Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview •...

91
Alloy yield strength modeling with MatCalc (rel. 6.00.0200) P. Warczok

Transcript of Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview •...

Page 1: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Alloy yield strength modeling with MatCalc(rel. 6.00.0200)

P. Warczok

Page 2: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 2

Model overview

• Contributions to yield strength, σYS

• Intrinsic strength, σi

• Work hardening, σdisl

• Grain/subgrain boundary strengthening, σgb , σsgb

• Solid solution strengthening, σss

• Precipitation strenghtening, σprec

( )precsssgbgbdisliYS f σσσσσσσ ,,,,,=

Page 3: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 3

Model overview

• Contributions to yield strength, σYS

• Intrinsic strength, σi

• Work hardening, σdisl

• Grain/subgrain boundary strengthening, σgb , σsgb

• Solid solution strengthening, σss

• Precipitation strenghtening, σprec

( )precsssgbgbdisliYS f σσσσσσσ ,,,,,=

Page 4: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 4

Intrinsic strength, σi

Page 5: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 5

Model overview

• Contributions to yield strength, σYS

• Intrinsic strength, σi

• Work hardening, σdisl

• Grain/subgrain boundary strengthening, σgb , σsgb

• Solid solution strengthening, σss

• Precipitation strenghtening, σprec

( )precsssgbgbdisliYS f σσσσσσσ ,,,,,=

Page 6: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 6

Work hardening, σdisl

• Taylor equation

ρασ GbAdisl =

- Taylor factor

- Shear stress

- Burger’s vector

- Dislocation density

αGbρ

Page 7: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 7( )υ−=12EG

Work hardening, σdisl

• Taylor equation

ρασ GbAdisl =

- Taylor factor

- Shear stress

- Burger’s vector

- Dislocation density

αGbρ

Page 8: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 8

Work hardening, σdisl

• Taylor equation

ρασ GbAdisl =

- Taylor factor

- Shear stress

- Burger’s vector

- Dislocation density

αGbρ

Page 9: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 9

Work hardening, σdisl

• Taylor equation

• Two parameter model

2211 ραρασ GbAGbAdisl +=

Page 10: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 10

Work hardening, σdisl

• Taylor equation

• Two parameter model

2211 ραρασ GbAGbAdisl +=

Page 11: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 11

Model overview

• Contributions to yield strength, σYS

• Intrinsic strength, σi

• Work hardening, σdisl

• Grain/subgrain boundary strengthening, σgb , σsgb

• Solid solution strengthening, σss

• Precipitation strenghtening, σprec

( )precsssgbgbdisliYS f σσσσσσσ ,,,,,=

Page 12: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 12

Grain/subgrain boundary strengthening, σgb , σsgb

• Hall-Petch equation

- Grain diameter

- Subgrain diameter

- Constant

nk

Dkgb

gb =σδ

σ sgbsgb

k=

Page 13: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 13

Grain/subgrain boundary strengthening, σgb , σsgb

• Hall-Petch equation

- Grain diameter

- Subgrain diameter

- Constant

nk

Dkgb

gb =σδ

σ sgbsgb

k=

Page 14: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 14

Grain/subgrain boundary strengthening, σgb , σsgb

• Hall-Petch equation

- Grain diameter

- Subgrain diameter

- Constant

nk

Dkgb

gb =σδ

σ sgbsgb

k=

Page 15: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 15

Grain/subgrain boundary strengthening, σgb , σsgb

• Hall-Petch equation

- Grain diameter

- Subgrain diameter

- Constant

nk

Dkgb

gb =σδ

σ sgbsgb

k=

Page 16: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 16

Model overview

• Contributions to yield strength, σYS

• Intrinsic strength, σi

• Work hardening, σdisl

• Grain/subgrain boundary strengthening, σgb , σsgb

• Solid solution strengthening, σss

• Precipitation strenghtening, σprec

( )precsssgbgbdisliYS f σσσσσσσ ,,,,,=

Page 17: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 17

Solid solution strengthening, σss

- Coefficient for element i

- Element i content in the prec. Domain

(mole fraction)

