI 02D PL B546 23 R. Bernabei et al. (DAMA Collab.)DERBIN 02 PAN 65 1302 A.V. Derbin et al.Translated from YAF 65 1335.FUSHIMI 02 PL B531 190 K. Fushimi et al. (ELEGANT V Collab.)INOUE 02 PL B536 18 Y. Inoue et al.MORALES 02B ASP 16 325 A. Morales et al. (COSME Collab.)ADLER 01 PR D63 032004 S. Adler et al. (BNL E787 Collab.)AMMAR 01B PRL 87 271801 R. Ammar et al. (CLEO Collab.)ASHITKOV 01 JETPL 74 529 V.D. Ashitkov et al.Translated from ZETFP 74 601.BERNABEI 01B PL B515 6 R. Bernabei et al. (DAMA Collab.)DANEVICH 01 NP A694 375 F.A. Danevi h et al.DEBOER 01 JP G27 L29 F.W.N. de Boer et al.STOICA 01 NP A694 269 S. Stoi a, H.V. Klapdor-KleingrothousALESSAND... 00 PL B486 13 A. Alessandrello et al.ARNOLD 00 NP A678 341 R. Arnold et al.ASTIER 00B PL B479 371 P. Astier et al. (NOMAD Collab.)DANEVICH 00 PR C62 045501 F.A. Danevi h et al.MASSO 00 PR D61 011701 E. MassoARNOLD 99 NP A658 299 R. Arnold et al. (NEMO Collab.)NI 99 PRL 82 2439 W.-T. Ni et al.SIMKOVIC 99 PR C60 055502 F. Simkovi et al.ALTEGOER 98 PL B428 197 J. Altegoer et al.ARNOLD 98 NP A636 209 R. Arnold et al. (NEMO-2 Collab.)AVIGNONE 98 PRL 81 5068 F.T. Avignone et al. (Solar Axion Experiment)DIAZ 98 NP B527 44 M.A. Diaz et al.FAESSLER 98B JP G24 2139 A. Faessler, F. Simkovi KIM 98 PR D58 055006 J.E. KimLUESCHER 98 PL B434 407 R. Lues her et al.MORIYAMA 98 PL B434 147 S. Moriyama et al.MOROI 98 PL B440 69 T. Moroi, H. MurayamaPOSPELOV 98 PR D58 097703 M. PospelovZUBER 98 PRPL 305 295 K. ZuberAHMAD 97 PRL 78 618 I. Ahmad et al. (APEX Collab.)BORISOV 97 JETP 83 868 A.V. Borisov, V.Y. Grishinia (MOSU)DEBOER 97C JP G23 L85 F.W.N. de Boer et al.KACHELRIESS 97 PR D56 1313 M. Ka helriess, C. Wilke, G. Wunner (BOCH)KEIL 97 PR D56 2419 W. Keil et al.KITCHING 97 PRL 79 4079 P. Kit hing et al. (BNL E787 Collab.)LEINBERGER 97 PL B394 16 U. Leinberger et al. (ORANGE Collab.)ADLER 96 PRL 76 1421 S. Adler et al. (BNL E787 Collab.)AMSLER 96B ZPHY C70 219 C. Amsler et al. (Crystal Barrel Collab.)GANZ 96 PL B389 4 R. Ganz et al. (GSI, HEID, FRAN, JAGL+)GUENTHER 96 PR D54 3641 M. Gunther et al. (MPIH, SASSO)KAMEL 96 PL B368 291 S. Kamel (SHAMS)MITSUI 96 EPL 33 111 T. Mitsui et al. (TOKY)YOUDIN 96 PRL 77 2170 A.N. Youdin et al. (AMHT, WASH)ALTMANN 95 ZPHY C68 221 M. Altmann et al. (MUNT, LAPP, CPPM)BASSOMPIE... 95 PL B355 584 G. Bassompierre et al. (LAPP, LCGT, LYON)MAENO 95 PL B351 574 T. Maeno et al. (TOKY)RAFFELT 95 PR D51 1495 G. Raelt, A. Weiss (MPIM, MPIG)SKALSEY 95 PR D51 6292 M. Skalsey, R.S. Conti (MICH)TSUNODA 95 EPL 30 273 T. Tsunoda et al. (TOKY)ADACHI 94 PR A49 3201 S. Ada hi et al. (TMU)

