ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State....

67
ELEG 205 Fall 2017 Lecture #15 Mark Mirotznik, Ph.D. Professor The University of Delaware Tel: (302)831-4221 Email: [email protected]

Transcript of ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State....

Page 1: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

ELEG 205Fall 2017

Lecture #15

Mark Mirotznik, Ph.D.Professor

The University of DelawareTel: (302)831-4221

Email: [email protected]

Page 2: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Chapter 10: Steady-StateSinusoidal Analysis

)cos()( φω += tAtV

Page 3: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Review of Complex NumbersHow can we convert a complex number from rectangular to polar notation?

22ir AAA +=

)(tan 1

r

i

AA−=φ

Page 4: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Review of Complex NumbersHow can we convert a complex number from polar to rectangular notation?

)sin(

)cos(

φ

φ

AA

AA

i

r

=

=

Page 5: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Review of Complex NumbersAj

ir eAjAAA φ⋅=+=Bj

ir eBjBBB φ⋅=+=Summary

( )BAjeBA

C φφ −⋅=

( )BAjeBAC φφ +⋅=( ) ( )iirr BAjBAC +++=

( ) ( )iirr BAjBAC −+−=

Addition and Subtraction Multiplication and Division

Page 6: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Review of Complex Numbers: ExampleConvert to single complex number in polar notation

485

832π

π

j

j

je

jeC−

+

+−=

Page 7: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Review of Complex Numbers: ExampleConvert to single complex number in polar notation

485

832π

π

j

j

je

jeC−

+

+−=

42185

83)sin(2)cos(2ππ

ππjj

ee

jjC−

+

+−+=

Page 8: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Review of Complex Numbers: ExampleConvert to single complex number in polar notation

42185

83)sin(2)cos(2ππ

ππjj

ee

jjC−

+

+−+=

485

83)0(2)1(2πj

e

jjC+

+−⋅+−⋅=

Page 9: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Review of Complex Numbers: ExampleConvert to single complex number in polar notation

)4

sin(8)4

cos(85

85ππ j

jC++

+−=

485

83)0(2)1(2πj

e

jjC+

+−⋅+−⋅=

Page 10: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Review of Complex Numbers: ExampleConvert to single complex number in polar notation

657.5657.1085

228

2285

85j

j

j

jC++−

=++

+−=

)4

sin(8)4

cos(85

85ππ j

jC++

+−=

Page 11: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Review of Complex Numbers: ExampleConvert to single complex number in polar notation

657.5657.1085j

jC++−

=

⋅+

⋅+=

657.10657.5tan

22

58tan

22

1

1

657.5657.10

85j

j

e

eC

Page 12: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Review of Complex Numbers: ExampleConvert to single complex number in polar notation

⋅+

⋅+=

657.10657.5tan

22

58tan

22

1

1

657.5657.10

85j

j

e

eC

488.0

0122.1

065.12434.9

j

j

eeC⋅⋅

=−

Page 13: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Review of Complex Numbers: ExampleConvert to single complex number in polar notation

5.17819.0 jeC −⋅=

488.0

0122.1

065.12434.9

j

j

eeC⋅⋅

=−

Page 14: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasors

)sin()cos( xjxe jx +=Recall:( )[ ]

[ ][ ]

φ

ω

ωφ

φωφω

jm

tj

tjjm

tjmm

eVV

eV

eeVeVtVtV

⋅=

⋅=

⋅⋅=

⋅=+= +

~

~Re

ReRe)cos()(

Where is called a Phasor

Page 15: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasors

φjm eVV ⋅=~

What does the Phasor tell us about the sinusoidal voltage or current

Page 16: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasors

φjm eVV ⋅=~

What does the Phasor tell us about the sinusoidal voltage or current

For example if a Phasor voltage is ojeV 305~ ⋅=

and the frequency was known as kHzf 5=could you tell me what the voltage waveform was in time?

Page 17: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

PhasorsFor example if a Phasor voltage is

ojeV 305~ ⋅=and the frequency was known as kHzf 5=could you tell me what the voltage waveform was in time?

