Det e kce a spektrometrie neutron ů neutron detection and spectroscopy

53
Detekce a spektrometrie neutronů neutron detection and spectroscopy 1 1. Slow neutrons 2. Fast neutrons

description

Det e kce a spektrometrie neutron ů neutron detection and spectroscopy. Slow neutrons Fast neutrons. 1. Slow neutrons neutron kinetic energy E . a) . charged particles are produced , protons, α particle, or heavy fragments. - PowerPoint PPT Presentation

Transcript of Det e kce a spektrometrie neutron ů neutron detection and spectroscopy

Page 1: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

Detekce a spektrometrie neutronů

neutron detection and spectroscopy

1

1. Slow neutrons

2. Fast neutrons

Page 2: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

2

1. Slow neutrons neutron kinetic energy E

a)

b) passive detectors – activation foils

c) mechanical monochromators

charged particles are produced , protons, α particle, or heavy fragments

Page 3: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

3

a) Active detectors

Reactions

E very small ~1 MeV, nonrelativistic kinematics

( E is neglected, neutron velocity v is small )

Cross section: ~1/v, structureless, thermal cross section is ~3840 barns

(B: 80%

Page 4: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

4

Large tubes – α and Li fully absorbed

Page 5: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

5

α particle

Page 6: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

6

anodeAnode diameter `0.1 mm, operated voltage 2000-3000 V

Page 7: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

7

Page 8: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

8

Final state nuclei are always in the ground states , the total energy sum of tricium and α particle will give a signal of the form of a peak.The scintillation process is used for the detection of the product of neutron induced reactions or the products are detected by semiconductor detectors in coincidences.

Page 9: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

9

Scintillator: lithium iodide LiI (Eu) , Eu as an activator similar to NaI(Tl)

Page 10: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

10

Detectors:

Page 11: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

11

MeV

Fission nuclei: almost all α radioactive the signal from α particles << signal from fission products

good separation of both signals

Page 12: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

12

Detectors:

Energy spectra of fission fragments emerging from flat U deposits

Page 13: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

13

Page 14: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

14Fission cross section vs neutron energy

Page 15: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

15

b) Passive detectors – activation foils

The measured radioactivity ⟹ determination of the neutron flux and the energy spectrum

Page 16: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

16

Rate R of neutron interactions in the foil

(assumption: the neutron flux remains unperturbed, OK. for thin foils)

From R ⟹ information about Decays of produced neutron induced nuclei: the rate is λN N total number of present radioactive nuclei, λ decay constantThe rate of change of N is dN/dt

foil nuclei in 1

Page 17: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

17

Page 18: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

18

The number of counts:

neutron flux

Page 19: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

19

Page 20: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

20

R depends on the cross sections

Page 21: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

21

Decay constants ( ~half time)

Nature of induced activity

γ decay2.7 days Other materials : Mn, Ag, Cu, Co

metallic foils or wires

Page 22: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

22

Thermal neutrons: the cross section ~1/v but resonances at higher energies > 1 eV

Observed activity corresponds to the mixture of thermal neutrons and neutrons with higher energies

Separation: cadmium difference method (n +Cd) cross section large for E<0.4 eV, then the sharp decrease A thickness of 0,5 mm act as a selective filter, i.e. it blocks the thermal neutrons whereas the neutrons with E>0.4 eV passes the filter

Page 23: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

23

c) Mechanical monochromators (mechanical selector) Princip: time of flight metods

- Several wheels with Cd, same distances l, mounted on a common - drive shaft- In each wheel an empty slit , slits are regularly shifted by an angle φ - Rotation with angular frequency ω- Shift by φ in time t= φ/ω - In time t neutrons passes distance l with the velocity v= l/t

- they have energy E= m, in the detector- monochromatic beam

slitNeutron detector

Page 24: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

24

2. Fast neutrons

a) Detection using neutron moderation

b) Direct detection of fast neutron reactions

c) Detection using fast neutron scattering

Page 25: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

25

a) Detection using neutron moderation Reaction of fast neutrons which produce detectable charged secondary particles similarly as for slow neutrons could be used. But the cross sections for fast neutrons are very small detection efficiencies of corresponding detectors are small

The fast neutron can be detected by the devices developed for slow neutron, if they are surrounded by a moderator, where fast neutrons are slowed down to the energies of thermal neutrons.

This method can be used for the detection of fast neutrons, but cannot be used for an estimation of the incident energies of fast neutrons.

Page 26: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

nucleusneutron

CM system:

V velocity of CM systemθ 𝑙𝑎𝑏

26

Slowing down of neutrons

E

𝐸 𝐴

neutron

(A)

Page 27: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

27

E scattered neutron kinetic energy

Recoil nucleus energy

Scattering on protons, A=1

Slowing down is more efficient on light nuclei

Page 28: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

28

Energy distribution of neutrons

Assumption: isotropic angular distribution in CMS (valid for E< 15 MeV) probability of scattering into a CMS solid angle Ω

Page 29: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

29

General formula after n-scattering on hydrogen

Lethargy u= ln

average u(θ) θ≡

Page 30: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

30

Average lethargy change after one scattering is constant !

Slowing down from energy to

Page 31: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

31

Thermal neutron detector B tubes

moderator

Fast neutron moderated and captured

Fast neutron partly moderated and escaping without reaching the detector

Neutron captured by the moderator

Page 32: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

32

b) Direct detection of fast inelastic neutron reactions

Slowing down ⟹ eliminates all information on the original energy of the fast neutrons process is slow, no fast response of the detectorNo moderation ⟹ direct detection of the reaction products direct energy measurement of the product energies sum of energies = incident neutron energy fast signals but the cross section are orders of magnitude lower then for thermal neutronsTwo reaction of major importanceOther detectors: based on the activation methods

Page 33: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

33

Suitable for moderate energies, at higher energies a competing reaction

for E> 2.5 MeV, detection: a continuum of deposited energy

Detection: sum of energies = a peak

Detector: lithium sandwich spectrometer

Page 34: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

34

Coincidence exists

No coincidence

Page 35: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

35

Competing reactions: simple elastic neutron scattering from helium nuclei cross section >> for (n,p) reaction (n.d) reaction for E >4.3. MeV

Page 36: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

36

Elastic scattering(n.p) reaction

Fast neutrons which lost energies in the external materials

Page 37: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

37

Detectors:

Page 38: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

38

Activation counters for fast neutronsa) slow neutron activation materials (Ag, Rh) inside a moderating structure

The counter is placed within a polyethylene moderator

Page 39: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

39

b) Use threshold activation materials and to rely on direct activation by the fast neutrons without moderation

e.g. NaI scintillator, which provides NaI nuclei and detects β and γ from the F product

Page 40: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

40

c) Detection using fast neutron scattering

nucleusneutron

Φ (E) neutron flux, E primary neutron energyThe energy spectrum of the recoil nuclei is measured

energy of recoil nucleus

For fixed incident neutron energy

E

E is continuous:

Computer program which solves this equation for Φ (E)

Page 41: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

41

Page 42: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

42

𝑯𝒆❑𝟒

Page 43: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

43

Detectors:

Page 44: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

44

Recoil proton telescope: neutron scattering of hydrogen

𝜱𝒍𝒂𝒃

Page 45: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

DETEKCE

45

Page 46: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

46

Page 47: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

47

Page 48: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

48

Page 49: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

Účinný resonanční průřez (n,γ) pomalých neutronů na rhodiu

49

Page 50: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

Spektrometrie neutronů

50

Page 51: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

51

Page 52: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

52

Page 53: Det e kce  a  spektrometrie  neutron ů neutron detection and spectroscopy

53