- Exponent for element i

- Exponent for substitutional elements

- Exponent for interstitial elements

- Global exponent

icik

( ) ( )totm

totm

submtotm

subi

m

i

mnii

subi

mniiss ckck

1

int

int

int

+

= ∑∑σ

insubmintmtotm

Page 18: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 18

Solid solution strengthening, σss

- Coefficient for element i

- Element i content in the prec. domain

- Exponent for element i

- Exponent for substitutional elements

- Exponent for interstitial elements

- Global exponent

icik

( ) ( )totm

totm

submtotm

subi

m

i

mnii

subi

mniiss ckck

1

int

int

int

+

= ∑∑σ

insubmintmtotm

Page 19: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 19

Solid solution strengthening, σss

( ) ( )totm

totm

submtotm

subi

m

i

mnii

subi

mniiss ckck

1

int

int

int

+

= ∑∑σ

Page 20: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 20

Solid solution strengthening, σss• Solid solution strengthening, σss

( ) ( )totm

totm

submtotm

subi

m

i

mnii

subi

mniiss ckck

1

int

int

int

+

= ∑∑σ

Page 21: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 21

Model overview

• Contributions to yield strength, σYS

• Intrinsic strength, σi

• Work hardening, σdisl

• Grain/subgrain boundary strengthening, σgb , σsgb

• Solid solution strengthening, σss

• Precipitation strenghtening, σprec

( )precsssgbgbdisliYS f σσσσσσσ ,,,,,=

Page 22: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 22

Precipitation strengthening, σprec• Some general parameters/settings

• Angle between dislocation line and Burger’s vector θ (edge:screw ratio, θ = 0

for pure screw, θ = π/2 for pure edge)

Page 23: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 23

Precipitation strengthening, σprec• Some general parameters/settings

• Equivalent radius, req (describes precipitate-dislocation interference area)

- Precipitate mean radiusmr

meq rr4π

=

Page 24: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 24

Precipitation strengthening, σprec• Some general parameters/settings

• Mean distance between the precipitate surfaces, LS

ss

classclassmclassV

S rrrN

LSS

242

3ln 2

,,

−+=∑π ∑

∑=

classclassmclassV

classclassmclassV

ss rN

rNr

,,

2,,

32

- Precipitate number density within the class

- Precipitate mean radius within the class

classVN ,

classmr ,

Page 25: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 25

Precipitation strengthening, σprec• Derived from τprec

• Non-shearable particles (Orowan mechanism)

• Shearable particles (weak or strong)

• Coherency effect

• Modulus effect

• Anti-phase boundary effect

• Stacking fault effect

• Interfacial effect

Page 26: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 26

Precipitation strengthening, σprec• Derived from τprec

• Non-shearable particles (Orowan mechanism)

• Shearable particles (weak or strong)

• Coherency effect

• Modulus effect

• Anti-phase boundary effect

• Stacking fault effect

• Interfacial effect

Page 27: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 27

Non-shearable particles

−−

θπυ

12

cos12

J

bri 2=

−=

i

eq

snsh r

rL

JGb 2ln

12 υπτ

Page 28: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 28

Non-shearable particles

−−

θπυ

12

cos12

J

meq rr4π

= bri 2=

If req < 2ri , then

( )2ln12 s

nsh LJGb

υπτ

−=

−=

i

eq

snsh r

rL

JGb 2ln

12 υπτ

Page 29: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 29

Non-shearable particles

−−

θπυ

12

cos12

J

meq rr4π

=

−=

i

eq

snsh r

rL

JGb 2ln

12 υπτ

bri 2=

Page 30: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 30

Precipitation strengthening, σprec• Derived from τprec

• Non-shearable particles (Orowan mechanism)

• Shearable particles (weak or strong)