)3050002cos(5)( ottv +⋅= π

ojeV 305~ ⋅= kHzf 5=

Page 18: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasor Transform of Sinusoidal Sources

)cos()( φω += tVtV m

Time-Domain Phasor-Domain

φjm eVV ⋅=~

Page 19: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasor Transform of Sinusoidal Sources

)cos()( φω += tIti m

Time-Domain Phasor-Domain

φjm eII ⋅=~

Page 20: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasor Transform of Sinusoidal Sources: Examples

)3

1000cos(10)( π+= ttV

Time-Domain Phasor-Domain

310~ πjeV ⋅=

Page 21: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasor Transform of Sinusoidal Sources: Examples

Time-Domain Phasor-Domain

)40000,10cos(5.1)( otti +=ojeI 405.1~ ⋅=

Page 22: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasor Transform of Sinusoidal Sources: Examples

)4

1000sin(7)( π−= ttV

Time-Domain Phasor-Domain

?~ =V

Page 23: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Inverse Phasor Transform

?)( =tV

Time-Domain Phasor-Domain

58~ πjeV ⋅=

kHzf 5=

Page 24: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Inverse Phasor Transform

)5

50002cos(8)( ππ +⋅⋅= ttV

Time-Domain Phasor-Domain

58~ πjeV ⋅=

kHzf 5=

Page 25: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Inverse Phasor Transform

?)( =tV

Time-Domain Phasor-Domain

jV 15~ =MHzf 1=

Page 26: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Inverse Phasor Transform

)2

102cos(15)( 6 ππ +⋅=tV

Time-Domain Phasor-Domain

215

15~

πje

jV

⋅=

=

MHzf 1=

Page 27: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasors with Circuit Components

=== tjtjtjjm e

RVeIeeIti I ωωωφ~

Re~ReRe)(

R)(ti tj

tjjm

vm

eV

eeV

tVtvv

ω

ωφ

φω

~Re

Re

)cos()(

=

=

+=

= tjtj eRVeI ωω~

Re~Re

Page 28: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasors with Circuit Components

R)(ti tj

tjjm

eV

eeVtv v

ω

ωφ

~Re

Re)(

=

=

= tjtj eRVeI ωω~

Re~Re

= tjtj eRVeI ωω~

Re~Re

Page 29: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasors with Circuit Components

R)(ti tj

tjjm

eV

eeVtv v

ω

ωφ

~Re

Re)(

=

=

= tjtj eRVeI ωω~

Re~Re

RVI~~ =

IVR ~~

=

Page 30: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasors with Circuit Components

R tjeVtv ω~Re)( =

IVR ~~

=

The ratio of the phasor voltage to phasor current is called the impedance (symbol Z)

tjeIti ω~Re)( =

Page 31: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasors with Circuit Components

IVRZ ~~

==

The ratio of the phasor voltage to phasor current is called the impedance (Z)

IVZ ~~

=

In general For a resistor

Page 32: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

C

[ ] tjtjtj eCjVeVdtdCeI

dttdvCti

ωωω ω ⋅⋅==

=

~Re~Re~Re

)()(

tjeVtv ω~Re)( = tjeIti ω~Re)( =

Phasors with Circuit Components

Page 33: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

C

tjtj

tjtj

eCjVeI

eCjVeIωω

ωω

ω

ω

⋅⋅=

⋅⋅=~Re~Re

~Re~Re

tjeVtv ω~Re)( = tjeIti ω~Re)( =

Phasors with Circuit Components

Page 34: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

C

CjVI ω⋅= ~~

tjeVtv ω~Re)( = tjeIti ω~Re)( =

CjIVZ

ω1

~~==

Phasors with Circuit Components

Page 35: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

C tjeVtv ω~Re)( =

tjeIti ω~Re)( =

CjIVZ

ω1

~~==I

VZ ~~

=

In general For a capacitor

Phasors with Circuit Components

Page 36: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

L tjeVtv ω~Re)( =

tjeIti ω~Re)( =

[ ]

