From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to...

53
From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars´ enio CNRS & Universit´ e Paris Diderot (Paris 7) 10 th International Conference on Operations Research Partial Differential Equations Session La Habana 6-9 March 2012

Transcript of From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to...

Page 1: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

From the Boltzmann equationto incompressible viscous hydrodynamics

Diogo Arsenio

CNRS & Universite Paris Diderot (Paris 7)

10th International Conference on Operations ResearchPartial Differential Equations Session

La Habana6-9 March 2012

Page 2: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Fluid dynamics

Particle number density: F (t, x , v) ≥ 0 (t,x ,v)∈[0,∞)×Ω×RD

Ω⊂RD , D≥2 (D=1)

Maxwellian distribution: F (t, x , v) = ρ

(2πθ)D2

e−|v−u|2

(statistical

equilibrium

)The incompressible Navier-Stokes-Fourier system:

∂tu + u · ∇xu − ν∆xu = −∇xp

∇x · u = 0D+2

2 (∂tθ + u · ∇xθ)− κ∆xθ = 0

The Boltzmann equation:

(∂t + v · ∇x) F (t, x , v) = B (F ,F ) (t, x , v)

D. Arsenio Hydrodynamic limits

Page 3: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Fluid dynamics

Particle number density: F (t, x , v) ≥ 0 (t,x ,v)∈[0,∞)×Ω×RD

Ω⊂RD , D≥2 (D=1)

Maxwellian distribution: F (t, x , v) = ρ

(2πθ)D2

e−|v−u|2

(statistical

equilibrium

)The incompressible Navier-Stokes-Fourier system:

∂tu + u · ∇xu − ν∆xu = −∇xp

∇x · u = 0D+2

2 (∂tθ + u · ∇xθ)− κ∆xθ = 0

The Boltzmann equation:

(∂t + v · ∇x) F (t, x , v) = B (F ,F ) (t, x , v)

D. Arsenio Hydrodynamic limits

Page 4: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Fluid dynamics

Particle number density: F (t, x , v) ≥ 0 (t,x ,v)∈[0,∞)×Ω×RD

Ω⊂RD , D≥2 (D=1)

Maxwellian distribution: F (t, x , v) = ρ

(2πθ)D2

e−|v−u|2

(statistical

equilibrium

)

The incompressible Navier-Stokes-Fourier system:

∂tu + u · ∇xu − ν∆xu = −∇xp

∇x · u = 0D+2

2 (∂tθ + u · ∇xθ)− κ∆xθ = 0

The Boltzmann equation:

(∂t + v · ∇x) F (t, x , v) = B (F ,F ) (t, x , v)

D. Arsenio Hydrodynamic limits

Page 5: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Fluid dynamics

Particle number density: F (t, x , v) ≥ 0 (t,x ,v)∈[0,∞)×Ω×RD

Ω⊂RD , D≥2 (D=1)

Maxwellian distribution: F (t, x , v) = ρ

(2πθ)D2

e−|v−u|2

(statistical

equilibrium

)The incompressible Navier-Stokes-Fourier system:

∂tu + u · ∇xu − ν∆xu = −∇xp

∇x · u = 0D+2

2 (∂tθ + u · ∇xθ)− κ∆xθ = 0

The Boltzmann equation:

(∂t + v · ∇x) F (t, x , v) = B (F ,F ) (t, x , v)

D. Arsenio Hydrodynamic limits

Page 6: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Fluid dynamics

Particle number density: F (t, x , v) ≥ 0 (t,x ,v)∈[0,∞)×Ω×RD

Ω⊂RD , D≥2 (D=1)

Maxwellian distribution: F (t, x , v) = ρ

(2πθ)D2

e−|v−u|2

(statistical

equilibrium

)The incompressible Navier-Stokes-Fourier system:

∂tu + u · ∇xu − ν∆xu = −∇xp

∇x · u = 0D+2

2 (∂tθ + u · ∇xθ)− κ∆xθ = 0

The Boltzmann equation:

(∂t + v · ∇x) F (t, x , v) = B (F ,F ) (t, x , v)

