Equivalent wind speed for AEP · Equivalent wind speed for AEP ... Standard power curve 2 groups of...
Embed Size (px)
Transcript of Equivalent wind speed for AEP · Equivalent wind speed for AEP ... Standard power curve 2 groups of...

Equivalent wind speed for AEPRozenn Wagner
VindKraftNet03-11-2011Risø

Risø DTU, Danmarks Tekniske Universitet
Experimental setup & Data processing
Filters:• wind direction;• no rain;• lidar signal availability 100% atall heights;• turbine status=1.
N

Risø DTU, Danmarks Tekniske Universitet
Profiles classification
( )fit
mfit hub
hub
zu z uz
α
=
( )2( ) mfit i i
i
RSS u z u= −∑RSS<0.1
RSS>0.1

Risø DTU, Danmarks Tekniske Universitet
Standard power curve
� 2 groups of profiles result in 2 different power curves

Risø DTU, Danmarks Tekniske Universitet
Equivalent wind speed
A1
A2
A3
A4
A5
Concept:
One wind speed representative ofthe whole wind speed profile in frontof the wind turbine rotor in term ofpower production
U1
U2
U5
U4
U3 Ueq
1/3 1/33 3
1
1 ( ) ( )R N
iKE i
iR
AU u z c z dz uA A=−
= ≈ ∑∫
Definition:

Risø DTU, Danmarks Tekniske Universitet
Power curve with equivalent wind speed
� Similar power curves are obtained for both groups of profiles

Risø DTU, Danmarks Tekniske Universitet
Comparison of the power curves
Difference due to the sheardistribution during the powercurve measurement.
How can theequivalent wind speedpower curve be usedfor AEP estimation?

Risø DTU, Danmarks Tekniske Universitet
Annual Energy Production
XAEP
Power curve atwind farm site
Wind speed distributionat wind farm site
=

Risø DTU, Danmarks Tekniske Universitet
AEP estimation
XPredictedAEP
Reference power curve:measured at a reference site
=
Wind speed distributionat wind farm site
Uhub power curve Uhub distribution
Ueq power curve Ueq distribution
Uhub power curve Uhub distribution
Ueq power curve Ueq distribution

Risø DTU, Danmarks Tekniske Universitet
Illustration of the 2 cases with Høvsøre data
DataGroup 1
Reference site
Reference power curve
DataGroup 2
Estimated site
Measured windspeed
Total power estimation
case1: with uhub
case 2: with Ueq

Risø DTU, Danmarks Tekniske Universitet
Illustration of the 2 cases with Høvsøre data
prediction: + 1.76%
Case 1

Risø DTU, Danmarks Tekniske Universitet
Illustration of the 2 cases with Høvsøre data
prediction: + 1.76% prediction: 0.005%
�Improved AEP estimation by using the equivalent wind speed both inthe power curve and the wind speed distribution.
Case 1 Case 2

Risø DTU, Danmarks Tekniske Universitet
More realistic applicationPower curve and wind distribution from 2 separate sites
Høvsøre
Østerild
Risø DTU’s Test Site for Large TurbinesHøvøsre

Risø DTU, Danmarks Tekniske Universitet
Power curve measured atHøvsøre in Feb-March2009
Wind speed distributionmeasured at Østerild May2010- May 2011
�
��
�
�
�
�����
��
��
��
��
��
����
�
��
�
�
�
����
��
���
��
��
��
����
4 6 8 10 12 140
100
200
300
400
�m�s�nbhours
All
4 possible combinations, but no turbine yet.
More realistic applicationPower curve and wind distribution from 2 separate sites

Risø DTU, Danmarks Tekniske Universitet
Combination 1:
•Equivalent power curve
•Equivalent wind speeddistribution
� Account for the shear during the powercurve measurement; expected to be thesame power curve at any site
� Account for the shear at Østerild
Reference AEP