ALTHERR 94 ASP 2 175 T. Altherr, E. Petitgirard, T. del Rio GaztelurrutiaAMSLER 94B PL B333 271 C. Amsler et al. (Crystal Barrel Collab.)ASAI 94 PL B323 90 S. Asai et al. (TOKY)MEIJERDREES 94 PR D49 4937 M.R. Drees et al. (BRCO, OREG, TRIU)NI 94 Physi a B194 153 W.T. Ni et al. (NTHU)VO 94 PR C49 1551 D.T. Vo et al. (ISU, LBL, LLNL, UCD)ATIYA 93 PRL 70 2521 M.S. Atiya et al. (BNL E787 Collab.)Also PRL 71 305 (erratum) M.S. Atiya et al. (BNL E787 Collab.)ATIYA 93B PR D48 R1 M.S. Atiya et al. (BNL E787 Collab.)BASSOMPIE... 93 EPL 22 239 G. Bassompierre et al. (LAPP, TORI, LYON)BECK 93 PRL 70 2853 M. Be k et al. (MPIH, KIAE, SASSO)CAMERON 93 PR D47 3707 R.E. Cameron et al. (ROCH, BNL, FNAL+)CHANG 93 PL B316 51 S. Chang, K. ChoiCHUI 93 PRL 71 3247 T.C.P. Chui, W.T. Ni (NTHU)MINOWA 93 PRL 71 4120 M. Minowa et al. (TOKY)NG 93 PR D48 2941 K.W. Ng (AST)RITTER 93 PRL 70 701 R.C. Ritter et al.TANAKA 93 PR D48 5412 J. Tanaka, H. Ejiri (OSAK)ALLIEGRO 92 PRL 68 278 C. Alliegro et al. (BNL, FNAL, PSI+)ATIYA 92 PRL 69 733 M.S. Atiya et al. (BNL, LANL, PRIN+)BARABASH 92 PL B295 154 L.S. Barabash et al. (JINR, CERN, SERP+)BERNATOW... 92 PRL 69 2341 T. Bernatowi z et al. (WUSL, TATA)BLUEMLEIN 92 IJMP A7 3835 J. Bluemlein et al. (BERL, BUDA, JINR+)HALLIN 92 PR D45 3955 A.L. Hallin et al. (PRIN)HENDERSON 92C PRL 69 1733 S.D. Henderson et al. (YALE, BNL)HICKS 92 PL B276 423 K.H. Hi ks, D.E. Alburger (OHIO, BNL)LAZARUS 92 PRL 69 2333 D.M. Lazarus et al. (BNL, ROCH, FNAL)MEIJERDREES 92 PRL 68 3845 R. Meijer Drees et al. (SINDRUM I Collab.)PAN 92 MPL A7 1287 S.S. Pan, W.T. Ni, S.C. Chen (NTHU)RUOSO 92 ZPHY C56 505 G. Ruoso et al. (ROCH, BNL, FNAL, TRST)SKALSEY 92 PRL 68 456 M. Skalsey, J.J. Kolata (MICH, NDAM)VENEMA 92 PRL 68 135 B.J. Venema et al.WANG 92 MPL A7 1497 J. Wang (ILL)WANG 92C PL B291 97 J. Wang (ILL)WU 92 PRL 69 1729 X.Y. Wu et al. (BNL, YALE, CUNY)AKOPYAN 91 PL B272 443 M.V. Akopyan et al. (INRM)ASAI 91 PRL 66 2440 S. Asai et al. (ICEPP)BERSHADY 91 PRL 66 1398 M.A. Bershady, M.T. Ressell, M.S. Turner (CHIC+)BLUEMLEIN 91 ZPHY C51 341 J. Bluemlein et al. (BERL, BUDA, JINR+)BOBRAKOV 91 JETPL 53 294 V.F. Bobrakov et al. (PNPI)Translated from ZETFP 53 283.BROSS 91 PRL 67 2942 A.D. Bross et al. (FNAL, ILL)KIM 91C PRL 67 3465 J.E. Kim (SEOUL)RAFFELT 91 PRPL 198 1 G.G. Raelt (MPIM)RAFFELT 91B PRL 67 2605 G. Raelt, D. Se kel (MPIM, BART)RESSELL 91 PR D44 3001 M.T. Ressell (CHIC, FNAL)TRZASKA 91 PL B269 54 W.H. Trzaska et al. (TAMU)TSERTOS 91 PL B266 259 H. Tsertos et al. (ILLG, GSI)WALKER 91 APJ 376 51 T.P. Walker et al. (HSCA, OSU, CHIC+)WIDMANN 91 ZPHY A340 209 E. Widmann et al. (STUT, GSI, STUTM)WINELAND 91 PRL 67 1735 D.J. Wineland et al. (NBSB)ALBRECHT 90E PL B246 278 H. Albre ht et al. (ARGUS Collab.)ANTREASYAN 90C PL B251 204 D. Antreasyan et al. (Crystal Ball Collab.)ASANUMA 90 PL B237 588 T. Asanuma et al. (TOKY)ATIYA 90 PRL 64 21 M.S. Atiya et al. (BNL E787 Collab.)ATIYA 90B PRL 65 1188 M.S. Atiya et al. (BNL E787 Collab.)BAUER 90 NIM B50 300 W. Bauer et al. (STUT, VILL, GSI)BURROWS 90 PR D42 3297 A. Burrows, M.T. Ressell, M.S. Turner (ARIZ+)DEBOER 90 JP G16 L1 F.W.N. de Boer, J. Lehmann, J. Steyaert (LOUV)ENGEL 90 PRL 65 960 J. Engel, D. Se kel, A.C. Hayes (BART, LANL)GNINENKO 90 PL B237 287 S.N. Gninenko et al. (INRM)GUO 90 PR D41 2924 R. Guo et al. (NIU, LANL, FNAL, CASE+)HAGMANN 90 PR D42 1297 C. Hagmann et al. (FLOR)JUDGE 90 PRL 65 972 S.M. Judge et al. (ILLG, GSI)RAFFELT 90D PR D41 1324 G.G. Raelt (MPIM)RITTER 90 PR D42 977 R.C. Ritter et al. (UVA)SEMERTZIDIS 90 PRL 64 2988 Y.K. Semertzidis et al. (ROCH, BNL, FNAL+)TSUCHIAKI 90 PL B236 81 M. Tsu hiaki et al. (ICEPP)TURNER 90 PRPL 197 67 M.S. Turner (FNAL)BARABASH 89 PL B223 273 A.S. Barabash et al. (ITEP, INRM)BINI 89 PL B221 99 M. Bini et al. (FIRZ, CERN, AARH)BURROWS 89 PR D39 1020 A. Burrows, M.S. Turner, R.P. Brinkmann (ARIZ+)Also PRL 60 1797 M.S. Turner (FNAL, EFI)DEBOER 89B PRL 62 2639 F.W.N. de Boer, R. van Dantzig (ANIK)ERICSON 89 PL B219 507 T.E.O. Eri son, J.F. Mathiot (CERN, IPN)FAISSNER 89 ZPHY C44 557 H. Faissner et al. (AACH3, BERL, PSI)FOX 89 PR C39 288 J.D. Fox et al. (FSU)MAYLE 89 PL B219 515 R. Mayle et al. (LLL, CERN, MINN, FNAL+)Also PL B203 188 R. Mayle et al. (LLL, CERN, MINN, FNAL+)MINOWA 89 PRL 62 1091 H. Minowa et al. (ICEPP)ORITO 89 PRL 63 597 S. Orito et al. (ICEPP)PERKINS 89 PRL 62 2638 D.H. Perkins (OXF)TSERTOS 89 PR D40 1397 H. Tsertos et al. (GSI, ILLG)VANBIBBER 89 PR D39 2089 K. van Bibber et al. (LLL, TAMU, LBL)WUENSCH 89 PR D40 3153 W.U. Wuens h et al. (ROCH, BNL, FNAL)Also PRL 59 839 S. de Panlis et al. (ROCH, BNL, FNAL)AVIGNONE 88 PR D37 618 F.T. Avignone et al. (PRIN, SCUC, ORNL+)BJORKEN 88 PR D38 3375 J.D. Bjorken et al. (FNAL, SLAC, VPI)BLINOV 88 SJNP 47 563 A.E. Blinov et al. (NOVO)Translated from YAF 47 889.BOLTON 88 PR D38 2077 R.D. Bolton et