⋅==

=

∫tjtjtj eV

LjdteV

LeI

dttvL

ti

ωωω

ω~1Re~Re1~Re

)(1)(

Phasors with Circuit Components

Page 37: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

L tjeVtv ω~Re)( =

tjeIti ω~Re)( =

⋅=

⋅=

tjtj

tjtj

eVLj

eI

eVLj

eI

ωω

ωω

ω

ω

~1Re~Re

~1Re~Re

Phasors with Circuit Components

Page 38: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

L tjeVtv ω~Re)( =

tjeIti ω~Re)( =

⋅= tjtj eVLj

eI ωω

ω~1Re~Re

VLj

I ~1~ω

= LjIVZ ω== ~~

Phasors with Circuit Components

Page 39: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

L tjeVtv ω~Re)( =

tjeIti ω~Re)( =

LjIVZ ω== ~~

IVZ ~~

=

In general For an inductor

Phasors with Circuit Components

Page 40: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasors with Circuit ComponentsSummary

Impedance, Z, Ω

Resistor

Inductor

Capacitor

LjZ ω=

CjZ

ω1

=

RZ =

Page 41: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Phasors with Circuit ComponentsSummary

Impedance,Z, Ω

Admittance,Y, sieman

Resistor

Inductor

Capacitor

LjIVZ ω== ~~

CjIVZ

ω1

~~==

RIVZ == ~~

RVIY 1~~==

LjVIY

ω1

~~==

CjVIY ω== ~~

Page 42: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Combining Impedances

1 mH

0.5 mH

1 µF

10 ΩeqZ

Convert all of the components to their impedance values and determine the equivalent impedance of the entire network

kHzf 10=

Page 43: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

1 mH

0.5 mH

1 µF

Z=10 ΩeqZ

Convert all of the components to their impedance values and determine the equivalent impedance of the entire network

kHzf 10=

jjCj

Z 9.15101000,102

116 −=

⋅⋅⋅== −πω

jjLjZ 8.62101000,102 3 =⋅⋅⋅== −πω

jj

LjZ

4.31105.0000,102 3

=⋅⋅⋅=

=−π

ω

Combining Impedances

Page 44: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

62.8j Ω

31.4j Ω

-15.9j Ω

10 ΩeqZ

Convert all of the components to their impedance values and determine the equivalent impedance of the entire network

kHzf 10=

jjjjjZeq 8.4908.99.158.62

4.31104.3110

+=−++⋅

=

Combining Impedances

Page 45: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

62.8j Ω

31.4j Ω

-15.9j Ω

10 ΩeqZ

Convert all of the components to their impedance values and determine the equivalent impedance of the entire network

kHzf 10=

Ω==+= ⋅⋅ ojjeq eejZ 7.7939.1 6.506.508.4908.9

Combining Impedances

Page 46: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State Circuits

STEP #1: Transform all sources to the phasor domain using the phasor transform

Page 47: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsSTEP #2: Transform all components (i.e. resistors, inductors and capacitors) into their complex impedance values.

Page 48: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State Circuits

STEP #3: Using Kirchhoff's laws and Ohm’s law for impedances solve for the unknown phasor quantities.

I~

Page 49: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State Circuits

STEP #4: Transform phasor results back into the time domain.

tjeIti ω~Re)( =

Page 50: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

)cos()( tAtv ω= CR

Find vc(t)

)(tvc

Page 51: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

STEP #1 and #2: Transform all sources to the phasor domain using the phasor transform and transform all components to their impedances

)cos()( tAtv ω= CR

)(tvc

Time-Domain Phasor-Domain

0~ jAeV = Cjω1

R

cV~

Page 52: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

)cos()( tAtv ω= CR

)(tvc

Time-Domain Phasor-Domain

0~ jAeV = Cjω1

R

cV~

STEP #3: Using Kirchhoff's laws and Ohm’s law for impedances solve for the unknown phasor quantities.

Solve this circuit like you would if it was only just filled with resistors and DC sources.

Page 53: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

Phasor-Domain

0~ jAeV = Cjω1

R

cV~

STEP #3: Using Kirchhoff's laws and Ohm’s law for impedances solve for the unknown phasor quantities.

CjR

CjVVc

ω

ω1

1~~

+=Voltage divider

Page 54: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

Phasor-Domain

0~ jAeV = Cjω1

R

cV~

STEP #3: Using Kirchhoff's laws and Ohm’s law for impedances solve for the unknown phasor quantities.

