Diffusion & Oxidation Doping - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures/Diffusion...Diffusion...

of 28 /28
Diffusion & Oxidation Doping

Embed Size (px)

Transcript of Diffusion & Oxidation Doping - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures/Diffusion...Diffusion...

  • Diffusion & OxidationDoping

  • Diffusion

    1st Fick’s law

    Fick's First Law is used in steady state diffusion, i.e., when the concentration within the diffusion volume does not change with respect to time.

    ( )

    dxdnDJ

    dxdnvnn

    vSdtdNJ

    −=

    −=−−−==3

    )()(6

    λλλ

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=

    TkE

    DDB

    diffexp0 Ediff: activation energy for diffusion

  • Diffusion

    2nd Fick’s lawFick's Second Law is used in non-steady state diffusion,i.e., when the concentration within the diffusion volume changes in time.

    [ ]

    2

    2

    )()(

    :Continuity

    xnD

    dtdn

    dxdJ

    dtdn

    dtdVdxdJSdtxxJxJdN

    dxdnDJ

    ∂∂

    =⇒−=

    −=∆+−=

    −=

  • DiffusionConstant source diffusion

    “pre-deposition”Limited source diffusion

    “drive-in”

    ( ) ∫∞

    −=

    ⎟⎠

    ⎞⎜⎝

    ⎛=

    x

    x dxex

    Dtxntxn

    22erfc

    ;2

    erfc),( 0

    π

    2

    2exp),( ⎟

    ⎞⎜⎝

    ⎛=Dtx

    DtQtxnπ

    DtndxtxnSNtQ 0

    0 32),()( Dose === ∫

    (complimentary error function)

  • DiffusionEnhanced diffusion:• Stress, electric field• Ionization• Grain boundaries (defects)

    Parameters that affect diffusion:• Temperature• Pressure• Crystal direction (channeling)

    Probability to escape in thermalactivation process:

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛ −−⋅⋅=

    TkeaEWanPB

    2/expω

    w- attempt frequency

  • DiffusionIn gases:

    D[cm2/s]

    H2 in O2 0.7

    CO2 in air 0.14

    O2 in O2 0.18

    sugar in water 3e-6

    σσ PTv

    nvvlD Bk~~~

    scm][

    2

    =DxcDj

    dd

    −=

    Mobility B, force F, drift velocity u of ionsBFu =

    DLt

    2

    ~Time of equalizationBTD Bk= Einstein's equation

    L

  • Doping

  • Mechanism of Diffusion

    a) substitutional diffusionb) impurity atom replaces Si atomc) impurity atom does not replace Si atom

  • Doping

    O3HOB3OHB6BrO2B3O4BBr

    3SiO4B3SiO2B

    232262

    23223

    232

    +→++→+

    +→+

    Uniformity on Wafers

    O3HOP4O2PH6ClO2P3O4POCl

    5SiO4P5SiO2P

    25223

    25223

    252

    +→++→+

    +→+

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∆

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∆

    ==

    DkrI

    rr

    DkrI

    CrC

    drrd

    00

    0

    00

    0

    0

    2

    2)(

    )1()/(

    φ

  • Doping by thermal diffusion

    Tool #433Rapid Thermal Processor (RTP) AG Heatpulse 610

    a PC-controlled halogen lamp furnace. It accommodates 2", 3", and 4" wafers, or small pieces placed on a wafer.

    It is typically used for alloying of ohmic contacts on III-V semiconductors. No other substrates than III-V are allowed.

    Specifications:Protecting gas: N2Wafer size: pieces, 2", 3", 4“Max temperature:1000°CHeating rate: 120°C/secTemperature sensor: Thermocouple / Pyrometer

  • Diffusion

    http://www.oki.com/

    diffusion of dopant atoms in the direction parallel to the surface of semiconductor; undesired in device manufacturing as it causes distortion of the device geometry.

  • Thermal Oxidation of Si

    222

    22

    2HSiOO2HSiSiOOSi

    +→+→+

    1. Oxygen is transported from the bulk of the gas phase to the gas-oxide interface2. Oxygen diffuses through the growing solid oxide film3. When oxygen reaches the Si/SiO2 interface, it chemically reacts with Si and forms SiO2

  • Interface Reaction Kinetics

    )( sgggs CChJ −= sss CkJ =

    sgsgs

    gs JJhk

    CC =

    += for

    1

    ⎟⎠⎞

    ⎜⎝⎛−∝

    RTEks exp

    ks>>hg: mass transfer

    ks

  • Interface Reaction Kinetics( )( )

    iS

    i

    gg

    CkJd

    CCDJ

    CChJ

    =

    −=

    −=

    3

    0

    02

    01

    constant ratereaction chemical SiOin oxygen of coeff. diff.