• Coherency effect

• Modulus effect

• Anti-phase boundary effect

• Stacking fault effect

• Interfacial effect

Page 31: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 31

Shearable particles• Some general parameters/settings

• Dislocation bending angle, ψ - weak and strong particles

0° ≤ ψ ≤ 120° “strong” particles

120° ≤ ψ ≤ 180° “weak” particles

Page 32: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 32

Shearable particles• Some general parameters/settings

• Mean distance between the precipitate surfaces, L

ss

classclassmclassV

S rrrN

LSS

242

3ln 2

,,

−+=∑π

∑∑

=

classclassmclassV

classclassmclassV

ss rN

rNr

,,

2,,

32

Strong particles

Page 33: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 33

Shearable particles• Some general parameters/settings

• Mean distance between the precipitate surfaces, L

Weak particles

21

2cos

Seff LL

Page 34: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 34

Shearable particles• Some general parameters/settings

• Mean distance between the precipitate surfaces, L

Weak particles

21

2cos

Seff LL

Page 35: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 35

Shearable particles• Some general parameters/settings

• Dislocation line tension, T

• Simple model

• Advanced model

2

2GbT =

−+=

i

Sstrong r

LGbT ln1

sin314

22

υθυυ

π

−+=

i

effweak r

LGbT ln1

sin314

22

υθυυ

π

Page 36: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 36

Shearable particles• Some general parameters/settings

• Dislocation line tension, T

• Simple model

• Advanced model

2

2GbT =

−+=

i

Sstrong r

LGbT ln1

sin314

22

υθυυ

π

−+=

i

effweak r

LGbT ln1

sin314

22

υθυυ

π

Page 37: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 37

Shearable particles• Some general parameters/settings

• Dislocation line tension, T

• Simple

• Advanced

Page 38: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 38

Shearable particles• Some general parameters/settings

• Inner cut-off radius, ri (multiplication of Burger’s vector)

−+=

i

Sstrong r

LGbT ln1

sin314

22

υθυυ

π

−+=

i

effweak r

LGbT ln1

sin314

22

υθυυ

π

Page 39: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 39

Precipitation strengthening, σprec• Derived from τprec

• Non-shearable particles (Orowan mechanism)

• Shearable particles (weak or strong)

• Coherency effect

• Modulus effect

• Anti-phase boundary effect

• Stacking fault effect

• Interfacial effect

Page 40: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 40

Coherency effect• Strain field due to precipitation/matrix misfit

• Strong particles

• Weak particles

( ) 4/1

3

322

,sin1352.2cos2

+=

brGT

Lmstrong

Sstrongcoh

εθθτ

( ) 2/133322

,sin1127.4cos3416.1

+=

weak

eq

Sweakcoh T

brGL

εθθτ

vollin ∆=∆=92

32ε

- Linear misfit

- Volumetric misfit

lin∆

vol∆

Page 41: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 41

Coherency effect• Shearable particles – Coherency effect

• Strain field due to precipitation/matrix misfit

• Strong particles

• Weak particles

( ) 4/1

3

322

,sin1352.2cos2

+=

brGT

Lmstrong

Sstrongcoh

εθθτ

( ) 2/133322

,sin1127.4cos3416.1

+=

weak

m

Sweakcoh T

brGL

εθθτ

vollin ∆=∆=92

32ε

- Linear misfit

- Volumetric misfit

lin∆

vol∆

Page 42: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 42

Coherency effect• Strain field due to precipitation/matrix misfit

• Strong particles

• Weak particles

( ) 4/1

3

322

,sin1352.2cos2

+=

brGT

Lmstrong

Sstrongcoh

εθθτ

( ) 2/133322

,sin1127.4cos3416.1

+=

weak

m

Sweakcoh T

brGL

εθθτ

vollin ∆=∆=92

32ε

- Linear misfit

- Volumetric misfit

lin∆

vol∆

Page 43: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 43

Coherency effect• Strain field due to precipitation/matrix misfit

• Strong particles

• Weak particles

( ) 4/1

3

322

,sin1352.2cos2

+=

brGT

Lmstrong

Sstrongcoh

εθθτ

( ) 2/133322

,sin1127.4cos3416.1

+=

weak

eq

Sweakcoh T

brGL

εθθτ

Page 44: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 44

Precipitation strengthening, σprec• Derived from τprec

• Non-shearable particles (Orowan mechanism)

• Shearable particles (weak or strong)