D. Arsenio Hydrodynamic limits

Page 7: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

The Boltzmann collision operator

B (F ,F ) (t, x , v) =∫RD

∫SD−1 (F ′F ′∗ − FF∗) b (v − v∗, σ) dσdv∗

F ′ = F (t, x , v ′), F ′∗ = F (t, x , v ′∗), F∗ = F (t, x , v∗)

v ′ = v+v∗2 + |v−v∗|

2 σ, v ′∗ = v+v∗2 − |v−v∗|2 σ

D. Arsenio Hydrodynamic limits

Page 8: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

The Boltzmann collision operator

B (F ,F ) (t, x , v) =∫RD

∫SD−1 (F ′F ′∗ − FF∗) b (v − v∗, σ) dσdv∗

F ′ = F (t, x , v ′), F ′∗ = F (t, x , v ′∗), F∗ = F (t, x , v∗)

v ′ = v+v∗2 + |v−v∗|

2 σ, v ′∗ = v+v∗2 − |v−v∗|2 σ

D. Arsenio Hydrodynamic limits

Page 9: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

The Boltzmann collision operator

B (F ,F ) (t, x , v) =∫RD

∫SD−1 (F ′F ′∗ − FF∗) b (v − v∗, σ) dσdv∗

F ′ = F (t, x , v ′), F ′∗ = F (t, x , v ′∗), F∗ = F (t, x , v∗)

v ′ = v+v∗2 + |v−v∗|

2 σ, v ′∗ = v+v∗2 − |v−v∗|2 σ

v + v∗ = v ′ + v ′∗ (conservation of momentum)

|v |2 + |v∗|2 = |v ′|2 + |v ′∗|2 (conservation of energy)

D. Arsenio Hydrodynamic limits

Page 10: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

The Boltzmann collision operator

B (F ,F ) (t, x , v) =∫RD

∫SD−1 (F ′F ′∗ − FF∗) b (v − v∗, σ) dσdv∗

F ′ = F (t, x , v ′), F ′∗ = F (t, x , v ′∗), F∗ = F (t, x , v∗)

v ′ = v+v∗2 + |v−v∗|

2 σ, v ′∗ = v+v∗2 − |v−v∗|2 σ

D. Arsenio Hydrodynamic limits

Page 11: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

The Boltzmann collision operator

B (F ,F ) (t, x , v) =∫RD

∫SD−1 (F ′F ′∗ − FF∗) b (v − v∗, σ) dσdv∗

F ′ = F (t, x , v ′), F ′∗ = F (t, x , v ′∗), F∗ = F (t, x , v∗)

v ′ = v+v∗2 + |v−v∗|

2 σ, v ′∗ = v+v∗2 − |v−v∗|2 σ

5 hypotheses:

binary collisions (rarefied gas)

localization in time and space of collisions

elastic collisions

micro-reversibility of collisions

molecular chaos

D. Arsenio Hydrodynamic limits

Page 12: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

The Boltzmann collision operator

B (F ,F ) (t, x , v) =∫RD

∫SD−1 (F ′F ′∗ − FF∗) b (v − v∗, σ) dσdv∗

F ′ = F (t, x , v ′), F ′∗ = F (t, x , v ′∗), F∗ = F (t, x , v∗)

v ′ = v+v∗2 + |v−v∗|

2 σ, v ′∗ = v+v∗2 − |v−v∗|2 σ

D. Arsenio Hydrodynamic limits

Page 13: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

The Boltzmann collision operator

B (F ,F ) (t, x , v) =∫RD

∫SD−1 (F ′F ′∗ − FF∗) b (v − v∗, σ) dσdv∗

F ′ = F (t, x , v ′), F ′∗ = F (t, x , v ′∗), F∗ = F (t, x , v∗)

v ′ = v+v∗2 + |v−v∗|

2 σ, v ′∗ = v+v∗2 − |v−v∗|2 σ

The collision kernel: b(v − v∗, σ) = b(|v − v∗| , cos θ) ≥ 0

D. Arsenio Hydrodynamic limits

Page 14: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

The Boltzmann collision operator

B (F ,F ) (t, x , v) =∫RD

∫SD−1 (F ′F ′∗ − FF∗) b (v − v∗, σ) dσdv∗

F ′ = F (t, x , v ′), F ′∗ = F (t, x , v ′∗), F∗ = F (t, x , v∗)

v ′ = v+v∗2 + |v−v∗|

2 σ, v ′∗ = v+v∗2 − |v−v∗|2 σ

The collision kernel: b(v − v∗, σ) = b(|v − v∗| , cos θ) ≥ 0

Hard spheres: b(v − v∗, σ) = |v − v∗| ∈ L1loc

D. Arsenio Hydrodynamic limits

Page 15: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

The Boltzmann collision operator

B (F ,F ) (t, x , v) =∫RD

∫SD−1 (F ′F ′∗ − FF∗) b (v − v∗, σ) dσdv∗

F ′ = F (t, x , v ′), F ′∗ = F (t, x , v ′∗), F∗ = F (t, x , v∗)