al. (LANL, STAN, CHIC+)Also PRL 56 2461 R.D. Bolton et al. (LANL, STAN, CHIC+)Also PRL 57 3241 D. Grosni k et al. (CHIC, LANL, STAN+)CHANDA 88 PR D37 2714 R. Chanda, J.F. Nieves, P.B. Pal (UMD, UPR+)CHOI 88 PR D37 3225 K. Choi et al. (JHU)CONNELL 88 PRL 60 2242 S.H. Connell et al. (WITW)DATAR 88 PR C37 250 V.M. Datar et al. (IPN)DEBOER 88 PRL 61 1274 F.W.N. de Boer, R. van Dantzig (ANIK)Also PRL 62 2644 (erratum) F.W.N. de Boer, R. van Dantzig (ANIK)Also PRL 62 2638 D.H. Perkins (OXF)Also PRL 62 2639 F.W.N. de Boer, R. van Dantzig (ANIK)DEBOER 88C JP G14 L131 F.W.N. de Boer et al. (LOUV)DOEHNER 88 PR D38 2722 J. Dohner et al. (HEIDP, ANL, ILLG)EL-NADI 88 PRL 61 1271 M. el Nadi, O.E. Badawy (CAIR)ENGEL 88 PR C37 731 J. Engel, P. Vogel, M.R. ZirnbauerFAISSNER 88 ZPHY C37 231 H. Faissner et al. (AACH3, BERL, SIN)HATSUDA 88B PL B203 469 T. Hatsuda, M. Yoshimura (KEK)LORENZ 88 PL B214 10 E. Lorenz et al. (MPIM, PSI)MAYLE 88 PL B203 188 R. Mayle et al. (LLL, CERN, MINN, FNAL+)PICCIOTTO 88 PR D37 1131 C.E. Pi iotto et al. (TRIU, CNRC)RAFFELT 88 PRL 60 1793 G. Raelt, D. Se kel (UCB, LLL, UCSC)RAFFELT 88B PR D37 549 G.G. Raelt, D.S.P. Dearborn (UCB, LLL)SAVAGE 88 PR D37 1134 M.J. Savage, B.W. Filippone, L.W. Mit hell (CIT)TSERTOS 88 PL B207 273 A. Tsertos et al. (GSI, ILLG)TSERTOS 88B ZPHY A331 103 A. Tsertos et al. (GSI, ILLG)VANKLINKEN 88 PL B205 223 J. van Klinken et al. (GRON, GSI)VANKLINKEN 88B PRL 60 2442 J. van Klinken (GRON)VONWIMMER...88 PRL 60 2443 U. von Wimmersperg (BNL)VOROBYOV 88 PL B208 146 P.V. Vorobiev, Y.I. Gitarts (NOVO)DRUZHININ 87 ZPHY C37 1 V.P. Druzhinin et al. (NOVO)FRIEMAN 87 PR D36 2201 J.A. Frieman, S. Dimopoulos, M.S. Turner (SLAC+)GOLDMAN 87 PR D36 1543 T. Goldman et al. (LANL, CHIC, STAN+)

Page 99: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

709709709709See key on page 601 Gauge&HiggsBosonParti le ListingsAxions (A0) and Other Very Light BosonsKORENCHE... 87 SJNP 46 192 S.M. Koren henko et al. (JINR)Translated from YAF 46 313.MAIER 87 ZPHY A326 527 K. Maier et al. (STUT, GSI)MILLS 87 PR D36 707 A.P. Mills, J. Levy (BELL)RAFFELT 87 PR D36 2211 G.G. Raelt, D.S.P. Dearborn (LLL, UCB)RIORDAN 87 PRL 59 755 E.M. Riordan et al. (ROCH, CIT+)TURNER 87 PRL 59 2489 M.S. Turner (FNAL, EFI)VANBIBBER 87 PRL 59 759 K. van Bibber et al. (LLL, CIT, MIT+)VONWIMMER...87 PRL 59 266 U. von Wimmersperg et al. (WITW)BADIER 86 ZPHY C31 21 J. Badier et al. (NA3 Collab.)BROWN 86 PRL 57 2101 C.N. Brown et al. (FNAL, WASH, KYOT+)BRYMAN 