    tcoefficien transportmassinterface Si/SiO at theoxygen ofion concentrat interface gas/SiO at theoxygen ofion concentrat

    gas in theoxygen ofion concentrat

    2

    20

    2

    −−

    −−−

    S

    g

    i

    g

    kD

    hCC

    C

    Ddk

    hk

    DdkC

    CS

    g

    S

    Sg

    0

    0

    0

    1

    1

    ++

    ⎟⎠⎞

    ⎜⎝⎛ +

    =

    Ddk

    hk

    CC

    S

    g

    S

    gi

    01 ++=

    growth) state-(steady 321 JJJ ==

  • Interface Reaction Kinetics

    Ddk

    hk

    DdkC

    CS

    g

    S

    Sg

    0

    0

    0

    1

    1

    ++

    ⎟⎠⎞

    ⎜⎝⎛ +

    =

    Ddk

    hk

    CC

    S

    g

    S

    gi

    01 ++=

    ( )00 limitedreaction 1

    dkD

    hk

    CCC S

    G

    S

    gi >>

    +=≈

    ( )00 limiteddiffusion :0 ; dkDCCC Sig

  • Interface Reaction Kinetics

    )(

    )(

    020

    00

    τ+=+

    =

    tBAdd

    NCktd

    dtd iS

    the actual growthdepends on J3:

    [ ]( )

    any) (if thicknessoxide initial

    /;/2);(2

    cm (wet) 104.4 (dry) 102.22

    011

    322220

    +==+=

    ××=−−

    i

    iigSg

    d

    BAddNDCBkhDA

    N

    τ

    BAttABtd

    BAtBttdBA

    tAtd

    4/),()(

    4/,)(

    14/

    12

    )(

    20

    20

    20

    −+

    +=

    ττ

    τ

  • Oxide ExpansionCracks – lower breakdown voltage (5-10 MV/cmLeakageTrapped charges

  • Mechanical Relaxation Effectsduring oxide growth (expansion)

    Stress relaxation: Strain relaxation:

    ( )

    212

    2110

    21

    21

    21

    s/cmdyn 108.2dyn/cm 106.6for

    /expstrain)(constant

    ;

    ⋅⋅=

    ⋅=

    −=−=

    ==

    +=

    η

    ησσεε

    ησεσε

    εεε

    Y

    Yt

    Y

    x

    xx

    T

    &&

    & ( )[ ]ησε /exp10 YtY

    −−=

    Si substrate

    SiO2Usually a mixtureof strain and stressrelaxations

    τ ~ 4 sec

    A volume change of ~200%!

  • Diffusion Along Grain BoundariesStressDefects

    easier diffusion along grain boundaries

    http://shasta.mpi-stuttgart.mpg.de/research/thinfilmcnt/thinfilms.htm

  • Interdiffusion & Transformationsin Thin Films

    Electro-migration

    Interdiffusion is crucialin multilayers

    MoSimultilayers

    •EUV lithography •EUV metrology •EUV microscopy •synchrotron optics •x-ray astronomy •soft x-ray lasers •element analysis •plasma physics

    M. Ohring: Materials Science of thin filmshttp://www.iof.fraunhofer.de/departments/optical-coatings/

  • Si Crystal Structurediamond structure

    Two interleaving FCC cells offset by 1/4 of the cube diagonal

  • Isotropic vs Anisotropic Wet Etching

  • Chemicals IsotropicHF:HNO3:CH3COOH:H20HFHF:NH4F Masking MaterialsPhotoresist (Acids Only)

    Si3N4SiO2Anisotropic

    KOHEDP (Ethylenediamine Pyrocatechol)CsOHNaOHN2H4-H20 (Hydrazine)

  • Chemicals KOH EtchingEtch rate

    (110) > (100) > (111)(111) > (110) > (111) w/ IPA

    Varies with T and concentration

    MasksSi3N4: is the best, very slow etch rate, selectivity > 1000SiO2 :selectivity >> 100

  • Application of Anisotropic Etch

    Pits

    Steps

    Holes

    Cantilevers

    Bridges

    MicromachiningM. Madou “Fundamentals of microfabrication”

  • Etch Stop Layers

    Boron Stops Etching~1020 cm-3 reduces etch rate 1000 times

    Boron-doped Layer

    masking

  • Laser-Assisted Wet Etching

    M. Madou, Fundamentals of Microfabrication

  • Macroporous Si http://www.macroporous-silicon.com/

    Photogenerated minority carriers (in the case of n-type Si this means "holes") diffuse from the back side of the sample to the pore (etch) pits and promote dissolution there, because of the enhanced electrical field in the space charge layer (SCL). www-tkm.physik.uni-karlsruhe.de/

    DiffusionDiffusionDiffusionDiffusionDopingMechanism of DiffusionDopingDopingDiffusionThermal Oxidation of SiInterface Reaction KineticsInterface Reaction KineticsInterface Reaction KineticsInterface Reaction KineticsOxide ExpansionMechanical Relaxation EffectsDiffusion Along Grain BoundariesInterdiffusion & Transformationsin Thin FilmsSi Crystal StructureIsotropic vs Anisotropic Wet EtchingChemicalsChemicalsApplication of Anisotropic EtchEtch Stop LayersLaser-Assisted Wet EtchingMacroporous Si