• Coherency effect

• Modulus effect

• Anti-phase boundary effect

• Stacking fault effect

• Interfacial effect

Page 45: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 45

Modulus effect• Elastic properties of precipitate and matrix differ dislocation

energy inside and outside the precipitate differ

• 2 models

• Nembach

• Siems

Page 46: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 46

Modulus effect• Elastic properties of precipitate and matrix differ dislocation

energy inside and outside the precipitate differ

• 2 models

• Nembach

• Siems

Page 47: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 47

• Nembach model

• Strong particles

• Weak particles

Modulus effect

Sstrong bL

Fmodmod, =τ

2/3

modmod, 2

2

=

weakS

weakweak T

FbLTτ

- Particle shear moduluspG

85.02

mod 05.0

−=

br

bGGF eqP

Page 48: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 48

Modulus effect• Siems model

2/12

mod, 12

8.0

−=

EE

bLT p

S

strongstrongτ

- Particle Poisson ratiopυ

( ) ( )

( )i

Sp

eq

Sp

i

eqP

p

rLG

rLG

rr

G

EE

log1

log1log1

υ

υυ

−+−=

4/32

mod, 12

−=

EE

bLT p

S

weakweakτ

( ) ( )

( )i

effp

eq

effp

i

eqP

p

rL

G

rL

Grr

G

EE

log1

log1log1

υ

υυ

−+−=

Strong Weak

Page 49: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 49

• Nembach model

• Strong particles

• Weak particles

Modulus effect

Sstrong bL

Fmodmod, =τ

2/3

modmod, 2

2

=

weakS

weakweak T

FbLTτ

- Particle shear moduluspG

85.02

mod 05.0

−=

br

bGGF eqP

- Particle shear moduluspG- Particle Poisson ratiopυ

Page 50: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 50

Modulus effect• Elastic properties of precipitate and matrix differ dislocation

energy inside and outside the precipitate differ

• 2 models

• Nembach

• Siems

strongmod,τ

weakmod,τ

Page 51: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 51

Precipitation strengthening, σprec• Derived from τprec

• Non-shearable particles (Orowan mechanism)

• Shearable particles (weak or strong)

• Coherency effect

• Modulus effect

• Anti-phase boundary effect

• Stacking fault effect

• Interfacial effect

Page 52: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 52

Anti-phase boundary (APB) effect• Dislocation passing through ordered precipitate increases the energy

by creating the APB

• Strong particles

• Weak particles

2/1

, 3869.0

= APBeqstrong

SstrongAPB

rwTbL

γτ

=

S

eqAPB

weak

APBeqweak

SweakAPB L

rT

rT

sbL πβγγ

τ3

1622 22/3

,

- APB energy

- Interaction parameter between

the leading and trailing dislocation

- Number of pair dislocations

APBγ

,w β

s

Page 53: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 53

Anti-phase boundary (APB) effect• Dislocation passing through ordered precipitate increases the energy

by creating the APB

• Strong particles

• Weak particles

2/1

, 3869.0

= APBeqstrong

SstrongAPB

rwTbL

γτ

=

S

eqAPB

weak

APBeqweak

SweakAPB L

rT

rT

sbL πβγγ

τ3

1622 22/3

,

- APB energy

- Interaction parameter between

the leading and trailing dislocation

- Number of pair dislocations

APBγ

,w β

s

2/1

, 3869.0

= APBeqstrong

SstrongAPB

rwTbL

γτ

=

S

eqAPB

weak

APBeqweak

SweakAPB L

rT

rT

sbL πβγγ

τ3

1622 22/3

,

Page 54: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 54

Anti-phase boundary (APB) effect• Dislocation passing through ordered precipitate increases the energy

by creating the APB

• Strong particles

• Weak particles

2/1

, 3869.0

= APBeqstrong

SstrongAPB

rwTbL

γτ

=

S

eqAPB

weak

APBeqweak

SweakAPB L

rT

rT

sbL πβγγ

τ3

1622 22/3

,

Page 55: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 55

Precipitation strengthening, σprec• Derived from τprec

• Non-shearable particles (Orowan mechanism)

• Shearable particles (weak or strong)