86B PRL 57 2787 D.A. Bryman, E.T.H. Cliord (TRIU)DAVIER 86 PL B180 295 M. Davier, J. Jeanjean, H. Nguyen Ngo (LALO)DEARBORN 86 PRL 56 26 D.S.P. Dearborn, D.N. S hramm, G. Steigman (LLL+)EICHLER 86 PL B175 101 R.A. Ei hler et al. (SINDRUM Collab.)HALLIN 86 PRL 57 2105 A.L. Hallin et al. (PRIN)JODIDIO 86 PR D34 1967 A. Jodidio et al. (LBL, NWES, TRIU)Also PR D37 237 (erratum) A. Jodidio et al. (LBL, NWES, TRIU)KETOV 86 JETPL 44 146 S.N. Ketov et al. (KIAE)Translated from ZETFP 44 114.KOCH 86 NC 96A 182 H.R. Ko h, O.W.B. S hult (JULI)KONAKA 86 PRL 57 659 A. Konaka et al. (KYOT, KEK)MAIANI 86 PL B175 359 L. Maiani, R. Petronzio, E. Zavattini (CERN)PECCEI 86 PL B172 435 R.D. Pe ei, T.T. Wu, T. Yanagida (DESY)RAFFELT 86 PR D33 897 G.G. Raelt (MPIM)RAFFELT 86B PL 166B 402 G.G. Raelt (MPIM)SAVAGE 86B PRL 57 178 M.J. Savage et al. (CIT)AMALDI 85 PL 153B 444 U. Amaldi et al. (CERN)ANANEV 85 SJNP 41 585 V.D. Ananev et al. (JINR)Translated from YAF 41 912.BALTRUSAIT... 85 PRL 55 1842 R.M. Baltrusaitis et al. (Mark III Collab.)BERGSMA 85 PL 157B 458 F. Bergsma et al. (CHARM Collab.)KAPLAN 85 NP B260 215 D.B. Kaplan (HARV)IWAMOTO 84 PRL 53 1198 N. Iwamoto (UCSB, WUSL)YAMAZAKI 84 PRL 52 1089 T. Yamazaki et al. (INUS, KEK)ABBOTT 83 PL 120B 133 L.F. Abbott, P. Sikivie (BRAN, FLOR)CARBONI 83 PL 123B 349 G. Carboni, W. Dahme (CERN, MUNI)CAVAIGNAC 83 PL 121B 193 J.F. Cavaigna et al. (ISNG, LAPP)DICUS 83 PR D28 1778 D.A. Di us, V.L. Teplitz (TEXA, UMD)DINE 83 PL 120B 137 M. Dine, W. Fis hler (IAS, PENN)ELLIS 83B NP B223 252 J. Ellis, K.A. Olive (CERN)FAISSNER 83 PR D28 1198 H. Faissner et al. (AACH)FAISSNER 83B PR D28 1787 H. Faissner et al. (AACH3)FRANK 83B PR D28 1790 J.S. Frank et al. (LANL, YALE, LBL+)HOFFMAN 83 PR D28 660 C.M. Homan et al. (LANL, ARZS)PRESKILL 83 PL 120B 127 J. Preskill, M.B. Wise, F. Wil zek (HARV, UCSBT)SIKIVIE 83 PRL 51 1415 P. Sikivie (FLOR)Also PRL 52 695 (erratum) P. Sikivie (FLOR)ALEKSEEV 82 JETP 55 591 E.A. Alekseeva et al. (KIAE)Translated from ZETF 82 1007.ALEKSEEV 82B JETPL 36 116 G.D. Alekseev et al. (MOSU, JINR)Translated from ZETFP 36 94.ASANO 82 PL 113B 195 Y. Asano et al. (KEK, TOKY, INUS, OSAK)