v ′ = v+v∗2 + |v−v∗|

2 σ, v ′∗ = v+v∗2 − |v−v∗|2 σ

The collision kernel: b(v − v∗, σ) = b(|v − v∗| , cos θ) ≥ 0

Hard spheres: b(v − v∗, σ) = |v − v∗| ∈ L1loc

Intermolecular forces deriving from an inverse power potential:

φ(r) = 1r s−1 , s > 2

b(v − v∗, σ) = |v − v∗|γ b0(cos θ), γ = s−5s−1

sinD−2 θb0(cos θ) ≈ 1θ1+ν /∈ L1

loc, ν = 2s−1

D. Arsenio Hydrodynamic limits

Page 16: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

The Boltzmann collision operator

B (F ,F ) (t, x , v) =∫RD

∫SD−1 (F ′F ′∗ − FF∗) b (v − v∗, σ) dσdv∗

F ′ = F (t, x , v ′), F ′∗ = F (t, x , v ′∗), F∗ = F (t, x , v∗)

v ′ = v+v∗2 + |v−v∗|

2 σ, v ′∗ = v+v∗2 − |v−v∗|2 σ

The collision kernel: b(v − v∗, σ) = b(|v − v∗| , cos θ) ≥ 0

Hard spheres: b(v − v∗, σ) = |v − v∗| ∈ L1loc

Intermolecular forces deriving from an inverse power potential:

φ(r) = 1r s−1 , s > 2

b(v − v∗, σ) = |v − v∗|γ b0(cos θ), γ = s−5s−1

sinD−2 θb0(cos θ) ≈ 1θ1+ν /∈ L1

loc, ν = 2s−1

long-range interactions ⇒ grazing collisions ⇒ non-integrable kernel

D. Arsenio Hydrodynamic limits

Page 17: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Microscopic-macroscopic linkConservation laws

(∂t + v · ∇x) F (t, x , v) = B (F ,F ) (t, x , v)

Macroscopic variables:

density: ρ(t, x) =∫RD F (t, x , v) dv

bulk velocity: ρu(t, x) =∫RD F (t, x , v)v dv

temperature: ρθ(t, x) =∫RD F (t, x , v) |v−u(t,x)|2

D dv

D. Arsenio Hydrodynamic limits

Page 18: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Microscopic-macroscopic linkConservation laws

(∂t + v · ∇x) F (t, x , v) = B (F ,F ) (t, x , v)

Macroscopic variables:

density: ρ(t, x) =∫RD F (t, x , v) dv

bulk velocity: ρu(t, x) =∫RD F (t, x , v)v dv

temperature: ρθ(t, x) =∫RD F (t, x , v) |v−u(t,x)|2

D dv

D. Arsenio Hydrodynamic limits

Page 19: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Microscopic-macroscopic linkConservation laws

(∂t + v · ∇x) F (t, x , v) = B (F ,F ) (t, x , v)

Macroscopic variables:

density: ρ(t, x) =∫RD F (t, x , v) dv

bulk velocity: ρu(t, x) =∫RD F (t, x , v)v dv

temperature: ρθ(t, x) =∫RD F (t, x , v) |v−u(t,x)|2

D dv

D. Arsenio Hydrodynamic limits

Page 20: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Microscopic-macroscopic linkConservation laws

(∂t + v · ∇x) F (t, x , v) = B (F ,F ) (t, x , v)

Macroscopic variables:

density: ρ(t, x) =∫RD F (t, x , v) dv

bulk velocity: ρu(t, x) =∫RD F (t, x , v)v dv

temperature: ρθ(t, x) =∫RD F (t, x , v) |v−u(t,x)|2

D dv

Microscopic conservation laws:∫RD B (F ,F ) (t, x , v)

1v|v |2

2

dv = 0

D. Arsenio Hydrodynamic limits

Page 21: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Microscopic-macroscopic linkConservation laws

(∂t + v · ∇x) F (t, x , v) = B (F ,F ) (t, x , v)