• Coherency effect

• Modulus effect

• Anti-phase boundary effect

• Stacking fault effect

• Interfacial effect

Page 56: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 56

Stacking fault (SF) effect• Passing dislocation creates a stacking fault – energy difference

between the SF in the precipitate and matrix

( ) 42 2effeqeffSFPSFMSF WrWF −−= γγ

SFPSFM

SFeff

KWγγ +

=2

( )( )( )υπ

θυυ−

−−=

182cos222

pSF

GbK

- Burger’s vector of particle

- Stacking fault energy of particle

- Stacking fault energy of matrix

SFPγ

SFMγ

pb

Page 57: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 57

Stacking fault (SF) effect• Passing dislocation creates a stacking fault – energy difference

between the SF in the precipitate and matrix

• Strong particles

• Weak particles

S

SFstrongSF bL

F=,τ

2/3

, 22

=

weak

SF

S

weakweakSF T

FbLTτ ( ) 42 2

effeqeffSFPSFMSF WrWF −−= γγ

SFPSFM

SFeff

KWγγ +

=2

( )( )( )υπ

θυυ−

−−=

182cos222

pSF

GbK

Page 58: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 58

Stacking fault (SF) effect• Passing dislocation creates a stacking fault – energy difference

between the SF in the precipitate and matrix

( ) 42 2effeqeffSFPSFMSF WrWF −−= γγ

SFPSFM

SFeff

KWγγ +

=2

( )( )( )υπ

θυυ−

−−=

182cos222

pSF

GbK

- Burger’s vector of particle

- Stacking fault energy of particle

- Stacking fault energy of matrix

SFPγ

SFMγ

pb

Page 59: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 59

Stacking fault (SF) effect• Passing dislocation creates a stacking fault – energy difference

between the SF in the precipitate and matrix

( ) 42 2effeqeffSFPSFMSF WrWF −−= γγ

SFPSFM

SFeff

KWγγ +

=2

( )( )( )υπ

θυυ−

−−=

182cos222

pSF

GbK

- Burger’s vector of particle

- Stacking fault energy of particle

- Stacking fault energy of matrix

SFPγ

SFMγ

pb

Page 60: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 60

Stacking fault (SF) effect• Passing dislocation creates a stacking fault – energy difference

between the SF in the precipitate and matrix

( ) 42 2effeqeffSFPSFMSF WrWF −−= γγ

SFPSFM

SFeff

KWγγ +

=2

( )( )( )υπ

θυυ−

−−=

182cos222

pSF

GbK

- Burger’s vector of particle

- Stacking fault energy of particle

- Stacking fault energy of matrix

SFPγ

SFMγ

pb

Page 61: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 61

Stacking fault (SF) effect• Passing dislocation creates a stacking fault – energy difference

between the SF in the precipitate and matrix

• Strong particles

• Weak particles

S

SFstrongSF bL

F=,τ

2/3

, 22

=

weak

SF

S

weakweakSF T

FbLTτ

Page 62: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 62

Precipitation strengthening, σprec• Derived from τprec

• Non-shearable particles (Orowan mechanism)

• Shearable particles (weak or strong)

• Coherency effect

• Modulus effect

• Anti-phase boundary effect

• Stacking fault effect

• Interfacial effect

Page 63: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 63

Interfacial effect• Passing dislocation increases the area of precipitate/matrix interface

• Strong particles

• Weak particles

bF PMγ2int =

- Precipitate/matrix interface energyPMγ

Sstrong bL

Fintint, =τ

2/3

intint, 2

2

=

weakS

weakweak T

FbLTτ

Page 64: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 64

Interfacial effect• Passing dislocation increases the area of precipitate/matrix interface

• Strong particles

• Weak particles

bF PMγ2int =Sstrong bL

Fintint, =τ

2/3

intint, 2

2

=

weakS

weakweak T

FbLTτ

- Precipitate/matrix interface energyPMγ

Page 65: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 65

Interfacial effect• Passing dislocation increases the area of precipitate/matrix interface

• Strong particles

• Weak particles

Sstrong bL

Fintint, =τ

2/3

intint, 2

2

=

weakS

weakweak T

FbLTτ

Page 66: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 66

Precipitation strengthening, σprec• Evaluation

• Identifying the regime for each precipitate separately

• Summation of the calculated τregime of each precipitate

• Conversion of τprec to σprec

Page 67: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 67

Precipitation strengthening, σprec• Evaluation

• Identifying the regime for each precipitate separately

• Summation of the calculated τi,regime of each precipitate

• Conversion of τprec to σprec

Page 68: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 68

Regime of each precipitate• For every precipitate phase i: Values of τ evaluated for each of three

regimes (Non-shearable, shearable weak, shearable strong)