BARROSO 82 PL 116B 247 A. Barroso, G.C. Bran o (LISB)DATAR 82 PL 114B 63 V.M. Datar et al. (BHAB)EDWARDS 82 PRL 48 903 C. Edwards et al. (Crystal Ball Collab.)FETSCHER 82 JP G8 L147 W. Fets her (ETH)FUKUGITA 82 PRL 48 1522 M. Fukugita, S. Watamura, M. Yoshimura (KEK)FUKUGITA 82B PR D26 1840 M. Fukugita, S. Watamura, M. Yoshimura (KEK)LEHMANN 82 PL 115B 270 P. Lehmann et al. (SACL)RAFFELT 82 PL 119B 323 G. Raelt, L. Stodolsky (MPIM)ZEHNDER 82 PL 110B 419 A. Zehnder, K. Gabathuler, J.L. Vuilleumier (ETH+)ASANO 81B PL 107B 159 Y. Asano et al. (KEK, TOKY, INUS, OSAK)BARROSO 81 PL 106B 91 A. Barroso, N.C. Mukhopadhyay (SIN)FAISSNER 81 ZPHY C10 95 H. Faissner et al. (AACH3)FAISSNER 81B PL 103B 234 H. Faissner et al. (AACH3)KIM 81 PL 105B 55 B.R. Kim, C. Stamm (AACH3)VUILLEUMIER 81 PL 101B 341 J.L. Vuilleumier et al. (CIT, MUNI)ZEHNDER 81 PL 104B 494 A. Zehnder (ETH)FAISSNER 80 PL 96B 201 H. Faissner et al. (AACH3)JACQUES 80 PR D21 1206 P.F. Ja ques et al. (RUTG, STEV, COLU)SOUKAS 80 PRL 44 564 A. Soukas et al. (BNL, HARV, ORNL, PENN)BECHIS 79 PRL 42 1511 D.J. Be his et al. (UMD, COLU, AFRR)CALAPRICE 79 PR D20 2708 F.P. Calapri e et al. (PRIN)COTEUS 79 PRL 42 1438 P. Coteus et al. (COLU, ILL, BNL)DISHAW 79 PL 85B 142 J.P. Dishaw et al. (SLAC, CIT)ZHITNITSKII 79 SJNP 29 517 A.R. Zhitnitsky, Y.I. Skovpen (NOVO)Translated from YAF 29 1001.ALIBRAN 78 PL 74B 134 P. Alibran et al. (Gargamelle Collab.)ASRATYAN 78B PL 79B 497 A.E. Asratyan et al. (ITEP, SERP)BELLOTTI 78 PL 76B 223 E. Bellotti, E. Fiorini, L. Zanotti (MILA)BOSETTI 78B PL 74B 143 P.C. Bosetti et al. (BEBC Collab.)DICUS 78C PR D18 1829 D.A. Di us et al. (TEXA, VPI, STAN)DONNELLY 78 PR D18 1607 T.W. Donnelly et al. (STAN)Also PRL 37 315 F. Reines, H.S. Gurr, H.W. Sobel (UCI)Also PRL 33 179 H.S. Gurr, F. Reines, H.W. Sobel (UCI)HANSL 78D PL 74B 139 T. Hansl et al. (CDHS Collab.)MICELMAC... 78 LNC 21 441 G.V. Mitselmakher, B. Ponte orvo (JINR)MIKAELIAN 78 PR D18 3605 K.O. Mikaelian (FNAL, NWES)SATO 78 PTP 60 1942 K. Sato (KYOT)VYSOTSKII 78 JETPL 27 502 M.I. Vysotsky et al. (ASCI)Translated from ZETFP 27 533.YANG 78 PRL 41 523 T.C. Yang (MASA)PECCEI 77 PR D16 1791 R.D. Pe ei, H.R. Quinn (STAN, SLAC)Also PRL 38 1440 R.D. Pe ei, H.R. Quinn (STAN, SLAC)REINES 76 PRL 37 315 F. Reines, H.S. Gurr, H.W. Sobel (UCI)GURR 74 PRL 33 179 H.S. Gurr, F. Reines, H.W. Sobel (UCI)ANAND 53 PRSL A22 183 B.M. AnandOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSSREDNICKI 85 NP B260 689 M. Sredni ki (UCSB)BARDEEN 78 PL 74B 229 W.A. Bardeen, S.-H.H. Tye (FNAL)

Page 100: GAUGEANDHIGGSBOSONS - Institute of Physics...ys sa that if a neutral photon is also admitted to avoid this roblem, p then other roblems p emerge, such as those connected with the emission

710710710710Gauge&HiggsBosonParti le Listings