Macroscopic variables:

density: ρ(t, x) =∫RD F (t, x , v) dv

bulk velocity: ρu(t, x) =∫RD F (t, x , v)v dv

temperature: ρθ(t, x) =∫RD F (t, x , v) |v−u(t,x)|2

D dv

D. Arsenio Hydrodynamic limits

Page 22: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Microscopic-macroscopic linkConservation laws

(∂t + v · ∇x) F (t, x , v) = B (F ,F ) (t, x , v)

Macroscopic variables:

density: ρ(t, x) =∫RD F (t, x , v) dv

bulk velocity: ρu(t, x) =∫RD F (t, x , v)v dv

temperature: ρθ(t, x) =∫RD F (t, x , v) |v−u(t,x)|2

D dvMacroscopic conservation laws:

∂tρ+∇x · (ρu) = 0

∂t (ρu) +∇x · (ρu ⊗ u + P) = 0

∂t

(ρ |u|

2

2 + D2 ρθ

)+∇x ·

((ρ |u|

2

2 + D2 ρθ

)u + Pu + q

)= 0

stress tensor: P(t, x) =∫RD F (t, x , v)(v − u)⊗ (v − u) dv

thermal flux: q(t, x) =∫RD F (t, x , v)(v − u)|v − u|2 dv

D. Arsenio Hydrodynamic limits

Page 23: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesCompressible Euler

(∂t + v · ∇x) Fε(t, x , v) =1

ε↑

Knudsen number≈mean free path

B (Fε,Fε) (t, x , v)

Hyperbolic scaling: Fε(t, x , v) = F(tε ,

xε , v)

Continuum limit ε→ 0 : Fε → F ⇒ B(F ,F ) = 0

⇒ F =ρ

(2πθ)D2

e−|v−u|2

2θ is a Maxwellian ⇒ P = Idρθ, q = 0

Compressible Euler system:∂tρ+∇x · (ρu) = 0

∂t (ρu) +∇x · (ρu ⊗ u) +∇x (ρθ) = 0

∂t

(ρ |u|

2

2 + D2 ρθ

)+∇x ·

((ρ |u|

2

2 + D+22 ρθ

)u)

= 0

D. Arsenio Hydrodynamic limits

Page 24: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesCompressible Euler

(∂t + v · ∇x) Fε(t, x , v) =1

ε↑

Knudsen number≈mean free path

B (Fε,Fε) (t, x , v)

Hyperbolic scaling: Fε(t, x , v) = F(tε ,

xε , v)

Continuum limit ε→ 0 : Fε → F ⇒ B(F ,F ) = 0

⇒ F =ρ

(2πθ)D2

e−|v−u|2

2θ is a Maxwellian ⇒ P = Idρθ, q = 0

Compressible Euler system:∂tρ+∇x · (ρu) = 0

∂t (ρu) +∇x · (ρu ⊗ u) +∇x (ρθ) = 0

∂t

(ρ |u|

2

2 + D2 ρθ

)+∇x ·

((ρ |u|

2

2 + D+22 ρθ

)u)

= 0

D. Arsenio Hydrodynamic limits

Page 25: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesCompressible Euler

(∂t + v · ∇x) Fε(t, x , v) =1

ε↑

Knudsen number≈mean free path

B (Fε,Fε) (t, x , v)

Hyperbolic scaling: Fε(t, x , v) = F(tε ,

xε , v)

Continuum limit ε→ 0 : Fε → F ⇒ B(F ,F ) = 0

⇒ F =ρ

(2πθ)D2

e−|v−u|2

2θ is a Maxwellian ⇒ P = Idρθ, q = 0

Compressible Euler system:∂tρ+∇x · (ρu) = 0

∂t (ρu) +∇x · (ρu ⊗ u) +∇x (ρθ) = 0

∂t

(ρ |u|

2

2 + D2 ρθ

)+∇x ·

((ρ |u|

2

2 + D+22 ρθ

)u)

= 0

D. Arsenio Hydrodynamic limits

Page 26: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesCompressible Euler

(∂t + v · ∇x) Fε(t, x , v) =1

ε↑

Knudsen number≈mean free path

B (Fε,Fε) (t, x , v)

Hyperbolic scaling: Fε(t, x , v) = F(tε ,

xε , v)