Risø DTU, Danmarks Tekniske Universitet
Combination 2:
•Hub height power curve
•Hub height wind speeddistribution
-2.3%
� Underestimates the power producedbecause of the shear during the powercurve measurement.
� Slightly underestimates the energyavailable because does not account forthe shear at Østerild (assumes flat windspeed profiles)

Risø DTU, Danmarks Tekniske Universitet
Combination 3:
•Equivalent power curve
•Hub height wind speeddistribution
-0.5%
� Account for the shear during the powercurve measurement; expected to be thesame power curve at any site
� Slightly underestimates the energyavailable because does not account forthe shear at Østerild (assumes flat windspeed profiles)

Risø DTU, Danmarks Tekniske Universitet
Summary
U_hub power curve Ueq power curve
U_hub distribution (-2.3%) (-0.5%)
U_eq distribution (ref)
The error depends both on:• the Ueq/Uhub distribution during the power curve measurement (-1.8%)• and the Ueq/Uhub distribution at the assessed site (-0.5%)

Risø DTU, Danmarks Tekniske Universitet
More examples
Ueq/Uhub> 1Ueq/Uhub< 1

Risø DTU, Danmarks Tekniske Universitet
Case1: Ueq/Uhub> 1
U_hub power curve Ueq power curve
U_hub distribution (-3.8%) (-2.1%)
U_eq distribution (ref)
Profiles with larger kinetic energy than flat profiles
Part of the the error due to Ueq/Uhub distribution at the assessed site largerthan before (-2.1%);� Overall error larger than previous case.

Risø DTU, Danmarks Tekniske Universitet
Case2: Ueq/Uhub< 1
U_hub power curve Ueq power curve
U_hub distribution (0.00%) (+1.8%)
U_eq distribution (ref)
Profiles with smaller kinetic energy than flat profiles
Specific case:The Ueq/Uhub distribution are verysimilar for both datasets.

Risø DTU, Danmarks Tekniske Universitet
Conclusions 1
The shear influences the AEP estimation in 2 ways:
1)Error in power curve due to the shear during the power curvemeasurement2)Error in available energy at the assessed site.
�Missing uncertainty terms in the standard AEP estimation
�Equivalent wind speed results in a repeatable power curve.
�Improved AEP estimation with equivalent wind speed
�It requires to measure the wind speed profiles for site assessment

Risø DTU, Danmarks Tekniske Universitet
Conclusions 2
What to do if the equivalent wind speed distribution at the assessed site isnot available?
� If the Ueq/Uhub distributions at the two sites are similar: use the standardAEP calculation (wind speed at hub height).
� If the Ueq/Uhub distributions are different: combine the hub height speeddistribution with the equivalent power curve.
But to know the Ueq/Uhub distribution…… you need to measure the shear!
Acknowledgement: EU SafeWind

Risø DTU, Danmarks Tekniske Universitet
Wind lidar calibration
•Comparison to cupanemometers at 5 heights
•Horizontal wind speed,sensing height error,uncertainty, direction
•Synchronised lidar/mast data
•Accrediation for Windcubescalibration
DANAK
y�0.005 1.005 x
R2�0.998542
y�1.006 xR2�0.998541
4 6 8 10 12 14 16
4
6
8
10
12
14
16
cup �40m �m�s�
lidar
�40m
�m�s�
�� �����������������������
�� �����������������������
�� �����������������������
4 6 8 10 12 14 160.6
0.4
0.2
0.0
0.2
0.4
0.6
ref wind speed �40m �m�s�
lidarerror�40m
�m�s�

Risø DTU, Danmarks Tekniske Universitet
Wind lidar measurement
•Rent out a Windcube
•Set up, data transfert
•Data analysis

Risø DTU, Danmarks Tekniske Universitet
Wind Lidar – A practical course7-10 May 2012
•Lectures about the workingprinciples and limitations of lidarsystems.
•Interpreting data
•Hands-on experience with a lidaron-site
More information and registrationhttp://www.risoe.dtu.dk/da/conferences/vea_lidar_course_2012.aspx?sc_lang=en