Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the...

29
Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun ) collapse further. Pressure becomes so high that electrons and protons combine to form stable neutrons throughout the object: p + e - n + ν e Neutron Star

Transcript of Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the...

Page 1: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Formation of Neutron StarsCompact objects more massive than the

Chandrasekhar Limit (1.4 Msun) collapse further.

→ Pressure becomes so high that electrons and protons combine to form stable neutrons throughout the object:

p + e- → n + νe

→ Neutron Star

Page 2: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Neutron Stars

• Neutron Stars (NSs) are supported against their self-gravity (primarily) by neutron degeneracy pressure. As a consequence, NSs are typically 1000 times smaller than WDs. Maximum mass of NS ≈ 3

Page 3: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

1. Värmestrålning från ytan (svårt!) 2. Pulsarer3. Ackretion (massöverföring) i dubbelstjärnor4. Utbrott från ”röntgenbursters” och ”soft

gamma repeaters”

Neutronstjärnor förutsades teoretisk på 30-talet.Landau, Oppenheimer, Zwicky, Baade

Neutronstjärnor kan observeras genom:

Termisk energi Rotations energiGravitationell energiKärnenergi resp.

magnetisk energi

Page 4: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Neutronstjärnor har liten yta och (enligt Stefan-Boltzmanns lag) låg luminositet. Värmestrålningen är därför extremt svår att observera. I några fall har det dock lyckats.

Page 5: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Egenrörelse hos en neutronstjärna

En del neutronstjärnor har höga rymdhastigheter, kanske p.g.a. en asymetrisk supernova explosion.

Page 6: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Jocelyn Bell

Discovery of pulsars: Bell and Hewish, 1967

Page 7: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons
Page 8: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Neutron Stars as PulsarsThe Little Green Men?

Pulsars in the constellation Cygnus, first pulsar detected by Jocelyn Bell in 1967. The interval between pulses is precisely 1.337301 second.

Pulsar at the center of Crab Nebula. We know this is the remnant of a supernova explosion in 1054 AD for sure from Chinese court astronomer’s record.

Why do pulsars pulsate with such precise interval?

Crab Nebula

Page 9: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Pulsar

Crab Supernova with Pulsar: Close-up HST view

Page 10: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons
Page 11: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Crab Nebula as viewed in X-rays (CHANDRA)

Page 12: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons
Page 13: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Synkrotronstrålning

Elektroner, som är elektriskt laddade, kan

röra sig obehindrat längs magnetfältet men

vinkelrät påverkas den av en kraft som får den

att gyrera. En accelererad laddning

emitterar strålning som i det här fallet kallas synkrotronstrålning.

Synkrotronstrålning.

Page 14: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons
Page 15: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Varför roterar pulsarer så snabbt?

Det finns två svar:1. När en stjärna med rotationsperiod på veckor eller månader

kollapsar till en neutronstjärna måste det rotera snabbare för att rörelsemängdsmomentet [m · v · r] (”rotationsmomentet”) skall bevaras [när radien r minskar måste hastigheten v öka].

2. En grupp pulsarer har extremt snabb rotation, några millisekunder. De har sannolikt spunnits upp av massöverföring från en annan stjärna i ett tidigare skede (som röntgendubbelstjärna).

Page 16: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons
Page 17: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

If the main sequence star is a magnetic field star, then its magnetic fields may be trapped in the neutron star as the main sequence star undergoes gravitational collapse. The magnetic fields are intensified by a tremendous amount, because they are concentrated into a much smaller space.[Magnetic flux through the stellar surface is conserved. When the surface area shrinks the flux per area (field strength) increases.]

Page 18: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Neutron Stars• The physical process for the generation of the degeneracy pressure of the neutrons

in a neutron star is identical to that of the degenerate pressure of the electrons in a white dwarf.

• Similar to the Chandrasekhar limit for the white dwarfs, there is also a upper limit on the mass of neutron stars, the Oppenheimer-Volkoff limit, for the same physical reason. The degenerate pressure of the neutrons cannot hold off gravitational contraction forever. But its precise value has not been accurately determined theoretically yet, due to insufficient knowledge of nuclear physics.

• The estimated upper limit of the mass of the neutron star is about 3 M .

Properties of Neutron Stars

• Size: ~ 10 km.• Strongly magnetized: ~ 109 - 1013 Gauss (average on Earth is about 0.5 Gauss)• Rapidly rotating: typically 1 - 30 rotation per second• Very high temperature: ~ 1,000,000 K on the surface

Page 19: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Neutron star properties

Mass:

Radius:~10-20 km !

Page 20: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Spin-down och “stjärnbävning”(glitch)

När ett magnetfält (t.ex. en magnetisk neutronstjärna) roterar genereras ett elektriskt fält I vilket laddningar kan accelereras. Från ytan på en neutronstjärna kan elektroner accelereras till relativistiska hastigheter. Elektronerna emitterar synkrotronstrålning. Den energi som strålas ut kommer från stjärnans rotationsenergi vilket gör att stjärnans roterar långsammare och långsammare (längre period).

Neutronstjärnor roterar snabbt och är därför avplattade, har större diameter vid ekvatorn. När rotationen blir långsammare minskar avplattningen men eftersom stjärnan har en hård yta sker det först efter att det byggts upp en spänning i den hårda skorpan så att den slutligen spricker. Avplattningen minskar plötsligt och rotationen ökar något (”glitch”) [m · v · r !]

glitch

Page 21: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Neutron Star in a Close Binary System

• For a neutron star in a close binary system, an accretion disk similar to that formed around the white dwarf will be formed.

• Because the gravitational energies of the accretion disk around the neutron star are so high, the temperature of the accretion disk is much higher.

• X-ray binaries The high temperature at inner regions of the accretion disk produce X-ray, some with luminosity as great as 105 times the luminosity of the Sun

Page 22: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Beroende på om den andra stjärnan i systemet har liten eller stor massa klassas dubbelstjärnorna som LMXB (”Low Mass X-ray Binaries) eller HMXB (High Mass X-ray Binaries). I LMXB sker massöverföringen när den normala stjärnan fyller sin Roche-lob och i HMXB är det den starka stjärnvinden från den massiva stjärnan som fångas in av neutronstjärnan.

Röntgendubbelstjärnor

Page 23: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons
Page 24: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Röntgenburst (kärnexplosion)

Page 25: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

UHURU 1970 upptäckte att vissa röntgendubbelstjärnor pulserar. Massöverföring till en magnetisk neutronstjärna.

Gasen i ackretionsskivan följer magnetfältet ner mot polerna där gasen hetas upp och emitterar röntgenstrålning

Page 26: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Superfluidity and superconductivity are amongthe strange properties of neutron stars

• A neutron star consists of a superfluid, superconducting core surrounded by a superfluid mantle and a thin, brittle crust

Page 27: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Binary PulsarsSome pulsars form binaries with other

neutron stars or white dwarfs.

Radial velocities resulting from the orbital motion lengthen the pulsar

period when the pulsar is moving away from Earth...

…and shorten the pulsar period when it is approaching Earth.

Pulsar periods are so regular that they compete with some of the most accurate man-made clocks.Binary pulsars provide an excellent test of general relativity.

Page 28: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Pulsar PSR1913+16: two neutron stars in a binary system

Orbital period becomes shorter: stars lose energy to gravitational radiation

Taylor and Hulse, Nobel prize 1993

Page 29: Formation of Neutron Stars · Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun) collapse further. →Pressure becomes so high that electrons

Rotation Periods of Neutron Stars

• Pulsar periods are so regular that they compete with some of the most accurate man-made clocks.

• Binary pulsars provide an excellent test of general relativity.