Continuum limit ε→ 0 : Fε → F ⇒ B(F ,F ) = 0

⇒ F =ρ

(2πθ)D2

e−|v−u|2

2θ is a Maxwellian ⇒ P = Idρθ, q = 0

Compressible Euler system:∂tρ+∇x · (ρu) = 0

∂t (ρu) +∇x · (ρu ⊗ u) +∇x (ρθ) = 0

∂t

(ρ |u|

2

2 + D2 ρθ

)+∇x ·

((ρ |u|

2

2 + D+22 ρθ

)u)

= 0

D. Arsenio Hydrodynamic limits

Page 27: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesCompressible Euler

(∂t + v · ∇x) Fε(t, x , v) =1

ε↑

Knudsen number≈mean free path

B (Fε,Fε) (t, x , v)

Hyperbolic scaling: Fε(t, x , v) = F(tε ,

xε , v)

Continuum limit ε→ 0 : Fε → F ⇒ B(F ,F ) = 0

⇒ F =ρ

(2πθ)D2

e−|v−u|2

2θ is a Maxwellian ⇒ P = Idρθ, q = 0

Compressible Euler system:∂tρ+∇x · (ρu) = 0

∂t (ρu) +∇x · (ρu ⊗ u) +∇x (ρθ) = 0

∂t

(ρ |u|

2

2 + D2 ρθ

)+∇x ·

((ρ |u|

2

2 + D+22 ρθ

)u)

= 0

D. Arsenio Hydrodynamic limits

Page 28: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

( ε↑

Strouhalnumber

∂t + v · ∇x)Fε(t, x , v) =1

ε↑

Knudsen number≈mean free path

B (Fε,Fε) (t, x , v)

Parabolic scaling: Fε(t, x , v) = F(tε2 ,

xε , v)

Fluctuations: Fε = M(v)(1 + ε↑

Machnumber

gε) where M(v) = 1

(2π)D2

e−|v|2

2

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

D. Arsenio Hydrodynamic limits

Page 29: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

( ε↑

Strouhalnumber

∂t + v · ∇x)Fε(t, x , v) =1

ε↑

Knudsen number≈mean free path

B (Fε,Fε) (t, x , v)

Parabolic scaling: Fε(t, x , v) = F(tε2 ,

xε , v)

Fluctuations: Fε = M(v)(1 + ε↑

Machnumber

gε) where M(v) = 1

(2π)D2

e−|v|2

2

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

D. Arsenio Hydrodynamic limits

Page 30: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

( ε↑

Strouhalnumber

∂t + v · ∇x)Fε(t, x , v) =1

ε↑

Knudsen number≈mean free path

B (Fε,Fε) (t, x , v)

Parabolic scaling: Fε(t, x , v) = F(tε2 ,

xε , v)

Fluctuations: Fε = M(v)(1 + ε↑

Machnumber

gε) where M(v) = 1

(2π)D2

e−|v|2

2

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

D. Arsenio Hydrodynamic limits

Page 31: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

( ε↑

Strouhalnumber

∂t + v · ∇x)Fε(t, x , v) =1

ε↑

Knudsen number≈mean free path

B (Fε,Fε) (t, x , v)

Parabolic scaling: Fε(t, x , v) = F(tε2 ,

xε , v)

Fluctuations: Fε = M(v)(1 + ε↑

Machnumber

gε) where M(v) = 1

(2π)D2

e−|v|2

2

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

D. Arsenio Hydrodynamic limits

Page 32: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

( ε↑

Strouhalnumber

∂t + v · ∇x)Fε(t, x , v) =1

ε↑

Knudsen number≈mean free path

B (Fε,Fε) (t, x , v)

Parabolic scaling: Fε(t, x , v) = F(tε2 ,

xε , v)