( ) shshshshshshmm

strongim

strongSFim

strongAPBim

strongim

strongcoheristrongi/1

int,,,,,,mod,,,,, ττττττ ++++=

( ) shshshshshshmm

weakim

weakSFim

weakAPBim

weakim

weakcoheriweaki/1

int,,,,,,mod,,,,, ττττττ ++++=

nshi,τ

Page 69: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 69

Regime of each precipitate• For every precipitate phase i: Values of τ evaluated for each of three

regimes (Non-shearable, shearable weak, shearable strong)

( ) shshshshshshmm

strongim

strongSFim

strongAPBim

strongim

strongcoheristrongi/1

int,,,,,,mod,,,,, ττττττ ++++=

( ) shshshshshshmm

weakim

weakSFim

weakAPBim

weakim

weakcoheriweaki/1

int,,,,,,mod,,,,, ττττττ ++++=

Orowani,τ

Page 70: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 70

Regime of each precipitate• For every precipitate phase i: Values of τ evaluated for each of three

regimes (Non-shearable, shearable weak, shearable strong)

( ) shshshshshshmm

strongim

strongSFim

strongAPBim

strongim

strongcoheristrongi/1

int,,,,,,mod,,,,, ττττττ ++++=

( ) shshshshshshmm

weakim

weakSFim

weakAPBim

weakim

weakcoheriweaki/1

int,,,,,,mod,,,,, ττττττ ++++=

nshi,τ

Page 71: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 71

Regime of each precipitate• τi,regime with the lowest value for the precipitate phase i is taken for

the further operations

( ) shshshshshshmm

strongim

strongSFim

strongAPBim

strongim

strongcoheristrongi/1

int,,,,,,mod,,,,, ττττττ ++++=

( ) shshshshshshmm

weakim

weakSFim

weakAPBim

weakim

weakcoheriweaki/1

int,,,,,,mod,,,,, ττττττ ++++=

nshi,τ

If coherency radius ≠ 0 and the mean radius of precipitate is greater than

the coherency radius the non-shearable regime is taken for further

calculation

Page 72: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 72

Precipitation strengthening, σprec• Evaluation

• Identifying the regime for each precipitate separately

• Summation of the calculated τi,regime of each precipitate

• Conversion of τprec to σprec

Page 73: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 73

Summation of τi,regime

sumsum

nshnsh

sum

shsh

mm

m

i

mnshi

m

m

i

mshiprec

11

,

1

,

+

= ∑∑ τττ

-Shearable particles contribution (weak and strong regime)

-Non-shearable particles contribution

shi,τ

nshi,τ

Page 74: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 74

Summation of τi,regime

sumnsh

sum

nshsh

sum

sh

mmm

i

mnshi

mm

i

mshiprec

1

,,

+

= ∑∑ τττ

Page 75: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 75

sumsum

nshnsh

sum

shsh

mm

m

i

mnshi

m

m

i

mshiprec

11

,

1

,

+

= ∑∑ τττ

• Precipitation strengthening, σprec (derived from τprec)

• Evaluation of τprec

Summation of τi,regime

Page 76: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 76

Precipitation strengthening, σprec• Evaluation

• Identifying the regime for each precipitate separately

• Summation of the calculated τi,regime of each precipitate

• Conversion of τprec to σprec

Page 77: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 77

Precipitation strengthening, σprec• Evaluation

• Identifying the regime for each precipitate separately

• Summation of the calculated τi,regime of each precipitate

• Conversion of τprec to σprec

precprec ατσ =

- Taylor factorα

Page 78: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 78

Total yield strength, σYS• Summation of contributions

( )[ ] sigsigsigmm

precsssgbgbimdislYS

/1σσσσσσσ +++++=

Page 79: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 79

Total yield strength, σYS• Summation of contributions

( )[ ] sigsigsigmm

precsssgbgbimdislYS

/1σσσσσσσ +++++=

Page 80: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 80

Total yield strength, σYS• Summation of contributions

( )[ ] sigsigsigmm

precsssgbgbimdislYS

/1σσσσσσσ +++++=

Page 81: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 81

Thank you for your attention !