11

1

1~~

+⋅=⋅

+=

CRjA

CjCj

CjR

CjVVc ωωω

ω

ωVoltage divider

Page 55: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

Phasor-Domain

0~ jAeV = Cjω1

R

cV~

STEP #3: Using Kirchhoff's laws and Ohm’s law for impedances solve for the unknown phasor quantities.

Voltage divider)

1(tan22

0

1

)(11

~RCj

j

c

eRC

eACRjAV ω

ωω −

⋅+

⋅=

+=

Page 56: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

Phasor-Domain

0~ jAeV = Cjω1

R

cV~

STEP #3: Using Kirchhoff's laws and Ohm’s law for impedances solve for the unknown phasor quantities.

Voltage divider)

1(tan

2

1

)(1~ RCj

c eRC

AVω

ω

−−⋅

+=

Page 57: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

)cos()( tAtv ω= CR

)(tvc

Time-Domain Phasor-Domain

0~ jAeV = Cjω1

R

cV~

STEP #4: Transform phasor results back into the time domain.

)1

(tan

2

1

)(1~ RCj

c eRC

AVω

ω

−−⋅

+=( )

))(tancos(1

)( 1

2RCt

RC

Atvc ωωω

−−+

=

Page 58: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

)cos()( tAtv ω= CR

)(tvc

( )))(tancos(

1)( 1

2RCt

RC

Atvc ωωω

−−+

=

Lets look at this solution at different frequencies.

Page 59: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

)cos()( tAtv ω= CR

)(tvc

( )))(tancos(

1)( 1

2RCt

RC

Atvc ωωω

−−+

=

Lets look at this solution at different frequencies.

1. At DC (ω=0) what does the capacitor voltage look like?

Page 60: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

)cos()( tAtv ω= CR

)(tvc

( )))(tancos(

1)( 1

2RCt

RC

Atvc ωωω

−−+

=

Lets look at this solution at different frequencies.

1. At DC (ω=0) what does the capacitor voltage look like?

( )ARCt

RC

Atvc =⋅−⋅⋅+

= − ))0(tan0cos(01

)( 1

2 Does this make sense?

Page 61: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

)cos()( tAtv ω= CR

)(tvc

( )))(tancos(

1)( 1

2RCt

RC

Atvc ωωω

−−+

=

Lets look at this solution at different frequencies.1. At very very high frequencies (ω=infinity) what does the capacitor voltage look like?

Page 62: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

)cos()( tAtv ω= CR

)(tvc

( )))(tancos(

1)( 1

2RCt

RC

Atvc ωωω

−−+

=

Lets look at this solution at different frequencies.1. At very very high frequencies (ω=infinity) what does the capacitor voltage look like?

( )0))(tancos(

1)( 1

2=⋅∞−⋅∞

⋅∞+= − RCt

RC

Atvc Does this make sense?

Page 63: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

Lets now plot the magnitude of the capacitor sinusoid as a function of frequency

ω

( )21 RC

A

ω+

A

0 0 RC20

As the frequency increases the amplitude of the output voltage (vc(t)) gets smaller.

RC10

Page 64: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

Lets now plot the magnitude of the capacitor sinusoid as a function of frequency

ω

( )21 RC

A

ω+

A

0 0 RC20

As the frequency increases the amplitude of the output voltage (vc(t)) gets smaller.

RC10

THIS PLOT IS CALLED A MAGNITUDE FREQUENCY RESPONSE PLOT

Page 65: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

As the frequency increases the amplitude of the output voltage (vc(t)) gets smaller.

( )))(tancos(

1)( 1

2RCt

RC

Atvc ωωω

−−+

=

Page 66: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using

Solving Sinusoidal Steady State CircuitsExamples

Lets now plot the phase angle of the capacitor sinusoid as a function of frequency ω

)(tan 1 RCω−−

o90−0 RC20

As the frequency increases the phase of the output voltage (vc(t)) goes from 0 degrees to -90 degrees.

RC10

THIS PLOT IS CALLED THE PHASE FREQUENCY RESPONSE PLOT

o0

Page 67: ELEG 205 Fall 2017 Lecture #14mirotzni/ELEG205/Lecture15.pdf · Chapter 10: Steady-State. Sinusoidal Analysis. V(t) =A. ... Solving Sinusoidal Steady State Circuits. STEP #3: Using