Fluctuations: Fε = M(v)(1 + ε↑

Machnumber

gε) where M(v) = 1

(2π)D2

e−|v|2

2

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

D. Arsenio Hydrodynamic limits

Page 33: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

D. Arsenio Hydrodynamic limits

Page 34: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

D. Arsenio Hydrodynamic limits

Page 35: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

Continuum limit ε→ 0: gε → g

Order ε−1: L(g) = 0⇒ g = ρ+ v · u +(|v |2

2 −D2

)θ is an

infinitesimal Maxwellian

Order 1: ∇x · u = 0 and ∇x (ρ+ θ) = 0

⇒ ρ+ θ = 0 and g = v · u +(|v |2

2 −D+2

2

D. Arsenio Hydrodynamic limits

Page 36: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

Continuum limit ε→ 0: gε → g

Order ε−1: L(g) = 0⇒ g = ρ+ v · u +(|v |2

2 −D2

)θ is an

infinitesimal Maxwellian

Order 1: ∇x · u = 0 and ∇x (ρ+ θ) = 0

⇒ ρ+ θ = 0 and g = v · u +(|v |2

2 −D+2

2

D. Arsenio Hydrodynamic limits

Page 37: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

Continuum limit ε→ 0: gε → g

Order ε−1: L(g) = 0⇒ g = ρ+ v · u +(|v |2

2 −D2

)θ is an

infinitesimal Maxwellian

Order 1: ∇x · u = 0 and ∇x (ρ+ θ) = 0

⇒ ρ+ θ = 0 and g = v · u +(|v |2

2 −D+2

2

D. Arsenio Hydrodynamic limits

Page 38: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

D. Arsenio Hydrodynamic limits

Page 39: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

Order ε:∂t∫RD gεvMdv + 1

ε∇x ·∫RD gεAMdv = −1

ε∇x

∫RD gε

|v |2D Mdv

∂t∫RD gε

(|v |2

2 −D+2

2

)Mdv + 1

ε∇x ·∫RD gεBMdv = 0

where A = v ⊗ v − |v |2

D Id and B =(|v |2

2 −D+2

2

)v .

Idea: use that L is Fredholm (index 0) and self-adjoint onL2 (Mdv), so that A,B ∈ Im (L) ⇒ A = L

(A), B = L

(B).

D. Arsenio Hydrodynamic limits

Page 40: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

Order ε:∂t∫RD gεvMdv + 1

ε∇x ·∫RD gεAMdv = −1

ε∇x

∫RD gε

|v |2D Mdv

∂t∫RD gε

(|v |2

2 −D+2

2

)Mdv + 1

ε∇x ·∫RD gεBMdv = 0

where A = v ⊗ v − |v |2

D Id and B =(|v |2

2 −D+2

2

)v .

Idea: use that L is Fredholm (index 0) and self-adjoint onL2 (Mdv), so that A,B ∈ Im (L) ⇒ A = L

(A), B = L

(B).

D. Arsenio Hydrodynamic limits

Page 41: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

D. Arsenio Hydrodynamic limits

Page 42: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

Handling the fluxes:

1

ε∇x ·

∫RD

gεAMdv

=1

ε∇x ·

∫RD

gεL(A)

Mdv

= ∇x ·∫RD

1

εL (gε) AMdv

= ∇x ·∫RD

Q (gε, gε) AMdv −∇x ·∫RD

(ε∂t + v · ∇x)gεAMdv

D. Arsenio Hydrodynamic limits

Page 43: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

D. Arsenio Hydrodynamic limits

Page 44: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesIncompressible Navier-Stokes-Fourier

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

We finally obtain in the limit:∂tu + u · ∇xu − ν∆xu = −∇xpD+2

2 (∂tθ + u · ∇xθ)− κ∆xθ = 0

∇x · u = 0

with

ν =1

(D − 1)(D + 2)

∫RD

A : L(A)Mdv

κ =1

D

∫RD

B · L(B)Mdv

D. Arsenio Hydrodynamic limits

Page 45: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesOther systems

(εs∂t + v · ∇x)Fε(t, x , v) = 1εqB (Fε,Fε) (t, x , v)

Fε = M(v)(1 + εmgε)

D. Arsenio Hydrodynamic limits

Page 46: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesOther systems

(εs∂t + v · ∇x)Fε(t, x , v) = 1εqB (Fε,Fε) (t, x , v)

Fε = M(v)(1 + εmgε)

1 Compressible Euler (q = 1, s = 0, m = 0)

2 Acoustic waves (q = 1, s = 0, m > 0)∂tρ+∇x · u = 0, ∂t(ρ+ θ) + D+2

2 ∇x · u = 0

∂tu +∇x(ρ+ θ) = 0

3 Incompressible Navier-Stokes-Fourier (q = 1, s = 1, m = 1)

4 Incompressible Stokes-Fourier (q = 1, s = 1, m > 1)∂tu − ν∆xu = −∇xp, ∇x · u = 0

∂tθ − κ∆xθ = 0

5 Incompressible Euler-Fourier (q > 1, s = 1, m = 1)∂tu + u · ∇xu = −∇xp, ∇x · u = 0

∂tθ + u · ∇xθ = 0

D. Arsenio Hydrodynamic limits

Page 47: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesOther systems

(εs∂t + v · ∇x)Fε(t, x , v) = 1εqB (Fε,Fε) (t, x , v)