Page 82: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 82

Page 83: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 83

Shape factor influence on LS

Precipitation hardening

4/126/1

32

+=

hhK

- Shape factorh

Sonderegger B., Kozeschnik E., Scripta Mater., 66 (2012) 52-55

−+=

∑ ss

classclassmclassV

S rrrN

KLSS

242

3ln 2

,,π

Page 84: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 84

Shape factor influence on LS

Precipitation hardening

4/126/1

32

+=

hhK

- Shape factorh

Sonderegger B., Kozeschnik E., Scripta Mater., 66 (2012) 52-55

−+=

∑ ss

classclassmclassV

S rrrN

KLSS

242

3ln 2

,,π

Page 85: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 85

Shape factor influence on LS

Precipitation hardening

4/126/1

32

+=

hhK

- Shape factorh

Sonderegger B., Kozeschnik E., Scripta Mater., 66 (2012) 52-55

−+=

∑ ss

classclassmclassV

S rrrN

KLSS

242

3ln 2

,,π

Page 86: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 86

Precipitation hardening• Non-shearable particles (Orowan mechanism)

−=

i

eq

sOrowan r

rL

JGb 2ln

12 υπτ ( )nsscreweqscrewnsedgeeqedgeeq rPrPr ,,,, +=

mnsedgeeq rhhh

hr42

332

33

2222

32

,,π

+++

+=

mnsscreweq rhhh

hr42

9113

222

32

,,π

+++=

- Equivalent radius for edge disl.

- Equivalent radius for screw disl.

- Fraction of edge disl.

- Fraction of screw disl.

nsedgeeqr ,,

nsscreweqr ,,

edgeP

screwP

Page 87: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 87

Precipitation hardening• Shearable particles – (e.g. coherency effect)

( )shscreweqscrewshedgeeqedgeeq rPrPr ,,,, +=

- Equivalent radius for edge disl.

- Equivalent radius for screw disl.

shedgeeqr ,,

shscreweqr ,,

hT

brGL

f

weak

eq

Sweakcoh

2/1333

, 27)(

=

εθτ

mshedgeeq rhh

hr451

622

33 22

32

,,π

++

+=

mshscreweq rhh

hr41

2213 2

32

,,π

++=

Page 88: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 88

Precipitation hardening• Shearable particles – Coherency effect for non-spherical particles

• Strong particles

• Weak particles

( ) Kb

rGTL

mstrong

Sstrongcoh

4/1

3

322

,sin1488.2cos1101.1

+=

εθθτ

( ) hT

brGL weak

eq

Sweakcoh

2/133322

, 27sin4736.3cos7310.2

+=

εθθτ ,if

4/126/1

32

+=

hhK

( )( )θθ

θθ22

22

sin4736.3cos7310.2sin1127.4cos3416.1

++

≤h

Page 89: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 89

Summing up…• Total yield strength, σYS

• Summation of contributions

• Influence of strain rate,

( )[ ] sigsigsigmm

precsssgbgbimdislYS

/1σσσσσσσ +++++=

( )[ ]2

1

/11

Cmm

precsssgbgbimdislYS C

sigsigsig

++++++=ϕσσσσσσσ

ϕ

Page 90: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 90

Summing up…• Total yield strength, σYS

• Summation of contributions

• Influence of strain rate,

( )[ ] sigsigsigmm

precsssgbgbimdislYS

/1σσσσσσσ +++++=

( )[ ]2

1

/11

Cmm

precsssgbgbimdislYS C

sigsigsig

++++++=ϕσσσσσσσ

ϕ

Page 91: Alloy yield strength modeling with MatCalc · PDF filePage 2 Model overview • Contributions to yield strength, σ YS • Intrinsic strength, σ i • Work hardening, σ disl •

Page 91

Summing up…• Total yield strength, σYS

• Summation of contributions

• Influence of strain rate,

( )[ ] sigsigsigmm

precsssgbgbimdislYS

/1σσσσσσσ +++++=

( )[ ]2

1

/11

Cmm

precsssgbgbimdislYS C

sigsigsig

++++++=ϕσσσσσσσ

ϕ