Fε = M(v)(1 + εmgε)

D. Arsenio Hydrodynamic limits

Page 48: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Hydrodynamic regimesOther systems

(εs∂t + v · ∇x)Fε(t, x , v) = 1εqB (Fε,Fε) (t, x , v)

Fε = M(v)(1 + εmgε)

It is not possible to obtaina compressible Navier-Stokes-Fourier system!

von Karman relation:

Reynolds ≈ Mach

Knudsen

D. Arsenio Hydrodynamic limits

Page 49: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

From Boltzmann to Navier-Stokes

Theorem (Ars., Bardos, Golse, Levermore, Lions, Masmoudi,Saint-Raymond, ’91 - ’11)

We consider:

a collision kernel which derives from an inverse powerpotential.

renormalized solutions Fε = M(1 + εgε) ∈ L∞t L1x ,v of

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

with well-prepared initial data.

Then, as ε→ 0:

gε is weakly relatively compact in L1((1 + |v |2)Mdtdxdv

).

each limit point g of gε satisfies g = v · u +(|v |2

2 −D+2

2

where (u, θ) ∈ L∞t L2x ∩ L2

t H1x is a Leray solution of the

incompressible Navier-Stokes-Fourier system.

D. Arsenio Hydrodynamic limits

Page 50: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

From Boltzmann to Navier-Stokes

Theorem (Ars., Bardos, Golse, Levermore, Lions, Masmoudi,Saint-Raymond, ’91 - ’11)

We consider:

a collision kernel which derives from an inverse powerpotential.

renormalized solutions Fε = M(1 + εgε) ∈ L∞t L1x ,v of

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

with well-prepared initial data.

Then, as ε→ 0:

gε is weakly relatively compact in L1((1 + |v |2)Mdtdxdv

).

each limit point g of gε satisfies g = v · u +(|v |2

2 −D+2

2

where (u, θ) ∈ L∞t L2x ∩ L2

t H1x is a Leray solution of the

incompressible Navier-Stokes-Fourier system.

D. Arsenio Hydrodynamic limits

Page 51: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Mathematical difficulties

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

1 Lack of a priori estimates! We only have the entropyinequality.

2 Renormalized solutions: gε ∈ L1loc (at most L log L) such that

(ε∂t+v ·∇x)gε

2 + εgε= − 2

ε (2 + εgε)2L (gε)+

2

(2 + εgε)2Q (gε, gε)

3 The macroscopic conservation laws are not known to hold forrenormalized solutions.

4 Time compactness: there are oscillations!5 Space compactness: there is some compactness thanks to

velocity averaging lemmas. Moreover, we need the nonlinearweak compactness estimate:

g 2ε

2 + εgεis weakly compact in L1

loc.

D. Arsenio Hydrodynamic limits

Page 52: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Mathematical difficulties

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

1 Lack of a priori estimates! We only have the entropyinequality.

2 Renormalized solutions: gε ∈ L1loc (at most L log L) such that

(ε∂t+v ·∇x)gε

2 + εgε= − 2

ε (2 + εgε)2L (gε)+

2

(2 + εgε)2Q (gε, gε)

3 The macroscopic conservation laws are not known to hold forrenormalized solutions.

4 Time compactness: there are oscillations!5 Space compactness: there is some compactness thanks to

velocity averaging lemmas. Moreover, we need the nonlinearweak compactness estimate:

g 2ε

2 + εgεis weakly compact in L1

loc.

D. Arsenio Hydrodynamic limits

Page 53: From the Boltzmann equation to incompressible viscous ... · From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris

Mathematical difficulties

(ε∂t + v · ∇x)gε = −1

εL (gε) +Q (gε, gε)

1 Lack of a priori estimates! We only have the entropyinequality.

2 Renormalized solutions: gε ∈ L1loc (at most L log L) such that

(ε∂t+v ·∇x)gε

2 + εgε= − 2

ε (2 + εgε)2L (gε)+

2

(2 + εgε)2Q (gε, gε)

3 The macroscopic conservation laws are not known to hold forrenormalized solutions.

4 Time compactness: there are oscillations!5 Space compactness: there is some compactness thanks to

velocity averaging lemmas. Moreover, we need the nonlinearweak compactness estimate:

g 2ε

2 + εgεis weakly compact in L1

loc.

D. Arsenio Hydrodynamic limits